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Abstract

In recent years, microservice architecture has surpassed monolithic architec-
ture in popularity among developers by providing a flexible way of developing
complex distributed applications. Whereas a monolithic application functions
as a single indivisible unit, a microservices-based application comprises a
collection of loosely coupled services that communicate with each other to
fulfill the requirements of the application. Consequently, different services in a
microservices-based application can be developed and deployed independently.
However, this flexibility is achieved at the expense of reduced observability
of microservices-based applications complicating the debugging of such ap-
plications. The reduction of observability can be compensated by performing
distributed tracing in microservices-based applications. Distributed tracing
refers to observing requests propagating through a distributed system to collect
observability data that can aid in understanding the interactions among the
services and pinpoint failures and performance issues in the system. Open-
Telemetry, an open-source observability framework supported by Cloud Native
Computing Foundation (CNCF), defines a standardized specification for gener-
ating observability data. Nevertheless, instrumenting an application with an
observability framework incurs performance overhead. To tackle this deterio-
ration of performance and to reduce the cost of persisting observability data,
only a subset of the requests are typically traced by performing head-based or
tail-based sampling. In this work, we present a tail-based sampling framework
using stream processing techniques. The developed framework demonstrated
promising performance in our experiments by saving approximately a third
of memory-based storage compared to an OpenTelemetry tail-based sampling
module. Moreover, being compliant with the OpenTelemetry specifications,
our framework aligns well with the OpenTelemetry ecosystem.
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Sammanfattning

Under de senaste dren har mikrotjinstarkitektur overtriffat monolitisk arkitek-
tur i popularitet bland utvecklare genom att erbjuda ett flexibelt sitt att utveckla
komplexa distribuerade tillampningar. Medan en monolitisk tillimpning fun-
gerar som en enda odelbar enhet, bestdr en mikrotjanstbaserad tillimpning
av en samling 16st kopplade tjanster som kommunicerar med varandra for att
uppfylla tillampningens krav. Dérfor kan olika tjdnster i en mikrotjanstbaserad
tillimpning utvecklas och driftsittas oberoende av varandra. Denna flexibilitet
uppnds dock pé bekostnad av minskad observerbarhet for mikrotjinstbaserade
tillampningar, vilket forsvérar felsokningen av sddana tillimpningar. Den mins-
kade observerbarheten kan kompenseras genom att utfora distribuerad sparning
i mikrotjdnstbaserade tillimpningar. Distribuerad spdrning innebir att man
observerar forfrdgningar som sprids genom ett distribuerat system for att samla
in data om observerbarhet som kan hjélpa till att forsta interaktionerna mellan
tjansterna och lokalisera fel och prestandaproblem i systemet. OpenTelemetry,
ett ramverk for observerbarhet med oppen killkod som stods av Cloud Native
Computing Foundation (CNCF), definierar en standardiserad specifikation for
att generera observerbarhetsdata. Att instrumentera en tillimpning med ett
ramverk for observerbarhet medfor dock en Gverbelastning av prestanda. For att
hantera denna forsdmring av prestanda och for att minska kostnaden for att beva-
ra observerbarhetsdata spéras vanligtvis endast en delméngd av forfragningarna
genom att utfora s.k. “head-based sampling” eller “tail-based sampling”. I det
hir arbetet presenterar vi ett ramverk for tail-based sampling med hjilp av
strombehandlingsteknik. Den utvecklade ramen visade lovande prestanda i
véara experiment genom att spara ungefir en tredjedel av den minnesbaserade
lagringen jamfort med en OpenTelemetry-modul for tail-based sampling. Ef-
tersom vért ramverk dr forenligt med OpenTelemetry-specifikationerna &r det
dessutom vil anpassat till OpenTelemetry-ekosystemet.

Nyckelord

Distribuerad spéarning, mikrotjanster, observerbarhet, 6vervakning
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Chapter 1

Introduction

For many years, monolithic architecture has been the preferred choice for ap-
plication development. According to monolithic architecture, applications are
developed and deployed as single indivisible units. Over time, as a monolithic
application becomes large, typically, different development teams focus on
specific areas of the application. However, collaboration among specialized
teams becomes increasingly difficult as they are bound to work on a single code
base, thus making the teams tightly coupled with each other. Consequently, the
development and deployment of a monolithic application require coordinated
efforts from the development teams, which affect the pace of feature deliver-
ies. To overcome the drawbacks mentioned above, nowadays, microservice
architecture has been gaining popularity.

