
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2018

Safe Kernel Programming
with Rust

JOHANNES LUNDBERG

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Safe Kernel Programming
with Rust

JOHANNES LUNDBERG

Master in Computer Science
Date: August 14, 2018
Supervisor: Johan Montelius
Examiner: Mads Dam
Swedish title: Säker programmering i kärnan med Rust
School of Computer Science and Communication

iii

Abstract

Writing bug free computer code is a challenging task in a low-level
language like C. While C compilers are getting better and better at de-
tecting possible bugs, they still have a long way to go. For application
programming we have higher level languages that abstract away de-
tails in memory handling and concurrent programming. However, a
lot of an operating system’s source code is still written in C and the
kernel is exclusively written in C. How can we make writing kernel
code safer? What are the performance penalties we have to pay for
writing safe code? In this thesis, we will answer these questions using
the Rust programming language. A Rust Kernel Programming Inter-
face is designed and implemented, and a network device driver is then
ported to Rust. The Rust code is analyzed to determine the safeness
and the two implementations are benchmarked for performance and
compared to each other. It is shown that a kernel device driver can be
written entirely in safe Rust code, but the interface layer require some
unsafe code. Measurements show unexpected minor improvements to
performance with Rust.

iv

Sammanfattning

Att skriva buggfri kod i ett lågnivåspråk som C är väldigt svårt. C-
kompilatorer blir bättre och bättre på att upptäcka buggar men är ännu
långt ifrån att kunna garantera buggfri kod. För applikationsprogram-
mering finns det tillgängligt olika högnivåspråk som abstrakterar bort
den manuella minneshanteringen och hjälper med trådsäker program-
mering. Dock fortfarande så är större delar av operativsystemet och
dess kärna är endast skriven i C. Hur kan vi göra programmering i
kärnan säkrare? Vad är prestandakonsekvenserna av att använda ett
säkrare språk? I denna uppsats ska vi försöka svara på dessa frågor
genom att använda språket Rust. Ett programmeringsgränssnitt i Rust
är implementerat i kärnan och en nätverksdrivrutin är portad till Rust.
Källkoden skriven i Rust är analyserad för att bedömma säkerheten
samt prestandan är jämförd mellan C och Rust implementationerna.
Det är bevisat att vi kan skriva en drivrutin i enbart säker Rust om vi
kan lita på några osäkra funktioner i gränssnittet. Mätningar visar lite
bättre prestanda i Rust.

Contents

1 Introduction 1

1.1 Operating system’s kernel 1
1.2 Problem description . 1
1.3 Purpose . 2
1.4 Goals . 2
1.5 Methodology . 3
1.6 Limitations . 5

2 Background 6

2.1 Operating system . 6
2.2 Kernel and userland . 6
2.3 Consequences of software bugs 7
2.4 Bugs in the kernel . 7
2.5 Rust . 8
2.6 Related work . 13

3 Methodology 16

3.1 Cross-compile Rust . 18
3.2 Port driver to Rust . 18
3.3 Analysis . 19

4 Porting a network device driver 21

4.1 Setup . 21
4.2 RustKPI . 22
4.3 Rust e1000 . 23

5 Evaluation 25

5.1 Unsafe Code . 25
5.2 Performance . 28

v

vi CONTENTS

6 Conclusions 36

6.1 Safeness . 36
6.2 Performance . 37
6.3 Future work . 38

Bibliography 39

A Development process 43

A.1 Kernel bindings . 43
A.2 Mutexes . 44
A.3 Malloc . 44
A.4 Concatenate identifiers . 44
A.5 Automatic code conversion 44

B Listings 45

B.1 Hello world kernel module in Rust 45
B.2 Hardware setup . 46
B.3 LLVM target configuration 47
B.4 e1000 C files . 48

Chapter 1

Introduction

1.1 Operating system’s kernel

In an operating system, everything is built around the kernel and the
kernel manages all interaction between the user, the software appli-
cations and the hardware. Therefore it is important that the kernel
is highly optimized or the whole system will suffer from bad perfor-
mance. To accomplish this, a powerful, low-level language is required,
and for this reason, the kernel is usually written in C. In C, the pro-
grammer have full control and are expected to manage everything
when it comes to memory safety. This has some problematic conse-
quences described in the next section.

1.2 Problem description

In userland, applications run in isolated compartments and one ill-
behaving application will seldom affect other applications. However,
even if the applications can be written in a safer, higher level language
it is a false sense of safety because they all depend on the kernel. The
monolithic kernel is essentially one big C program without isolated
parts where one small bug in one place can cause the whole system to
fail1. Some of the common bugs in C code are:

• Double free - Freeing memory that has already been freed.
1The micro kernel design tries to solve this by isolating different parts of the ker-

nel from each other but it doesn’t solve the underlying problem.

1

2 CHAPTER 1. INTRODUCTION

• Use after free - Access memory that has been freed.

• Data races - Failure to use proper locking mechanism.

In the best case, any of these bugs in the kernel would cause the system
to crash. In the worst case, they would cause subtle errors that are
difficult to detect and that would cause all kinds of weird behavior
in the operating system. One could almost say, the whole operating
system depends on a very fragile core, similar to a house of cards.

1.3 Purpose

Kernel programming is inherently unsafe and making it safer is not an
easy task since the code is running close to the hardware and has to
be highly optimized for performance. In the past, there have been a
few attempts to make kernel programming safer. This includes things
from language customization with trusted compilers and type safe as-
sembly language to transactional semantics for system calls.

In recent years a new possible way of making kernel programming
safe has surfaced. This is the programming language Rust. Among
other features, Rust has built in static analysis based on ownership that
catches bugs that would otherwise go unnoticed in a language like C.
It is a modern alternative to C and C++ that claims to prevent many
of the bugs common to C like languages. The purpose of this thesis is
to evaluate Rust for safe kernel programming. A single device driver
will be ported to Rust to test the thesis. Further porting of other device
drivers or kernel interfaces is left as possible future work.

1.4 Goals

The goal is to determine if it is feasible to use Rust as a safer alternative
to C in kernel level programming. To answer this question we have to
look at two different aspects.

Safeness
Rust comes in two flavors, safe Rust with its strict compiler rules and
static analysis and unsafe Rust, which unlocks the power of raw point-
ers and the risk to “shoot oneself in the foot”. To be able to inter-

CHAPTER 1. INTRODUCTION 3

face with foreign languages and do low-level manipulation of mem-
ory, Rust has the ability to compile code in an unsafe mode where it
permits the use of raw pointers and other things regarded as “unsafe”.
Unsafe code is required when writing low-level code, typically found
in the kernel, but it should be kept to a minimum. For reference, Rust
itself uses unsafe code internally to wrap things like raw pointers in
safe interfaces. This thesis should show how much unsafe code is re-
quired to write a functional device driver in Rust.

Performance
As previously mentioned, performance is critical in the operating sys-
tem’s kernel and memory safety comes at a price. Since the Rust com-
piler will add things like boundary checks to its smart pointers, there
will be some performance penalty. This thesis should show how much
the performance differ between a native C implementation and an
equivalent Rust implementation.

1.5 Methodology

The methodology can be divided into the following steps, listed in
chronological order.

Cross-compile Rust
Rust by default comes with support for cross compiling to different
target operating systems and architectures. It does not however sup-
port a kernel target out of the box so some manual setup and configu-
ration is required. Among other, a LLVM target configuration for the
kernel has to be written. A RustKPI (Rust Kernel Programming Inter-
face) is created as a loadable kernel module by reusing a lot of the code
found in Rust’s standard library.

Porting
Since the kernel is written in C there exists no device drivers written
in Rust. To be able to compare performance between Rust and C, one

4 CHAPTER 1. INTRODUCTION

device driver is ported2 from C to Rust. The kernel consists of various
subsystems and device drivers, many that could be a potential porting
target for this thesis. Some requirements are:

• Performance - It should be something that can generate high
CPU load and be benchmarked.

• Few dependencies - The work load should be reasonable, i.e. too
many dependencies to different kernel programming interfaces
would be too time-consuming to port.

• Comparison - The Rust implementation should be comparable
to the original C implementation to give fair performance com-
parison results.

After considering systems like USB and storage I/O, it was de-
cided that a suitable candidate for porting is Intel’s Ethernet network
card driver, “e1000”. This driver depends only on a few kernel pro-
gramming interfaces apart from IfLib and no other driver or system
depends on it. As a network card driver it can also be pushed to gen-
erate high CPU loads. The driver interfaces with RustKPI and is cross-
compiled for the kernel the same way.

Analysis
Whenever unsafe Rust is used in the code it has to be explicitly marked
with an unsafe {...} block. The device driver code will be ana-
lyzed for any usage of unsafe and the code within each unsafe block
further divided into different categories, each category being one ac-
tion that Rust regards as unsafe. The safe code will be assumed to be
safe as guaranteed by the Rust compiler.

Benchmarks
Iperf [1] is used to benchmark the performance. Iperf is a tool for
network performance measurement and it has both client and server
functionality. Iperf runs a duration of ten seconds and outputs the
average bitrate and number of bytes transferred. To analyze deeper
the CPU utilization of Rust and C implementation, CPU utilization of

2Porting is when source code is re-written from one language to another, or from
one operating system to another.

CHAPTER 1. INTRODUCTION 5

kernel threads are measured during maximum transfer rate between a
Bhyve virtual machine and its host.

1.6 Limitations

In this thesis, the focus is on the device driver code and a few assump-
tions are made regarding the surrounding environments.

Unsafe code
Some calls to C functions and Rust unsafe functions will be wrapped
in a safe interface for convenience. It is assumed that the input can be
trusted so that these are considered as safe and not counted as unsafe
code for each invocation.

Rust compiler
It is assumed that the Rust compiler is bug free and can keep its guar-
antees regarding memory safety.

Kernel managed objects
The kernel is managing some objects used by the Rust code. It is as-
sumed that all pointers to these objects handed to the Rust code by the
kernel are correct and valid.

Performance of Rust code

Since e1000 was ported to IfLib3, a lot of the heavy lifting is now done
by IfLib and the driver code is mostly in charge of keeping an internal
state and manipulating hardware registers. This will likely reduce the
possible performance difference in C vs Rust implementations. Port-
ing IfLib to Rust as well would probably give a more interesting per-
formance comparison.

3As of FreeBSD 12 code common to network device drivers have been moved to
a shared library, IfLib, to simplify device driver development.

Chapter 2

Background

2.1 Operating system

Most computers except for the smallest embedded devices run some
kind of operating system. Popular operating systems on desktop and
laptop computers are Windows, macOS and Linux. Also available on
personal computers but more popular on servers are the BSD Unix
derivatives FreeBSD, OpenBSD, NetBSD and others. Windows and
macOS are proprietary and thus not suitable for this purpose. Linux
and the BSD derivatives are open source, which means that all of the
software that comes with the operating system is freely available. Al-
though any open source operating system could be used, in this thesis
the most common of the BSD derivatives, FreeBSD [2] is used.

2.2 Kernel and userland

A common way to design an operating system is by using a mono-
lithic kernel. In a monolithic kernel, the kernel is essentially one big
program, usually written in C. External modules can be loaded during
runtime to add support for hardware devices or add new services.

Userland is the part of the operating system that exists outside of
the kernel. Here is where the users’ applications are executed in an
unprivileged mode. Access to the kernel and hardware is privileged
and is done through system calls to the kernel, which runs in privi-
leged mode. In modern processors privileged mode is controlled by
hardware to increase security.

6

CHAPTER 2. BACKGROUND 7

Normally applications execute in userland where they are kept iso-
lated from each other and the kernel. There are various security mea-
sures in place to protect a system against ill-behaving applications.

2.3 Consequences of software bugs

Writing bug free computer code is a challenging task in a low-level
language like C. While C compilers are getting better and better at de-
tecting possible bugs, they still have a long way to go. For application
programming we have higher level languages that abstract away de-
tails regarding memory handling and concurrent programming. How-
ever, a lot of an operating system’s source code is still written in C and
the kernel is exclusively written in C.

It’s worth mentioning the gravity of the problems that software
bugs can cause. For example:

The Northeast blackout of 2003

A race condition in the software caused a several days long electric
blackout in Northeast USA. [3]

Therac 25

A race condition in the software of a radiation therapy machine caused
the machine to give massive overdoses of radiation. The bug caused
several deaths. [4]

2.4 Bugs in the kernel

While there are many easily accessible solutions for userland applica-
tions, like using higher level languages, to help avoid these kinds of
accidents, that is not the case for the kernel. Some existing techniques
used to prevent bugs in the kernel are static analysis by the compiler,
code review and manual testing. None of them can make any guaran-
tees about memory safety and kernel developers are in need of better
tools to write safe code.

There has been attempts to solve this in the past and some propos-
als are presented in the related work section. In this thesis the Rust

8 CHAPTER 2. BACKGROUND

programming language [5] is used as a way to enforce safe program-
ming in the kernel and the goal of this thesis is to determine if Rust is
feasible to use for safe kernel programming.

2.5 Rust

Rust was first developed by Graydon Hoare in 2010 but since shortly
after its introduction it is developed by Mozilla’s Rust developer team.
Rust was designed to eliminate many of the bugs common to C and
C++ while not sacrificing performance.

As stated on Rust’s website [5]

Rust is a systems programming language that runs blaz-
ingly fast, prevents segfaults, and guarantees thread safety.

Features

• zero-cost abstractions

• move semantics

• guaranteed memory safety

• threads without data races

• trait-based generics

• pattern matching

• type inference

• minimal runtime

• efficient C bindings

Rust is a language that is capable of both high level programming
of applications as well as low-level systems programming. It does not
depend on garbage collection so it is also possible to use in the kernel,
as proven by Levy et al., who built a kernel in Rust [6] and the Redox
team who are writing an operating system completely in Rust, Redox
[7]. The Rust book [8] is a comprehensive resource for anyone looking
for more information about Rust and for more deeper background in-
formation there also exists many research papers that has influenced
the design of Rust. For example, Rust’s type system is influenced by
the Cyclone project [9] where the C programming language is made
safer by using statically-scoped regions and tracked pointers. Tracked

CHAPTER 2. BACKGROUND 9

pointers include unique pointers, something that is central to Rust.
They also found a great synergy between regions and tracked pointers
and they use the LIFO region machinery to support borrow pointers,
also something central to Rust. In the paper External Uniqueness is
Unique Enough [10], Clark and Wrigstad show with ownership types
that an external reference is unique while at the same time permitting
internal references.

For parallel processing and safe concurrency Rust uses what is called
Three Layer Cake model [11]. In this model message passing is used
for I/O in the top layer. The middle layer use fork/join for divide and
conquer. Finally the bottom layer use SIMD to parallelize computa-
tions even further where possible. In Rust’s bibliography also listed
are, among other, Microsoft Research’s Singularity project papers [12]
and [13]. These papers describe how safe concurrency is achieved in
Singularity OS through isolated processes and message passing with
channels, something that is a core feature in Rust.

Rust safe code
The default mode for Rust is “safe Rust”. Safe in this context meaning
“guaranteed memory safety” and “free of certain class of bugs”, not
safe as in sandboxed or with limited API access. The compiler makes
assertions at compile time to ensure memory safety. Rust can ensure
memory safety without using garbage collection because of its central
feature, ownership. Here follows a short description of some of Rust’s
features and terminology that is important to grasp in order to under-
stand how the language works.

Ownership

In Rust, every object can have exactly one owner1. An object can not
be moved out of an ownership but can be copied if it implements the
Copy trait.

Move semantics

If a variable, of a type that does not implement the Copy trait, is as-
signed to another variable the ownership is transferred and the old

1A variable owns the data or object it holds or points to. Objects can be shared by
using higher level constructs like smart pointers.

10 CHAPTER 2. BACKGROUND

variable becomes invalid. Any attempt to access the old variable will
result in a compile error. Primitive types implement the Copy trait.

Borrow

To share an object one has to borrow a reference to it. Multiple im-
mutable references can exist simultaneously. A borrow will end when
the reference is dropped, i.e. goes out of scope.

Mutable borrow

Declaration of a new variable or borrow of a reference is always im-
mutable unless explicitly stated to be mutable. For mutable references,
there can exist only one at any given time to prevent data races or in-
consistent states. Any attempt to borrow another mutable reference
while one already exists will result in compile error.

Lifetimes

References are bound by lifetimes. In most cases, these are inferred by
the compiler but sometimes one has to explicitly assign a lifetime to
a borrow to tell the compiler how long that reference will exist so the
compiler can make the correct analysis.

Rust unsafe code
The Rust book refers to unsafe Rust as a second language. There are
two reasons why unsafe Rust exists. One is that static analysis is overly
conservative. Sometimes the Rust compiler will play it too safe and the
programmer needs to bypass its strict rules by using unsafe code. The
other is because the underlying hardware in computers is inherently
unsafe and Rust needs to allow the programmer to access hardware or
do near hardware programming. These actions are unsafe in Rust:

• Dereference a raw pointer.

• Call an unsafe function or method.

• Access or modify fields in a union.

• Access or modify a mutable static variable.

CHAPTER 2. BACKGROUND 11

• Implement an unsafe trait.

Raw pointers are frequently used when interfacing with C code
or implementing low-level building blocks. It is important to keep in
mind the dangers with raw pointers compared to references or smart
pointers. Raw pointers

• are allowed to ignore the borrowing rules and have both im-
mutable and mutable pointers, or multiple mutable pointers to
the same location.

• aren’t guaranteed to point to valid memory.

• are allowed to be null.

• don’t implement any automatic clean-up.