The flexible nature of microservice architecture has redefined the workflow
of application development. According to microservice architecture, an appli-
cation is a collection of loosely coupled services that communicate with each
other in protocols such as Hypertext Transfer Protocol (HTTP) or Advanced
Message Queuing Protocol (AMQP). As these services are weakly associated
with each other, they can be developed, deployed, and scaled independently,
enabling reliable and frequent delivery of complex distributed applications.
However, these benefits are achieved at the expense of reduced observability of
microservices-based applications. This reduction of observability stems from
the fact that each individual microservice typically performs only a fraction
of the work of a complete transaction, thus obfuscating the comprehensive
overview of the transaction. Logs collected in a centralized logging server can
aid in identifying the services participating in a transaction. However, the log-
ging server cannot guarantee the orderly appearance of the logs. Consequently,
in an erroneous transaction, finding the root cause of the error by correlating
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the logs can become extremely tedious. Distributed tracing can be employed
to overcome the challenges mentioned above.

Distributed tracing refers to monitoring the requests propagating through
a microservices-based application as part of a broader transaction. For this
purpose, the first request of a transaction is tagged with a unique identifier that is
propagated with all subsequent requests along the path of the transaction. As a
result, all requests belonging to a transaction can be correlated using the unique
identifier to generate a comprehensive overview of the transaction. However,
instrumenting an application with distributed tracing introduces performance
and storage overhead. To tackle this deterioration of performance and to reduce
the cost of storing traces, only a subset of the requests are typically traced.
This process of reducing the overhead and the cost of distributed tracing is
called sampling. An efficient sampling method ensures the sampling of traces
that provide crucial information for application performance evaluation and
debugging in minimal performance and storage overheads. Therefore, sampling
is pivotal to maximize the utility of distributed tracing.

The following sections in this chapter explain the motivation of the thesis,
define the goals and objectives and outline the scope of this thesis.

1.1 Motivation

Introducing distributed tracing to an application is a trade-off between gaining
better visibility into the system and the overhead of performance and storage.
Sampling establishes a balance between these two compromises by reducing the
performance overhead while capturing only the relevant traces to understand
the system better. Therefore, establishing an effective sampling strategy is
crucial for the success of distributed tracing. Additionally, the component
performing the sampling of traces must be robust and capable of processing
high volumes of incoming traces in minimal latency.

Sampling in distributed tracing can be categorized into two major categories,
namely head-based sampling and tail-based sampling. In head-based sampling,
the sampling decision is taken before the generation of the trace, whereas in
tail-based sampling, the sampling decision is taken after generating the trace.
Consequently, head-based sampling can effectively reduce the performance
overhead of distributed tracing as the system does not experience any overhead
when the sampling decision is negative. On the contrary, tail-based sampling
excels at reducing the storage overhead as it produces more intelligent sampling
decisions by evaluating the usefulness of each newly generated trace. Therefore,
tail-based sampling ensures the sampling of traces that provide better insight
into the system.
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1.2 Goals and Objectives

This thesis aims to develop a framework to perform tail-based sampling in
real-time for distributed tracing. The main objectives of the thesis are as
follows:

* Develop a tail-based sampling framework that can be easily integrated
into existing distributed tracing pipelines.

* Obtain better performance than the existing tail-based sampling compo-
nent of the OpenTelemetry framework.

1.3 Research Questions

The aim of this work is to answer the following questions:

* How does the performance of an application change after introducing
distributed tracing when compared to no tracing at all?

* How can we implement a tail-based sampling framework using stream
processing?

* Which tail-based sampling method provides the best performance at
scale?

1.4 Benefits, Ethics and Sustainability

The framework developed in this thesis can filter out frequently appearing
traces, resulting in the sampling of less frequent but more informative traces
relevant for debugging. The ability to capture only the relevant traces enables
the users of this framework to maximize the utility of their limited storage
capacity for storing observability data.