It should be mentioned that even within an unsafe block, the com-
piler still checks references for memory safety. Unsafe code does not
disable any compiler functionality, it enables extra functionality. For
details on how unsafe code is used in practice, see the next section.

C vs Rust comparison
Let’s look at two practical examples on how Rust eliminates some
common bugs.

Dangling pointer

int *return_reference() {
int i = 0;
return &i;

}

Listing 2.1: Dangling pointer in C

fn return_reference<’a>() -> &’a i32 {
let i: i32 = 0;
&i

}

Listing 2.2: Dangling pointer in Rust

12 CHAPTER 2. BACKGROUND

This is just one of many examples of situations where one can end
up with dangling pointers. While a modern C compiler will give a
warning for returning a reference to a local variable, it will happily
ignore it and compile the code in listing 2.1 to an executable that will
crash on execution. The Rust code in 2.2 will fail compilation with the
following error:
error[E0597]: ‘i‘ does not live long enough
--> src/main.rs:4:6
|

4 | &i
| ^ borrowed value does not live long enough

5 | }
| - borrowed value only lives until here

Listing 2.3: Dangling pointer in Rust. Compile error

The Rust borrow-checker does not allow references to data where
the reference will outlive the data.

Multiple pointers to same data

This can lead to several bugs like use after free and data races.
void main() {

int *x = malloc(sizeof(int));
int *y = x;
printf("%d %d\n", *x, *y);

}

Listing 2.4: Multiple pointers in C

fn main() {
let x: Box<i32> = Box::new(0i32);
let y = x;
println!("{:?} {:?}", x, y);

}

Listing 2.5: Multiple pointers in Rust

Here the C compiler allow free cloning of pointers. Listing 2.4 is not
an error by itself but it shows that it is easy to create multiple mutable
pointers to the same data which the programmer has to keep track
of. This situation can easily lead to bugs like use after free if free()
is called on one pointer while the other is still in use. In Rust, the
ownership model does not allowed this to happen and the code in
listing 2.5 will cause the following compile error:

CHAPTER 2. BACKGROUND 13

error[E0382]: use of moved value: ‘x‘
--> src/main.rs:4:27
|

3 | let y = x;
| - value moved here

4 | println!("{:?} {:?}", x, y);
| ^ value used here after move
|
= note: move occurs because ‘x‘ has type ‘std::boxed::Box<

i32>‘, which does not implement the ‘Copy‘ trait

Listing 2.6: Multiple pointers in Rust. Compile error

Since Box<i32> does not implement the Copy trait, the ownership
of the data is moved to the new variable and the old variable becomes
invalid.

2.6 Related work

In this and related research papers the word “safe” is used in situa-
tions like “safe code” or “safe programming” and this can have dif-
ferent meanings. As we will see in this section, some research refer to
“trusted code” and some refer to it as “well-behaving” or “bug free”
code. In a few papers they also overlap.

Related work using Rust

Redox

Redox [7] is an operating system entirely written in Rust and it’s using
micro kernel design for its kernel. Redox doubles up on safety by com-
bining a micro kernel where device drivers run outside of the kernel
and the benefits of a safe language like Rust.

System Programming in Rust: Beyond Safety

In [14] Balasubramanian et al., explore the benefits of Rust beyond
safety. They argue that Rust enables implementation of capabilities not
possible in other languages. Specifically, zero-copy software fault iso-
lation, efficient static information flow analysis and automatic check-
pointing. These capabilities is actively researched but the cost of im-
plementing them has been high. The conclusion they arrive to is that

14 CHAPTER 2. BACKGROUND

Rust will enable these capabilities to be commoditized. These capabil-
ities, especially software fault isolation, is also relevant in the kernel.
For example in device drivers like described in [15] by Herder et al.,
but with zero-copy.

The Case for Writing a Kernel in Rust

In the paper Ownership is Theft: Experiences Building an Embedded
OS in Rust [16] suggested some improvements to Rust that would en-
able writing an operating system for embedded devices. Later, in [6]
Levy et al. mention that while previous efforts in writing a kernel in
Rust has required changes to Rust, this paper reaches another conclu-
sion. That is, unmodified Rust is enough and in addition, very lit-
tle unsafe code is needed. They describe how the kernel mechanisms
DMA, USB and buffer caches can be implemented using Rust.

Safe, Correct, and Fast Low-Level Networking

In low-level networking stacks performance is commonly prioritized
over safety. In [17], Clipsham attempts to change this by implement-
ing a network stack in Rust that runs in userland, using the netmap
API [18]. Clipsham designed a domain specific language so the code
needed to parse packets was significantly reduced. By building a safe
interface to unsafe APIs, Clipsham show that it is possible to provide
a high performance network stack without sacrificing safety.

Other related work

Safe Kernel Programming in the OKE

OKE, Open Kernel Environment, allow non-root users to load native
code in the Linux kernel. The implementation consists of three parts,
the code loader, the custom compiler and the legislator. The Linux
kernel module loader tools (insmod and rmmod) are extended with
functionality that accepts a binary blob, together with authentication
and credentials. The compiler takes as input the kernel module source
code, user’s credentials and customization rules, and outputs the com-
piled kernel module, an identify file and a MD5 checksum. The legis-
lator is an external tool that generates the rules used by the compiler.
[19]

CHAPTER 2. BACKGROUND 15

TALx86: A Realistic Typed Assembly Language

Typed Assembly Language (TAL) is a method of making low-level
programming safer. TALx86 [20] is a version for the Intel x86 pro-
cessors. In TAL each value used by the code is annotated with a type.
This information can be used to for example enforce type safety. A C-
like language called Popcorn it also developed. Popcorn compiles to
TALx86 and can be thought of as a safe dialect of C.

In his Master’s thesis [21], Maeda use TAL and Popcorn to reduce
system calls by moving the code from userland into the kernel and run
it safely in kernel space.

Efficient and Safe Execution of User-Level Code in the Kernel

This project has two goals. The first goal is to improve performance
by reducing system calls. This is done by running parts of the code in
kernel mode or creating new, more efficient system calls. The second
goal is to ensure that user-level code that runs in the kernel is done so
in a secure way. For this various software- and hardware-based tech-
niques like runtime monitoring of memory buffers, reference counters
and spin-locks are used. Performance improvements as high as 80%
could be seen and kernel safety checks show an overhead of only 2%.
[22]

P-Bus: Programming Interface Layer for Safe OS Kernel Extensions

P-Bus introduces a new programming interface on top of the Linux
kernel. New extensions are verified with a model checker to ensure the
safety of code run in the kernel. A network driver was implemented
using P-Bus. [23]

xCalls: Safe I/O in Memory Transactions

The xCall interface is a new API that provides transactional semantics
for system calls. It’s implemented for the Intel Software Transactional
Memory compiler. Despite the overhead of implementing transactions
in software, tests showed that transactions with xCalls improved the
performance of two applications with poor locking behavior by 16%
and 70%. [24]

Chapter 3

Methodology

The FreeBSD kernel is written in C and to interface with the kernel us-
ing Rust a compatibility layer is required. For this project this is called
RustKPI - Rust Kernel Programming Interface. The device driver then
uses RustKPI to interact with the kernel and the hardware. This is
achieved by designing and implementing two kernel loadable mod-
ules, one for RustKPI and one for the device driver.

Figure 3.1 shows a block diagram of the RustKPI design layout.
IfLib is lifted out from the kernel to emphasize the driver’s depen-
dency on it as well as the fact that it is a new addition to the FreeBSD
kernel as of version 12.

16

CHAPTER 3. METHODOLOGY 17

Figure 3.1: Kernel block diagram.

18 CHAPTER 3. METHODOLOGY

3.1 Cross-compile Rust

Normally Rust applications and libraries are compiled using a tool
called Cargo. Cargo fetches and compile all dependencies automati-
cally. Xargo1 extends the functionality of Cargo by also managing sys-
roots for cross compiling. However, for this project a higher degree of
control is desired so cross-compiling is done with the Rust compiler,
“rustc”, and Unix makefiles directly to allow full control.

To be able to compile Rust for the kernel the Rust compiler is con-
figured to emit not only the standard Rust library files but also object
files. The Rust library files are needed to satisfy dependencies for the
compiler during compilation but only the object files are linked to-
gether to a kernel module. The linking is not different from how it’s
done in C, using a standard kernel module Makefile.

Userland applications are usually built with Rust’s standard library,
the std crate2. Since std depends on OS-specific functions it can not be
used in the kernel. The std crate consists of many different sub-crates
but only a few are needed. These are modified if needed and cross-
compiled into a kernel crate. More details on this in the next chapter.

3.2 Port driver to Rust

To be able to benchmark the Rust code and compare performance to
the native C implementation a device driver is ported to Rust. This
should preferably be a driver that is a leaf node in the dependency
graph, i.e. does not have any other device depending on it. It should
also be a device that can generate enough CPU load that it will reach
the bounds of the CPU’s performance. For this project, the e1000 driver
was chosen for porting to Rust. e1000 is a device driver for Intel’s Eth-
ernet network cards up to 1 Gb transfer rate. This driver supports a
wide range of devices commonly found in laptops and desktop com-
puters. For this purpose, a support for a subset of devices is ported to
Rust.

First, all code needed to support the 82545EM device is ported.
This is the hardware emulated by the hypervisor bhyve [25] and to

1Xargo has been a great help to get started but its future is uncertain as of 2018.
Its functionality might be merged into Cargo.

2In Rust, a program or library source code package is called “crate”

CHAPTER 3. METHODOLOGY 19

target that first will make initial porting and testing easier. Develop-
ment was done on a laptop running FreeBSD 12 and testing was done
in a bhyve virtual machine on the same laptop.

Later, support for I218-LM and I129-LM devices is added. This
is the hardware found in the laptops later used for hardware perfor-
mance evaluation.

3.3 Analysis

Safeness
The Rust code is analyzed and blocks and lines of unsafe code are
counted. Inside an unsafe code block, there are no guarantees from
the compiler that things like raw pointers are valid so the amount of
unsafe code should be as low as possible. One drawback with this
method is that we have to trust the Rust compiler and assume the code
is safe and bug free. Also, even if the developer knows that the code
is safe, the Rust compiler is conservative and might not agree and still
require an unsafe block. At any rate, it should give a good indication
on safeness of the code.

Unsafe code used in the driver code can be divided into the follow-
ing categories.

• Function Call - Call to unsafe C or Rust function. All calls to
a Foreign Function Interface (FFI) are unsafe since the Rust com-
piler can not make any guarantees for what is happening beyond
what it can see. Some functions in the Rust std or core libraries
are unsafe as well, usually functions that involve manipulating
raw pointers.

• Unions - Unions are structures where fields share the same stor-
age. Unions are practical when sharing structures and e1000 sup-
port many devices that share the same code. Rust support unions
but they are unsafe to access because the Rust compiler can not
statically know which field is the active field. Because the unions
used are internal to the e1000 driver code, they can easily be re-
placed with a safe Rust alternative like Enumerations. However,
for simplicity in this project the C unions are converted to Rust
unions.

20 CHAPTER 3. METHODOLOGY

• Raw Pointers - Dereferencing raw pointers.

Performance
Iperf [1] is used to transmit TCP/IP packets at maximum rate while
CPU usage is monitored. This is done for both the original driver
written in C and the Rust version. Performance of the two drivers
is compared to see if using Rust is causing any performance penalties.
One problem when doing this on the real hardware is that the traffic
will be limited by the hardware or the TCP/IP connection between de-
vices. In order to examine the device driver’s properties at 100% CPU
utilization traffic between a Bhyve virtual machine and its host is also
benchmarked.

To produce flamegraphs3, the device drivers were profiled with
Dtrace and HWPMC (Hardware Performance Monitoring Counter),
however, these utilities were not able to trace any Rust functions. Some
attempts were made to configure the compiler and linker to enable
profiling of the Rust implementation, but all were unsuccessful.

3A flamegraph can show graphically how much time the CPU spend in each func-
tion.

Chapter 4

Porting a network device driver

4.1 Setup

Hardware
Listed in B.2 are details regarding the two physical computers and
the virtual machine used in development, testing and benchmarking.
These are the machines involved in development, testing and bench-
marking.

Computer A is used for benchmarking Iperf on real hardware and as
Bhyve host for Computer B.

Computer B is a bhyve virtual machine hosted under Computer A.
By default a bhyve virtual machine uses virtio-net as Ethernet device
but it also has the option to emulate the Intel 82545EM hardware sup-
ported by the e1000 driver which is used in this thesis.

Computer C is used as support server and client when benchmark-
ing Iperf on real hardware on Computer A but it’s not part of the re-
sults.

Software
FreeBSD can be freely downloaded from FreeBSD’s website [26]. It
includes both binaries and source code for the complete operating sys-
tem. This thesis requires at least FreeBSD 12-CURRENT as of May

21

22 CHAPTER 4. PORTING A NETWORK DEVICE DRIVER

2018 or later due to IfLib dependency. Any additional programs like
Iperf can be install using ports [27].

Bhyve is included in a standard FreeBSD installation. It has many
options so there exists a helper script in FreeBSD at location
/usr/share/examples/bhyve/vmrun.sh
which was used, with the exception that e1000 and not virtio-net was
set as default network driver.

Rustup is the default installer tool for Rust. It is used for installing
and managing multiple toolchains and switching between them on a
per-project basis. For this thesis, Rust 1.25 nightly toolchain and source
code are used. The reason for this is simply that it was the latest ver-
sion when this work was started.

Bindgen is a tool that generates Rust bindings from given C header
files. It significantly reduces manual labor when interfacing with large
C projects in Rust. Bindgen can be installed with cargo that comes
with the Rust installation.

4.2 RustKPI

Rust’s compiler is based on the LLVM compiler infrastructure [28].
It includes many different target configurations for various operating
systems and architectures but not for an uncommon target like the ker-
nel. Therefor one must provide a custom configuration file in JSON
format that enables and disables the correct features, like floats, mmx,
etc, for the kernel target. The one used in this thesis is listed in B.3.

Rust crates
Rust’s source code contains many sub-crates but only a few of them
are needed for basic functionality in RustKPI:

• core - Provides the core functionality of Rust

• std_unicode - Dependency of alloc. Unclear if this is really needed
in the kernel.

CHAPTER 4. PORTING A NETWORK DEVICE DRIVER 23

• alloc - Provides typical heap-related things like Box, Vec, etc. Re-
quires an implementation of the allocator API.

Additional custom crates outside of Rust std:

• alloc_kernel - An allocator backend for the alloc crate that uses
kernel malloc functions. Developed specifically for this thesis.

• spin - Provides Mutex and RWLock backed a simple spin-lock.
Available on crates.io1.

• interpolate_idents - This compiler plugin enables concatenated
identifiers in macros, something Rust is lacking but is common
in C. Available on crates.io.

A crate named kernel is created to wrap and re-export all the func-
tionality contained in these crates, similar as is done in the std crate.
To package this as a loadable kernel module, yet another crate called
kmod is created. The kmod crate contains only a callback function
for module load and unload events and some macro invocations that
setup the static module data so that the kernel module can be loaded
into the kernel and registered.

4.3 Rust e1000

The e1000 driver support many different devices and only support
for a subset is needed for this thesis. This significantly reduced the
amount of code needed porting. A complete listing of files in the C
implementation can be found in B.4. The files that were completely or
almost completely ported to Rust are:

• if_em.c - The entry point of the driver.

• e1000_api.c - Wrappers for device specific functions.

• e1000_82540.c - Most of the code for 82545EM is here.

• e1000_ich8lan.c - Most of the code for I218-LM and I219-LM is
here.

• e1000_nvm.c - Hardware access functions.
1https://crates.io is a crate repository for Rust

24 CHAPTER 4. PORTING A NETWORK DEVICE DRIVER

• e1000_mac.c - Hardware access functions.

• e1000_mbx.c - Hardware access functions.

• e1000_phy.c - Hardware access functions.

• e1000_osdep.c - OS specific functions.

• em_txrx.c - Transmit and receive functions.

In addition, a few functions from other files are also ported and
Rust bindings are generated from the C header files using bindgen.

Kernel modules rely heavily on C pre-processor macros to declare
static structures used by the module loading mechanism. Expanding
these macros reveal a mess of static C structures, with mutable point-
ers making circular dependencies, something that Rust does not allow.
For the RustKPI kernel module it was fairly straightforward and the
module could be completely implemented in Rust using Rust macros
converted from C macros. For the e1000 driver code it was more diffi-
cult due to use of several mutable static structures. It could probably
be solved with more time but for this thesis a bridge file was created
in C where static structures are declared with C pre-processor macros,
compiled with a C compiler and linked with the remaining Rust code
to make the final kernel module. In addition, wrappers are created
for some functions like PCI access functions that are in fact C pre-
processor macros.

Starting with the device register callback which is the device driver
entry point, the C functions were ported one by one to Rust for the
82545EM driver. After the 82545EM driver was tested and functional,
the I218-LM and I219-LM drivers were ported.

Chapter 5

Evaluation

For evaluation, two things are looked at. How much unsafe code is
required and what is the performance compared to the C implementa-
tion. If too much1 unsafe code is required it would defeat the purpose
of using safe Rust and one might as well stick to C. Performance is
critical in the kernel since it serves the entire operating system and
the hardware. A small performance penalty is acceptable considering
what is gained by using a safe programming language.

5.1 Unsafe Code

Breakdown of device driver Rust code. This is not the final version of
this code but it’s at a working state, fully implemented. There is still
room for improvement that would further eliminate usages of unsafe
code.

• 9897 lines of code (excluding comments, blank lines and bindgen
generated bindings).

• 430 lines of unsafe code that contain:

– 56 calls to C functions.

– 43 calls to unsafe Rust functions.