The recording and reporting of the performance metrics of the developed
framework were achieved without any manipulation or fabrication. The frame-
work does not collect any personal data; hence it is devoid of ethical issues
related to improper handling of personal data. Plagiarism has been strictly
avoided by properly citing existing works in this domain.

The framework is implemented using an established industry-standard open-
source stream processing framework, which makes the proposed framework
sustainable for the foreseeable future.
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Furthermore, the framework brings a positive impact on the environment
as it eliminates the necessity of acquiring additional storage space for storing
observability data. Less storage requirement ensures better utilization of exist-
ing data centers resulting in reduced energy consumption. Consequently, the
framework essentially aids in reducing the carbon footprint of the data centers
leading to a sustainable future.

1.5 Methodology

First, we used a qualitative approach to gather requirements for developing
a tail-based sampling framework for distributed tracing by surveying prior
research works in this domain. Additionally, we explored the latest industry-
standard distributed tracing solutions supporting tail-based sampling to estab-
lish a benchmark for performing quantitive analysis in the latter part of the
thesis.

Based on the information gathered by the qualitative research, we designed
the architecture of our tail-based sampling framework. The qualitative research
findings revealed the stream processing paradigm as a suitable technology to
perform tail-based sampling. Consequently, we implemented the tail-based
sampling framework utilizing an industry-standard stream processing frame-
work.

Finally, we took a quantitive approach to evaluate the performance of the
developed tail-based sampling framework. We selected a set of metrics that
are considered crucial for such tail-based sampling solutions and conducted
experiments to compare the performance of the developed framework against
an industry-standard solution. In light of the results from these experiments,
we answered our research questions and provided our concluding remarks.

1.6 Stakeholders

This research was conducted at Ericsson, Finland, leveraging the tools and
facilities provided by the company. The application used for the experiments is
called Ericsson Security Manager (ESM) which is developed by Ericsson. The
thesis was jointly supervised by Aalto University and KTH Royal Institute of
Technology.


https://www.ericsson.com/en/portfolio/iot-and-new-business/new-business/security-and-risk-management/security-manager
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1.7 Delimitations

The tail-based sampling framework developed in this thesis uses an industry-
standard open-source stream processing framework named Apache Flink. Addi-
tionally, the testbed for evaluating the performance of the developed framework
involves another two open-source software, namely Apache Kafka and Open-
Telemtry. Therefore, the performance of the framework is dictated by the
performance of the software mentioned above.

1.8 Outline

The remaining of this thesis is organized as follows. Chapter 2 provides a
background of distributed tracing and introduces relevant concepts; Chapter 3
details the design of the tail-based sampling framework developed for the thesis.
Next, Chapter 4 evaluates the performance of the developed framework, while
Chapter 5 discusses the benefits of using the developed framework. Finally,
Chapter 6 provides concluding remarks.



Chapter 2

Background and Related Work

Microservice architecture refers to the decomposition of an application into a
collection of loosely coupled services, each having a disjoint set of responsi-
bilities[1]. This decomposition improves the maintainability and testability of
the services. Additionally, it enables services to be deployed independently of
each other[2]. The widespread adoption of microservice architecture can be
attributed to the rapid development in the field of cloud computing (Infrastruc-
ture as a Service - [aaS)[3]. This advancement of cloud computing has been
fostered by virtualization technology. Virtualization is the key component of
cloud computing as it enables the sharing of computing resources, ensuring
better resource utilization by running multiple operating systems on a single
machine[4]. As virtualization technologies have matured, it has become easier
than ever before to spin up a Virtual Machine (VM) to deploy applications.
Eventually, containerization technologies such as Docker have enabled a single
operating system to host multiple containers concurrently, providing utmost
resource utilization[5]. Containerization enables services of an application to
be deployed in the same operating system without the overhead of spinning up
a new virtual machine.

In order to monitor and orchestrate these containerized services, technolo-
gies such as Kubernetes have stormed the industry. The orchestration services
provided by Kubernetes have increased the reliability of microservices-based
applications. These orchestration services include cluster management tasks
such as service discovery, scheduling, and networking [6]. As a result, failures
related to the network and underlying hardware are now abstracted away from
the developers. Provided that the underlying abstraction is working correctly,
it is now the responsibility of the developers to ensure the best performance
of the application. Hence, developers require better observability into their
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systems more than ever to ensure that they have a shorter feedback loop that
will allow them to rapidly make code changes to improve the quality of the
services.

The following sections of this chapter introduce the notion of observability.
In addition, it discusses how distributed tracing addresses this challenge in
microservices-based applications.

2.1 Virtual Machines and Containers

System virtualization refers to using a software layer to imitate the behavior
of a physical machine. This software layer is known as Hypervisor or Virtual
Machine Monitor (VMM). The virtual environment created by this software
layer is called a virtual machine. A virtual machine is capable of hosting
an operating system independently, which makes it logically equivalent to a
host machine [7]. Thus, hypervisors enable concurrent operation of multiple
virtual machines inside a single physical machine facilitating efficient resource
utilization. However, spinning up a new virtual machine to run an application
incurs additional performance overhead. This overhead can be compensated
by using containerization technologies.

A container is a self-sufficient package containing all the essential depen-
dencies for an application to run. As a result, containerized applications are
portable and readily executable on top of a container runtime. Container run-
times running on operating systems are responsible for container creation.
Creating a container using a container runtime is analogous to starting a new
process in isolation within the host operating system. This isolation is achieved
by using Linux kernel-level features, namely namespaces and cgroups (control
groups) [8]. Since containers share the kernel of the host operating system, the
resource footprint of containers is lower than virtual machines. Consequently,
containers enable efficient scaling of applications with reduced resource over-
head which has further fostered the widespread adoption of microservice archi-
tecture [9], [10]. Docker is an industry-standard container engine that provides
a complete ecosystem for managing Docker containers.

2.2 Container Orchestration

With the growing popularity of containerized microservices-based applica-
tions, the complexities of managing these deployments are increasing. While
scaling out a service to accommodate a high volume of network traffic, the
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number of containers can rapidly become unmanageable for the Development
and Operations (DevOps) team. Container orchestration solves this issue by
automating all the tasks in a container lifecycle, including provisioning, de-
ployment, scaling, networking, and load balancing. Container orchestration
tools receive the desired state of the system in a configuration file and perform
necessary operations to maintain the system in the desired state. Kubernetes is
the industry-standard tool for container orchestration. Kubernetes can manage
containers running in a cluster consisting of several host machines by per-
forming cluster management jobs such as service discovery, scheduling, and
networking [6].

2.3 Monitoring and Observability

According to IEEE, monitoring refers to supervising, recording, analyzing,
or verifying the operations of a system[11]. Traditionally, monitoring is used
for discovering predictable failures to determine the overall health of the sys-
tem and generate alerts when necessary[12]. Monitoring can be of two types,
blackbox monitoring and whitebox monitoring. Blackbox monitoring refers to
observing a system from the outside without having any internal knowledge
about it[13], [14]. Generally, blackbox monitoring involves querying the ex-
ternal characteristics of a service against several predefined scenarios[15]. In
contrast, whitebox monitoring relies on knowledge about the internals of an
application. Applications are instrumented with whitebox monitoring tools
that emit telemetry data such as metrics, logs, events, and traces.

Regardless of the type of monitoring, it usually refers to reacting to failures
once they occur. However, as applications are getting ever complex, the possible
combinations of failures are increasing significantly. Thus, reacting after the
occurrence of the incident is not viable anymore because the reaction time after
a failure is becoming longer with the increasing complexity of the services.
Therefore, it is best to detect symptoms before the incident. Nowadays, DevOps
teams need to be proactive even for unpredictable failures and try to anticipate
them beforehand. Precisely on this scenario is where observability comes into
the picture.

In terms of control theory, observability denotes the ability to predict the
internal state of a system based on its output[16]. In terms of distributed
systems, observability refers to the ability to extract useful information from
the telemetry data to understand the internals of a system. Thus, it is possible
to uncover underlying asymptomatic systemic issues in an observable system.
Monitoring can provide the DevOps team with the data that presents an overview
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of the system and enable the generation of alerts when required. In contrast,
observability is the extraction of useful information from the collected telemetry
data that can be useful for debugging, profiling, and dependency analysis.
Therefore, observability is a superset of monitoring.