– 73 access to unions.

– 37 dereferencing raw pointers.
1One has to look at the system as a whole and determine whether it is acceptable

or not.

25

26 CHAPTER 5. EVALUATION

Apart from only a few unsafe blocks where several accesses to
union fields are lumped together in one unsafe block, all unsafe blocks
are only one (Rust) command or one function call. In the following
sections, a closer look is taken at each of the unsafe code categories.

Unsafe C functions

impl PciDevice {
pub fn pci_read_config(&self, reg: u32, width: u32) ->

u32 {
let child: *mut device = self.inner.as_ptr();
let parent: *mut device = unsafe { device_get_parent(

child) };
let ret = unsafe { rust_pci_read_config(parent, child

, reg as c_int, width as c_int) };
ret

}
}

Listing 5.1: Example of calling unsafe C functions.

In this example two unsafe functions are called,
device_get_parent() and rust_pci_read_config().
device_get_parent() is a kernel function to get the parent PCI de-
vice. rust_pci_read_config() is a wrapper for the C pre-processor
macro pci_read_config(). Unsafe uses should generally be wrapped
in safe interfaces if possible. Here self.inner is a raw pointer wrapped
in a NotNull structure so it is confirmed to be not null and the kernel
is trusted to provide a valid device pointer. To make the safe inter-
face safer, some assertions or boundary checks could be added to the
function arguments as well as checking if the parent pointer is null.

As we’ve seen, many of the unsafe calls to C functions can be wrapped
in a safe interface. As a metric, this is quite volatile. If for example PCI
access functions were not wrapped in safe Rust functions, this value
would be higher. Further abstraction of unsafe C functions would
reduce this value. For example, all access to C functions could be
wrapped in safe interfaces with proper assertions to make them truly
safe. This would reduce unsafe calls to C functions to zero.
Unsafe Rust functions

let vaddrs: *mut caddr_t = <raw pointer to storage>;
let count: usize = <number of elements>;

CHAPTER 5. EVALUATION 27

let vaddrs_slice: &[caddr_t] = unsafe {
kernel::slice::from_raw_parts(vaddrs, count)

};

Listing 5.2: Example of calling unsafe Rust functions.

slice::from_raw_parts() is a function that takes a raw pointer
and a length and with that creates a Rust slice. A slice is a “window”
into a region of memory, usually an array of objects. It has built-in
boundary checks and iterator functionality.

Similarly as C functions, some uses of unsafe Rust functions have
been wrapped in safe functions where it is trusted that the function
will be safe in that specific use. As long as the programmer can guar-
antee that the internal implementation is safe, the use of unsafe Rust
functions can be hidden inside a safe interface. In this example, this
code could be wrapped in a safe interface where the pointer is checked
to be valid and count of elements is within a known valid range. Un-
safe blocks can not be eliminated from the interface layer but from the
device driver perspective, the use of unsafe Rust functions could prob-
ably be eliminated.
Unions

pub union DevSpec {
/* Device specific structure used by 82545EM */
pub _82541: DevSpec_82541,
/*
* Device specific structure used by I218-LM

* and I129-LM

*/
pub ich8lan: DevSpec_ich8lan,

}
unsafe {

let srs: &mut [ShadowRam; 2048] = &mut adapter.hw.
dev_spec.ich8lan.shadow_ram;

for sr in &mut srs.iter_mut() {
sr.modified = false;
sr.value = 0xFFFF;

}
}

Listing 5.3: Example of unsafe access to Union.

For simplicity and because of time constraints, all C unions were
converted to Rust unions. This does increase the use of unsafe code,
however, all unions are internal to the driver code and can be replaced

28 CHAPTER 5. EVALUATION

with a safe Rust alternative like Enumerations. This would eliminate
all need for unsafe access to unions.
Raw pointers

let iflib_ptr: *mut iflib_ctx = <raw pointer from iflib>;
let adapter: &mut Adapter = unsafe {

&mut *(iflib_get_softc(iflib_ptr) as *mut Adapter)
};

Listing 5.4: Example of dereferencing a raw pointer.

Often when there is a callback from the kernel, pointers to various
objects are passed as arguments. These raw pointers has to be con-
verted to the correct Rust structure or wrapped in a safe container.
This requires either dereferencing the raw pointer which is unsafe, or
a call to an unsafe function. Here one has to trust that the kernel will
pass a valid pointer to the Rust code. As long as the driver is inter-
facing with C code, it will be difficult to eliminate all usage of raw
pointers. One also might need to use raw pointers for optimization
reasons in some performance critical part of the code.

5.2 Performance

The following hostnames are used for the computers in the benchmark
tests:

A - Computer A (Hardware NIC)
B - Computer B (Bhyve NIC)
C - Computer C (Hardware NIC)

Listing 5.5: Computer hostnames

A list with computer specifications can be found in B.2. The device
names for the e1000 driver are:

em - C implementation
rem - Rust implementation

Listing 5.6: Device names

Iperf [1] is used to transmit and receive data over a network. Com-
puter A and Computer C are on the same machine. Computer A and
Computer B are on the same local network, connected with a Gb-class
router.

Command explanation:
iperf -s will start an Iperf server that wait for connections on port

CHAPTER 5. EVALUATION 29

5001.
iperf -c <hostname> will connect to an Iperf server on default
port at host <hostname>.

The default is for Iperf to run for 10 seconds and then output the
amount of data transferred and average bitrate. The following bench-
marks are run for both em and rem.

Benchmark Computer A Computer B Computer C
Hardware RX iperf -s iperf -c A
Hardware TX iperf -c C iperf -s
Bhyve RX iperf -c B iperf -s
Bhyve TX iperf -s iperf -c A

Table 5.1: Commands for iperf benchmarks

Network bound traffic benchmark results
First, the driver is benchmarked during transmission on hardware over
a physical network. The speeds are not limited by the CPU’s perfor-
mance in this case.

Hardware RX

30 CHAPTER 5. EVALUATION

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

115.8 116.0 116.2 116.4 116.6 116.8 117.0

M
e
a
su

re
m

e
n
t
co

u
n
t

Transfer rate [MB/s]

em RX
rem RX

Figure 5.1: Hardware RX graph. Average bitrate for em (C) and rem
(Rust) drivers receiving traffic on I219-LM hardware.

[MB/s] Min Max Mean Median
em 115.8 117.0 116.8 116.8
rem 116.4 116.9 116.8 116.8

Table 5.2: Hardware RX statistics

In this benchmark, Iperf was run a total of 50 times, each run du-
ration is 10 seconds. Every 10th run, both machines were rebooted.
Transmitting the traffic is another computer on the same local network,
running stock FreeBSD 12 with native network driver.

Both drivers show a dip in bitrate, em more than rem but it is un-
clear why this is. It could be the result of some other network activity,
caching or otherwise random event. The important result is that the
behavior is the same for both implementations.

Hardware TX

CHAPTER 5. EVALUATION 31

 0

 2

 4

 6

 8

 10

 12

 14

 16

85.8 86.0 86.2 86.4 86.6 86.8 87.0

M
e
a
su

re
m

e
n
t
co

u
n
t

Transfer rate [MB/s]

em TX
rem TX

Figure 5.2: Hardware TX graph. Average bitrate for em (C) and rem
(Rust) drivers transmitting traffic on I219-LM hardware.

[MB/s] Min Max Mean Median
em 85.85 86.87 86.25 86.17
rem 85.92 86.90 86.28 86.21

Table 5.3: Hardware TX statistics

In this benchmark, Iperf was run a total of 50 times, each run du-
ration is 10 seconds. Every 10th run, both machines were rebooted.
Receiving the traffic is another computer on the same local network,
running stock FreeBSD 12 with native network driver.

Both drivers show an interesting spread with a gap but it is unclear
as to why this is. It could be a property of the router or the receiving
computer as well as the local computer of network card. What is im-
portant here as well is that both implementations perform similarly. It
should be noted that transmit rate is slower than receive rate and the
reason for this is unclear. Since it is the same for both implementations,
this difference is ignored.

32 CHAPTER 5. EVALUATION

CPU bound traffic benchmark results
In the previous section the transfer rate over a physical network was
measured. The transfer rate is limited by the network and the CPU
is not fully utilized. To examine how the Rust implementation com-
pares to the C implementation during 100% CPU utilization, network
transfer between the host and the bhyve virtual machine is measured.

Bhyve RX

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

140.0 145.0 150.0 155.0 160.0 165.0 170.0

M
e
a
su

re
m

e
n
t
co

u
n
t

Transfer rate [MB/s]

em RX
rem RX

Figure 5.3: Bhyve RX graph. Average bitrate for em (C) and rem (Rust)
drivers receiving traffic in Bhyve virtual machine.

[MB/s] Min Max Mean Median
em 142.5 166.2 157.2 158.9
rem 145.5 165.3 157.2 158.0

Table 5.4: Bhyve RX statistics

In this benchmark, Iperf was run a total of 50 times, each run dura-
tion 10 seconds. Receiving the traffic is the Bhyve virtual machine and

CHAPTER 5. EVALUATION 33

transmitting the traffic is the Bhyve host. The Rust implementation
performs similar to the C implementation.