The three pillars of observability in distributed systems are logs, metrics,
and traces. First, logs represent records of immutable discrete past events with
timestamps in plain text, structured or binary format. Next, metrics are numeric
values of selected data points of a system that are measured over a time interval.
Metrics provide valuable insights into the internal state of a system at any given
point in time. Finally, traces are reconstructions of causally related events of the
transactions in a distributed system. Traces provide an overview of end-to-end
request flow through a distributed system[12]. In the following sections of this
thesis, we will focus on traces in particular.

2.4 Distributed Tracing

Distributed tracing refers to monitoring the requests of a transaction taking
place in a microservices-based application. The requests are monitored by
attaching relevant contextual metadata along with them during their execution.
Thus, distributed tracing allows the reconstruction of the events during the
transaction while maintaining the causal relationship among them. A collection
of such causally related events are referred to as a trace. Distributed tracing
is different from conventional code profilers and host-level tracing tools such
as DTrace[17]. Whereas traditional code profilers can monitor code execution
within a single host, distributed tracing focuses on monitoring applications
running on different hosts[3]. Consequently, distributed tracing is pivotal for
monitoring microservices-based modern cloud-native applications distributed
among multiple hosts.

2.4.1 Components of a Trace

The terminologies which are used to describe modern distributed tracing con-
cepts can be linked back to systems such as Dapper[18], Magpie[19] and
X-Trace[20]. A trace is essentially a collection of spans that are causally related
to each other. A span represents a unit of work performed by a service taking
part in a broader transaction. Each span has a duration associated with it which
represents the time taken to perform that specific operation. Additionally, it
is possible to add extra key-value attributes to spans. All spans within a trace
share a parent-child relationship between them. The span which does not have
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Application
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Figure 2.1: A hypothetical trace

any parent span is known as the root span. The duration of the root span denotes
the end-to-end latency of a complete transaction. The section of code that is
instrumented to generate new spans is called a tracing point. The instrumenta-
tion is performed by a tracing library that injects contextual metadata into the
requests, enabling the formation of the causal relationship between spans.

Figure 2.1 illustrates the composition of a hypothetical trace. In this figure,
a microservices-based application has two services, namely Service-B and
Service-E, instrumented using a tracing library. As a request hits an Appli-
cation Programming Interface (API) endpoint of the application, the tracing
system starts a span named A, which will denote the end-to-end latency of the
complete transaction. As time progresses and the request hits Service-B, the
tracing system starts a new span named span B representing the work performed
in Service-B. Inside Service-B, two functions, namely C and D, are also instru-
mented to generate spans. As a result, after each of these functions completes
its execution, the tracing system generates two new spans: span C and span D.
After generating these new spans, the tracing system marks the end of span B.
Eventually, the request hits Service-E, which results in the generation of a new
span named span E. Finally, as the system finishes execution of the request and
generates a response, the tracing system marks the end of the span A, which
concludes the generation of the trace for this transaction.
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2.4.2 Request Correlation

When compared with other profiling tools, distributed tracing has the distinctive
ability to correlate the newly generated profiling data among each other cor-
rectly. The task of request correlation can be performed in multiple ways, such
as blackbox inference, schema-based inference, and metadata-based context
propagation[3].

Blackbox inference aims at performing request correlation without requiring
any modification to the system being monitored. Instead, this technique relies
on statistical analysis or machine learning to perform request correlation. One
example of a such system is the Mystery Machine[21] developed at Facebook,
which uses big-data techniques to process the logs generated by large-scale
internet services. Mystery Machine applies big-data techniques on these logs
to construct a model of request execution. Blackbox inference techniques might
initially seem appealing as they do not require any modification to the system.
However, blackbox inference techniques rely on massive computation to infer
request correlation, making them expensive and slower than both schema-based
and metadata-based request correlation.

Schema-based inference techniques also do not require modification to the
applications; nonetheless, applications are required to have their own event
schema defined. One such system is Magpie[19], which can extract the control
flow and resource consumption of the requests of a system using an application-
specific event schema[22]. However, this approach fails to keep up with modern
large-scale distributed systems as the creation of application-specific event
schemas cannot be automated.

Finally, the metadata-based context propagation method relies on annotating
the executions within a request using a global execution identifier that allows
the tracing system to reconstruct the complete execution of the request. The
application requires instrumentation to annotate the requests; these annotations
inject the execution contexts into the requests as they propagate through the
system. Such context propagation can be performed in two methods, namely
in-process and inter-process propagation. The in-process propagation method
makes the metadata available within the same process that is dealing with
thread switching and other asynchronous behavior. Conversely, inter-process
context propagation deals with transferring metadata across different services
over network calls.

Modern distributed tracing systems utilize the metadata-based context prop-
agation method for performing request correlation because it is more flexible
and can generate traces precisely and faster than the alternative methods[3].
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World Wide Web Consortium (W3C) recommends a standard for context prop-
agation named Trace Context[23] to ensure interoperability between different
tracing systems.

2.4.3 Causality Preservation

The next challenge in generating distributed traces is to preserve the causality
relation between the generated spans. Request correlation is only sufficient
for grouping all the spans of a particular request. However, reconstructing a
graph from these spans while maintaining all the causally related activities
requires additional information. The reconstruction can be achieved by follow-
ing Lamport’s happens-before relation[24] denoted by “ — . According to
this principle, three events: a, b, and ¢ have the relation — if they satisfy the
following conditions:

1. If event a and event b occurs in the same process then, a — b (a
happens-before b), provided that event a appeared before event b.

2. If event a represents sending a message and event b represents the recep-
tion of the same message, then @ — b (a happens-before b).

3. a — band b — c implies that a — ¢ (a happens-before c).

However, depending solely on Lamport’s happens-before principle is in-
sufficient because it might capture false causality relations as it only relies on
the event time to determine causality. To mitigate this issue, modern tracing
systems, such as Dapper[18] and X-Trace[20], use dynamic metadata for at-
taching an execution identifier for each of the newly generated traces. This
execution identifier is further propagated towards the next tracing point, where
this inbound execution identifier is considered as tracing data. This next tracing
point stores the incoming execution identifier as its parent and injects a new
execution identifier to propagate the causality relation towards its children.

2.4.4 Clock Skew Adjustment

Generally, timestamps captured within the same process are expected to be
aligned with each other. However, timestamps from different processes in the
same host may differ due to many factors, such as the programming language
and the libraries used to generate the timestamps. As distributed tracing deals
with an even more challenging scenario, that is, monitoring request executions
in different hosts, it is inevitable that distributed tracing has to deal with clock
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skew. Distributed tracing reconciles the clock skews by realigning the spans
according to the causality relations. For example, if a child span appears before
a parent span in the trace view, it is adjusted by adding an offset to the child
span until the complete child span falls within the time range of the parent span.
However, this adjustment is based on applying heuristics. Therefore, it is not
entirely accurate.

2.4.5 Sampling

One of the unwanted side-effects of introducing distributed tracing to any ap-
plication is the performance overhead of generating tracing data. Moreover,
additional storage is necessary to persist the generated traces for further analy-
sis. Sampling tackles both of the problems by reducing the amount of tracing
data being generated and stored. Through sampling, the developers can find a
reasonable rate at which the business logic is not overwhelmed by the genera-
tion of tracing data. At the same time, the budget for storing traces remains
affordable. As sampling is the decisive factor that dictates the overall success
of adopting distributed tracing in any organization, it is discussed in more detail
in Section 2.8.

2.5 Evolution of Distributed Tracing

Historically, tracing is a time-consuming and manual task. All popular op-
erating systems, including Linux and Windows, support numerous tools for
performing tasks such as tracing, debugging, and performance evaluation. The
tracing tools available for Linux can be divided into two major categories,
namely ptrace-based application tracing and kernel-based tracing[25]. Ptrace
is a system-call of Linux, which is at the core of popular tools such as gdb,
strace and ltrace [26]. However, ptrace-based debuggers and tracing tools
exhibit poor performance due to overheads of context switching [27], which
can be mitigated by using kernel-based tools.