Bhyve TX

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

150.0 152.0 154.0 156.0 158.0 160.0 162.0 164.0

M
e
a
su

re
m

e
n
t
co

u
n
t

Transfer rate [MB/s]

em TX
rem TX

Figure 5.4: Bhyve TX graph. Average bitrate for em (C) and rem (Rust)
drivers transmitting traffic in Bhyve virtual machine.

[MB/s] Min Max Mean Median
em 151.8 161.0 159.1 159.7
rem 152.2 163.5 160.5 161.0

Table 5.5: Bhyve TX statistics

In this benchmark, Iperf was run a total of 50 times, each run dura-
tion 10 seconds. Transmitting the traffic is the Bhyve virtual machine
and receiving is the Bhyve host. In the beginning of each test run the
bitrate was a bit slower which explains the lower outliers. This could
be due to caching in the CPU. The Rust implementation performs a
little bit better than the C implementation but it is not statistically sig-
nificant. It is unclear why the Rust implementation performs better.

34 CHAPTER 5. EVALUATION

CPU benchmark results
To breakdown and analyze further, the CPU utilization of kernel and
userland threads are measured during peak transmission from the Bhyve
virtual machine to the host.

The following graphs show the output of the command
top -bzSHCP, run 10 times with 1 second between each time while
Iperf is transmitting traffic from Bhyve virtual machine to the host.
Iperf timeout was extended to 2 minutes and the benchmarks start
1 minute after the transferred is started to allow the CPU usages to
stabilize2.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8 9

C
P

U
 u

sa
g
e
 [
%

]

em:kernel(if_io_tqg_0)

em:iperf(iperf)

rem:kernel(if_io_tqg_0)

rem:iperf(iperf)

Figure 5.5: Bhyve TX - Bhyve virtual machine. A measurement of CPU
usage by threads in Bhyve.

The graph shows the two threads in the virtual machine using any
significant amount of CPU resources. As can be seen, there is no per-
formance penalty in the Rust implementation.

2It takes about 1 minute until the e82545-tx thread reaches 100% CPU utilization

CHAPTER 5. EVALUATION 35

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 1 2 3 4 5 6 7 8 9

C
P

U
 u

sa
g
e
 [
%

]

em:bhyve(e82545-tx)

em:bhyve(vcpu 0)

em:iperf(iperf)

em:bhyve(mevent)

rem:bhyve(e82545-tx)

rem:bhyve(vcpu 0)

rem:iperf(iperf)

rem:bhyve(mevent)

Figure 5.6: Bhyve TX - Bhyve host. A measurement of CPU usage by
threads in the host.

The graph shows all threads in the Bhyve host using any signifi-
cant CPU resources. The threads “mevent” and “iperf” show opposite
higher load in C vs. Rust. The reason for this is unclear. The “vcpu 0”
thread show mostly higher load in the Rust implementation. It could
be speculated that this is the reason for higher transfer rate in Rust as
shown in graph 5.4.

Chapter 6

Conclusions

In the first chapter two goals were introduced. Neither of these goals
have any hard limits or fixed boundaries where they fail or succeed
but rather a conclusion should be drawn from looking at the results as
a whole.

6.1 Safeness

As we could see in the analysis of the unsafe code, the current state
of the implementation still depends on a lot of unsafe code, more than
desired actually. However, let’s revisit the numbers.

• 56 calls to C functions.

• 43 calls to unsafe Rust functions.

• 73 access to unions.

• 37 dereferencing raw pointers.

Some comments and conclusions regarding this results are:

• Calls to C functions, which are always unsafe, can be reduced
to zero if they are wrapped in a safe interface. A safe interface
would need to include proper assertions and bound checks.

• Calls to unsafe Rust functions are unavoidable when dealing with
raw pointers that need casting to other types. However, as with
C functions, these can also be moved to the interface layer where
they are wrapped and made safe.

36

CHAPTER 6. CONCLUSIONS 37

• For the e1000 driver, no union is shared between the kernel and
the device driver. All unions are internal to the driver and can
easily be changed to something that is safe in Rust, like Enumer-
ations.

• Dereferencing raw pointers is basically unavoidable when inter-
facing with C code. Because raw pointers are often arguments in
callback functions it is difficult to move this code to an interface
layer. Unless some very fancy safe interface is implemented, one
needs to dereference raw pointers in the driver code. However,
if we can trust the kernel to hand valid pointers to the Rust code,
these could be classified as safe.

As seen above, with a bit more work, we can eliminate almost all
use of unsafe code, with the only remaining being dereferencing raw
pointers. If IfLib was ported to Rust we would not need those call-
backs from C code and could probably write a network device driver
completely in safe Rust code. We can not however, escape the use of
unsafe code in our interface layer. The limitation here is that we have
to trust the kernel and the raw pointers it manages. Internally, Rust
also uses unsafe code which is wrapped in a safe interface. Similarly
we need to trust that our internal unsafe code is safe if we are to wrap
it in a safe interface.

It should be noted that while even unsafe Rust is safer than C, being
able to write a kernel device driver completely in safe Rust is a big
selling point for the politics regarding introducing another language
in the kernel.

6.2 Performance

In this project we can see no performace penalty at all for using Rust in-
stead of C. In fact, in the benchmark displayed in figure 5.4 we can see
the Rust driver is performing a little bit better but at the same time, we
noticed one of the CPU threads having higher CPU utilization for the
Rust driver. No conclusion can be drawn from this except that maybe
the Rust compiler could optimize the code better, which resulted in
higher CPU utilization.

One rather important factor to include is that for the e1000 driver,
IfLib, which is written in C, is doing a lot of the heavy lifting and

38 CHAPTER 6. CONCLUSIONS

the device driver code is mostly manipulating hardware registers and
keeping an internal state. If instead another device driver like Realtek,
which does not depend on IfLib and does all the heavy lifting iself, or
IfLib itself, was ported to Rust maybe some difference in performance
could be detected. Rust’s performance compared to C is probably very
dependent on the specific work load. Many of Rust’s key features is
about static analyzing and that does not add any runtime overhead.
Boundary checks and similar extra safety code does on the other hand.

6.3 Future work

IfLib
A continuation of this project could be to port Iflib to Rust, or port
some driver that does not depend on Iflib and is interfacing more with
the kernel. This would provide a more interesting comparison when
it comes to performance and evaluating Rust’s usability in the kernel
when interfacing with more complicated kernel programming inter-
faces.

Tracing
Dtrace and HWPMC are terrific tools for analyzing code. Another fu-
ture work could be to make these tools be able to trace Rust code. This
would enable profiling like measuring how much CPU time is spent
in each function.

Optimizing userland applications
One interesting side effect of being able to run safe code in the ker-
nel is that not only can we write device drivers with safe code but
also move userland applications into the kernel for increased perfor-
mance1. Some userland applications rely heavily on system calls and
programmers are trying to optimize the code by reducing system calls
or bundling many system calls together in one. If the Rust compiler
can guarantee that the code is safe and that it will not do anything
during runtime that is not allowed, performance benefits can be made
by moving userland applications into the kernel.

1See related work section for example

Bibliography

[1] Wikipedia contributors. Iperf — Wikipedia, The Free Encyclopedia.
[Online; accessed 25-May-2018]. 2018. URL: https://en.wikipedia.
org/wiki/Iperf.

[2] The FreeBSD Documentation Project. FreeBSD Handbook. [On-
line; accessed 13-May-2018]. 2018. URL: https://www.freebsd.
org/doc/handbook/nutshell.html.

[3] Wikipedia contributors. Northeast blackout of 2003 — Wikipedia,
The Free Encyclopedia. [Online; accessed 15-January-2018]. 2003.
URL: https://en.wikipedia.org/wiki/Northeast_
blackout_of_2003.

[4] Wikipedia contributors. Therac-25 — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 15-January-2018]. 1985. URL: https://
en.wikipedia.org/wiki/Therac-25.

[5] The Rust Team. The Rust Programming Language. [Online; accessed
29-January-2018]. 2018. URL: https://www.rust-lang.org.

[6] Amit Levy et al. “The Case for Writing a Kernel in Rust”. In:
Proceedings of the 8th Asia-Pacific Workshop on Systems. APSys ’17.
Mumbai, India: ACM, 2017, 1:1–1:7. ISBN: 978-1-4503-5197-3. DOI:
10.1145/3124680.3124717. URL: http://doi.acm.org.
focus.lib.kth.se/10.1145/3124680.3124717.

[7] Redox Developers. Redox Operating System. [Online; accessed 29-
January-2018]. 2018. URL: https://redox-os.org/.

[8] Steve Klabnik and Carol Nichols. The Rust Programming Language.
2nd. 2018. ISBN: 9781593278281.

39

https://en.wikipedia.org/wiki/Iperf
https://en.wikipedia.org/wiki/Iperf
https://www.freebsd.org/doc/handbook/nutshell.html
https://www.freebsd.org/doc/handbook/nutshell.html
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/Northeast_blackout_of_2003
https://en.wikipedia.org/wiki/Therac-25
https://en.wikipedia.org/wiki/Therac-25
https://www.rust-lang.org
http://dx.doi.org/10.1145/3124680.3124717
http://doi.acm.org.focus.lib.kth.se/10.1145/3124680.3124717
http://doi.acm.org.focus.lib.kth.se/10.1145/3124680.3124717
https://redox-os.org/

40 BIBLIOGRAPHY

[9] Michael Hicks et al. “Experience with Safe Manual Memory-
management in Cyclone”. In: Proceedings of the 4th International
Symposium on Memory Management. ISMM ’04. Vancouver, BC,
Canada: ACM, 2004, pp. 73–84. ISBN: 1-58113-945-4. DOI: 10.
1145/1029873.1029883. URL: http://doi.acm.org.
focus.lib.kth.se/10.1145/1029873.1029883.

[10] Dave Clarke and Tobias Wrigstad. “External uniqueness is unique
enough”. In: In European Conference for Object-Oriented Program-
ming (ECOOP. Springer-Verlag, 2003, pp. 176–200.

[11] Arch D. Robison and Ralph E. Johnson. “Three Layer Cake for
Shared-memory Programming”. In: Proceedings of the 2010 Work-
shop on Parallel Programming Patterns. ParaPLoP ’10. Carefree,
Arizona, USA: ACM, 2010, 5:1–5:8. ISBN: 978-1-4503-0127-5. DOI:
10.1145/1953611.1953616. URL: http://doi.acm.org.
focus.lib.kth.se/10.1145/1953611.1953616.

[12] Galen C. Hunt and James R. Larus. “Singularity: Rethinking the
Software Stack”. In: SIGOPS Oper. Syst. Rev. 41.2 (Apr. 2007),
pp. 37–49. ISSN: 0163-5980. DOI: 10.1145/1243418.1243424.
URL: http://doi.acm.org/10.1145/1243418.1243424.

[13] Manuel F"̈ahndrich et al. “Language Support for Fast and Reli-
able Message-based Communication in Singularity OS”. In: Pro-
ceedings of the 1st ACM SIGOPS/EuroSys European Conference on
Computer Systems 2006. EuroSys ’06. Leuven, Belgium: ACM, 2006,
pp. 177–190. ISBN: 1-59593-322-0. DOI: 10.1145/1217935.
1217953. URL: http://doi.acm.org/10.1145/1217935.
1217953.

[14] Abhiram Balasubramanian et al. “System Programming in Rust:
Beyond Safety”. In: SIGOPS Oper. Syst. Rev. 51.1 (Sept. 2017),
pp. 94–99. ISSN: 0163-5980. DOI: 10.1145/3139645.3139660.
URL: http://doi.acm.org.focus.lib.kth.se/10.
1145/3139645.3139660.

[15] J. N. Herder et al. “Fault isolation for device drivers”. In: 2009
IEEE/IFIP International Conference on Dependable Systems Networks.
2009, pp. 33–42. DOI: 10.1109/DSN.2009.5270357.

http://dx.doi.org/10.1145/1029873.1029883
http://dx.doi.org/10.1145/1029873.1029883
http://doi.acm.org.focus.lib.kth.se/10.1145/1029873.1029883
http://doi.acm.org.focus.lib.kth.se/10.1145/1029873.1029883
http://dx.doi.org/10.1145/1953611.1953616
http://doi.acm.org.focus.lib.kth.se/10.1145/1953611.1953616
http://doi.acm.org.focus.lib.kth.se/10.1145/1953611.1953616
http://dx.doi.org/10.1145/1243418.1243424
http://doi.acm.org/10.1145/1243418.1243424
http://dx.doi.org/10.1145/1217935.1217953
http://dx.doi.org/10.1145/1217935.1217953
http://doi.acm.org/10.1145/1217935.1217953
http://doi.acm.org/10.1145/1217935.1217953
http://dx.doi.org/10.1145/3139645.3139660
http://doi.acm.org.focus.lib.kth.se/10.1145/3139645.3139660
http://doi.acm.org.focus.lib.kth.se/10.1145/3139645.3139660
http://dx.doi.org/10.1109/DSN.2009.5270357

BIBLIOGRAPHY 41

[16] Amit Levy et al. “Ownership is Theft: Experiences Building an
Embedded OS in Rust”. In: Proceedings of the 8th Workshop on Pro-
gramming Languages and Operating Systems. PLOS ’15. Monterey,
California: ACM, 2015, pp. 21–26. ISBN: 978-1-4503-3942-1. DOI:
10.1145/2818302.2818306. URL: http://doi.acm.org.
focus.lib.kth.se/10.1145/2818302.2818306.

[17] Robert Clipsham (c. Safe, Correct, and Fast Low-Level Networking.
2015.

[18] Luigi Rizzo and Matteo Landi. “Netmap: Memory Mapped Ac-
cess to Network Devices”. In: Proceedings of the ACM SIGCOMM
2011 Conference. SIGCOMM ’11. Toronto, Ontario, Canada: ACM,
2011, pp. 422–423. ISBN: 978-1-4503-0797-0. DOI: 10.1145/2018436.
2018500. URL: http://doi.acm.org.focus.lib.kth.
se/10.1145/2018436.2018500.

[19] H. Bos and B. Samwel. “Safe kernel programming in the OKE”.
In: 2002 IEEE Open Architectures and Network Programming Pro-
ceedings. OPENARCH 2002 (Cat. No.02EX571). 2002, pp. 141–152.
DOI: 10.1109/OPNARC.2002.1019235.

[20] Greg Morrisett et al. “TALx86: A Realistic Typed Assembly Lan-
guage”. In: In Second Workshop on Compiler Support for System
Software. 1999, pp. 25–35.

[21] Toshiyuki Maeda. Safe execution of user programs in kernel mode
using typed assembly language. Tech. rep. 2002.

[22] E. Zadok et al. “Efficient and safe execution of user-level code
in the kernel”. In: 19th IEEE International Parallel and Distributed
Processing Symposium. 2005, 8 pp.–. DOI: 10 . 1109 / IPDPS .
2005.189.

[23] H. Fujita et al. “P-Bus: Programming Interface Layer for Safe OS
Kernel Extensions”. In: 2010 IEEE 16th Pacific Rim International
Symposium on Dependable Computing. 2010, pp. 235–236. DOI: 10.
1109/PRDC.2010.31.

[24] Haris Volos et al. “xCalls: Safe I/O in Memory Transactions”. In:
Proceedings of the 4th ACM European Conference on Computer Sys-
tems. EuroSys ’09. Nuremberg, Germany: ACM, 2009, pp. 247–
260. ISBN: 978-1-60558-482-9. DOI: 10.1145/1519065.1519093.
URL: http://doi.acm.org.focus.lib.kth.se/10.
1145/1519065.1519093.

http://dx.doi.org/10.1145/2818302.2818306
http://doi.acm.org.focus.lib.kth.se/10.1145/2818302.2818306
http://doi.acm.org.focus.lib.kth.se/10.1145/2818302.2818306
http://dx.doi.org/10.1145/2018436.2018500
http://dx.doi.org/10.1145/2018436.2018500
http://doi.acm.org.focus.lib.kth.se/10.1145/2018436.2018500
http://doi.acm.org.focus.lib.kth.se/10.1145/2018436.2018500
http://dx.doi.org/10.1109/OPNARC.2002.1019235
http://dx.doi.org/10.1109/IPDPS.2005.189
http://dx.doi.org/10.1109/IPDPS.2005.189
http://dx.doi.org/10.1109/PRDC.2010.31
http://dx.doi.org/10.1109/PRDC.2010.31
http://dx.doi.org/10.1145/1519065.1519093
http://doi.acm.org.focus.lib.kth.se/10.1145/1519065.1519093
http://doi.acm.org.focus.lib.kth.se/10.1145/1519065.1519093

42 BIBLIOGRAPHY

[25] FreeBSD contributors. bhyve, the BSD Hypervisor. [Online; accessed
15-May-2018]. 2018. URL: https://wiki.freebsd.org/
bhyve.

[26] The FreeBSD Documentation Project. FreeBSD Handbook. [On-
line; accessed 22-Jun-2018]. 2018. URL: https://www.freebsd.
org/.

[27] The FreeBSD Documentation Project. FreeBSD Ports. [Online; ac-
cessed 22-Jun-2018]. 2018. URL: https://www.freebsd.org/
ports.

[28] Chris Lattner and Vikram Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation”. In: Pro-
ceedings of the International Symposium on Code Generation and Op-
timization: Feedback-directed and Runtime Optimization. CGO ’04.
Palo Alto, California: IEEE Computer Society, 2004, pp. 75–. ISBN:
0-7695-2102-9. URL: http://dl.acm.org/citation.cfm?
id=977395.977673.

https://wiki.freebsd.org/bhyve
https://wiki.freebsd.org/bhyve
https://www.freebsd.org/
https://www.freebsd.org/
https://www.freebsd.org/ports
https://www.freebsd.org/ports
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673

Appendix A

Development process

This appendix is a documentation of the development process. It shows
some limitations of the tools used and highlights some of the things
needed to be handled in future work that was not done in this thesis.

A.1 Kernel bindings

Bindgen is a tool that helps with generating C bindings for Rust. While
it can generate code for complex things like unions and bit fields, at
time of writing there are a few places where it falls short.

These are

• Macro definitions - Constants are all generated in decimal form.
Usually hardware registers, bitmaps, bitmasks, etc are declared
in hexadecimal form. An option for this in bindgen would make
porting easier.

• Paths - For generated code like debug printing, the std::fmt path
is hardcoded in and has to changed after generating bindings.
Here this is done using sed in the Makefile.

• Function style macros - As of bindgen 0.33, function style macros
can not be converted. The e1000 driver depend heavily on these
to calculate memory offsets to hardware registers. Manually tran-
scribing these can be a cause of hard to find bugs.

43

44 APPENDIX A. DEVELOPMENT PROCESS

A.2 Mutexes

For this project the spin crate was used to provide Mutex and RWLock.
This create supports the no_std feature and in this case the mutex is
implemented using a simple spin lock. Compared to userland, mu-
texes in the kernel have different options and while it works for simple
functions, simply plugging the spin crate into RustKPI is not a suffi-
cient solution. A proper kernel sync crate would have to be imple-
mented.

A.3 Malloc

Kernel malloc takes an argument which userland malloc does not.
Among other settings, this argument decide if malloc should wait un-
til enough memory is available so that the allocation can be made, or if
it should return immediately with an error if not enough free memory
is available. In RustKPI we implement an allocator which calls kernel
malloc and Rust’s crate liballoc uses our allocator for all allocations. In
this way Rust is doing all the heavy lifting for us. However, with libal-
loc there is no way to pass an extra flag when allocating memory using
Box::new() or similar. To enable the use of extra malloc arguments one
would have to patch Rust’s liballoc and allocator API.

A.4 Concatenate identifiers

C pre-processor macros in the kernel often concatenate names to form
new, unique names for structures and variables. At time of writing
Rust did not support this. While it might be possible to work around
this in Rust, a compiler plugin called interpolate_idents was used for
this project to provide the same capability for Rust macros.

A.5 Automatic code conversion

Several hard to find bugs in the Rust code was caused by error made
during manual transcribing from C. While it’s difficult to automati-
cally convert all C code to Rust, a tool that could convert the bulk of it
would surely reduces bugs caused by human error.

Appendix B

Listings

B.1 Hello world kernel module in Rust

#![feature(const_fn,plugin,used,global_asm,rustc_private)]
#![plugin(interpolate_idents)]
#![no_std]

#[macro_use]
extern crate kernel;

use kernel::sys::ModEventType;
use kernel::sys::module_sys::module_t;
use kernel::sys::module_sys::moduledata_t;
use kernel::sys::kernel_sys::sysinit_sub_id;
use kernel::sys::kernel_sys::sysinit_elem_order;
use kernel::sys::raw::c_int;
use kernel::sys::raw::c_void;

#[derive(Debug)]
struct A(i32);
impl kernel::ops::Drop for A {

fn drop(&mut self) {
println!("rustkpi-hello: A::drop() {:?}", self);

}
}
/*
* The kernel expects a C function for the event callback.

*/
pub extern "C" fn module_event(_module: module_t, event:

c_int, _arg: *mut c_void) -> c_int {
match ModEventType::from(event) {

ModEventType::Load => {

45

46 APPENDIX B. LISTINGS

println!("rustkpi-hello: Got kernel module event:
LOAD");

/*
* Create a vector with heap allocated storage.

* Control that it is released when the

* variable ’v’ goes out of scope by watching

* the output from A’s drop() function.

*/
let mut v = vec![A(0), A(1), A(2)];
println!("rustkpi-hello: Vector is: {:?}", v);

}
ModEventType::Unload => {

println!("rustkpi-hello: Got kernel module event:
UNLOAD");

}
ModEventType::Quiesce => {}
ModEventType::Shutdown => {}
ModEventType::Unknown => {}

}
0

}

pub static MODULE_DATA: moduledata_t = moduledata_t {
name: b"rustkpi_hello\0" as *const u8 as *const i8,
evhand: Some(module_event),
priv_: 0 as *mut c_void,

};

/* These macros require interpolate_idents compiler plugin */
declare_module!(

rustkpi_hello,
MODULE_DATA,
sysinit_sub_id::SI_SUB_DRIVERS,
sysinit_elem_order::SI_ORDER_MIDDLE

);
module_depend!(rustkpi_hello, rustkpi, 1, 1, 1);

Listing B.1: Hello World kernel module in Rust.

B.2 Hardware setup

Computer A
Model: Dell Latitude 7270
CPU: Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz
NIC (hardware): Ethernet Connection I219-LM class=0x020000

card=0x06db1028 chip=0x156f8086 rev=0x21 hdr=0x00

APPENDIX B. LISTINGS 47

Computer B
Model: bhyve virtual machine (running in Computer A)
CPU: Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz
NIC (emulated): 82545EM Gigabit Ethernet Controller class=0

x020000 card=0x10088086 chip=0x100f8086 rev=0x00 hdr=0
x00

Computer C
Model: Dell Latitude 7450
CPU: Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz
NIC (hardware): Ethernet Connection (3) I218-LM class=0

x020000 card=0x062e1028 chip=0x15a28086 rev=0x03 hdr=0
x00

Listing B.2: Computer setup

B.3 LLVM target configuration

{
"llvm-target": "x86_64-unknown-freebsd",
"linker-flavor": "gcc",
"target-endian": "little",
"target-pointer-width": "64",
"target-c-int-width": "32",
"os": "none",
"arch": "x86_64",
"data-layout": "e-m:e-i64:64-f80:128-n8:16:32:64-S128",
"pre-link-args": ["-m64"],
"cpu": "x86-64",
"features": "+soft-float,-mmx,-sse,-sse2,-sse3,-ssse3,-

sse4.1,-sse4.2,-3dnow,-3dnowa,-avx,-avx2",
"disable-redzone": true,
"custom-unwind-resume": true,
"eliminate-frame-pointer": false,
"stack-probes": true,
"linker-is-gnu": true,
"no-compiler-rt": true,
"archive-format": "gnu",
"code-model": "kernel",
"relocation-model": "static"

}

Listing B.3: A LLVM target file for compiling Rust to FreeBSD kernel
target.

48 APPENDIX B. LISTINGS

B.4 e1000 C files

1.6k LICENSE
12k README
41k e1000_80003es2lan.c

4.3k e1000_80003es2lan.h
20k e1000_82540.c
36k e1000_82541.c

3.7k e1000_82541.h
16k e1000_82542.c
45k e1000_82543.c

2.5k e1000_82543.h
54k e1000_82571.c

2.8k e1000_82571.h
101k e1000_82575.c
21k e1000_82575.h
38k e1000_api.c

7.9k e1000_api.h
66k e1000_defines.h
27k e1000_hw.h
22k e1000_i210.c

4.3k e1000_i210.h
176k e1000_ich8lan.c
14k e1000_ich8lan.h
71k e1000_mac.c

5.1k e1000_mac.h
16k e1000_manage.c

4.2k e1000_manage.h
20k e1000_mbx.c

5.4k e1000_mbx.h
32k e1000_nvm.c

3.7k e1000_nvm.h
3.2k e1000_osdep.c
9.1k e1000_osdep.h
118k e1000_phy.c
14k e1000_phy.h
38k e1000_regs.h
17k e1000_vf.c

9.0k e1000_vf.h
24k em_txrx.c

145k if_em.c
17k if_em.h
17k igb_txrx.c

Listing B.4: e1000 C implementation found in sys/dev/e1000 in the
FreeBSD source code.

www.kth.se

	Introduction
	Operating system's kernel
	Problem description
	Purpose
	Goals
	Methodology
	Limitations

	Background
	Operating system
	Kernel and userland
	Consequences of software bugs
	Bugs in the kernel
	Rust
	Related work

	Methodology
	Cross-compile Rust
	Port driver to Rust
	Analysis

	Porting a network device driver
	Setup
	RustKPI
	Rust e1000

	Evaluation
	Unsafe Code
	Performance

	Conclusions
	Safeness
	Performance
	Future work

	Bibliography
	Development process
	Kernel bindings
	Mutexes
	Malloc
	Concatenate identifiers
	Automatic code conversion

	Listings
	Hello world kernel module in Rust
	Hardware setup
	LLVM target configuration
	e1000 C files