Kernel-based tracing can be performed in two methods: kernel-module
approach and interpreter-based approach. The kernel-module based tracing
tools include kprobes, utrace, uprobes, and SystemTap. Kprobes was released
in the Linux kernel version (2.6.9-rc2), and it works by dynamically inserting
probes into a running kernel and replacing the program text with a breakpoint
instruction. Upon hitting a probepoint, the kprobes infrastructure takes control
and executes a user-defined handler in the context of the kernel [27]. Utrace
can trace user-space applications by placing tracepoints at strategic locations
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in the kernel code. Once the tracepoints are activated, they invoke the pre-
registered utrace clients in kernel mode. Uprobes works by adding a user-
defined kernel module having probepoints along with handlers to be executed
upon a probepoint activation[26]. SystemTap acts as a wrapper for kernel-based
instrumentation tools such as kprobes. It simplifies the usage of kprobes by
accepting a script written in a language similar to AWK scripting language for
making API calls to kprobes[26], [28].

Interpreter-based tracing tools in Linux include DProbes and DTrace[25].
DProbes allows the dynamic insertion of probepoints into code modules execut-
ing in either user and kernel space. When a probepoint is activated, DProbes
runs a user-defined probe-handler written in a Reverse Polish Notation (RPN)
based assembly language, which gets interpreted in the kernel[25], [29]. DTrace
can instrument machine code, enabling it to monitor machine codes translated
by various programming language interpreters. Thus, DTrace can monitor
programs written in any interpreted language. The language for writing probe
handlers for DTrace is written in D language, which shares similarities to C
and AWK programming languages[30].

Similar to Linux, Windows also provides a low-overhead, non-blocking
kernel-level tracing facility named Event Tracing for Windows (ETW). ETW
allows tracing various application and operating system events via a Win32
API function. An event record in ETW consists of an event type, and other
data fields specific to the event. Furthermore, ETW accepts additional data
fields for specifying user-defined data[31] for debugging purposes.

However, the tracing systems discussed above only work within a single
host, which is insufficient for tracing microservices-based applications as these
applications are often distributed among multiple hosts. Tracing for distributed
systems can be classified into two categories, namely blackbox and whitebox
tracing. DPM[32] is among one of the initial projects in the field of blackbox
tracing. DPM relies on kernel instrumentation to determine causality between
requests. Project 5 approaches the blackbox tracing problem for local-area
distributed systems by providing two different algorithms: one uses time series
analysis of Remote Procedure Call (RPC) messages, and the other relies on a
convolution algorithm based on signal-processing techniques to identify the
causal path of requests[13]. The successor of Project 5 is Wide-Area Project
5 (WAPS5)[14], in which a new message-linking algorithm performs causal-
path inference to introduce performance tracing support for wide-area systems.
E2Eprof[33] uses a pathmap algorithm similar to the convolution algorithm
used in Project 5. However, due to using a compact trace representation,
E2Eprof is more lightweight than Project 5 and can perform online performance
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diagnosis. BorderPatrol [34] unbundles concurrent requests at the protocol
level in order to precisely monitor the output of each request on a per-event
basis. PreciseTracer[28] can trace multi-tier blackbox services using request
tracing leveraging the SystemTap tool without requiring any application-specific
knowledge. Additionally, PreciseTracer can generate a Component Activity
Graph (CAG) representing the causal path of requests. Magpie[19], developed
in Microsoft research, works by instrumenting a distributed system with ETW to
generate named events with timestamps. Association of events with the requests
and behavioral clustering of requests to detect anomalies are performed offline.
Pinpoint[35], [36] follows a similar design and philosophy as Magpie. However,
instead of focusing on performance analysis, Pinpoint targets fault detection
within distributed systems. CLUE[37] uses a data-centric approach to evaluate
the performance of cloud-based systems by monitoring their interactions with
the underlying hardware. CLUE leverages kernel-level event sequencing to
identify performance issues in cloud applications.

PSpec[38] is a whitebox tracing system that allows developers to write
assertions about the system behavior, which are checked against the collected
monitoring data from a pre-instrumented application. PSpec only aims at
detecting performance bottlenecks, and it cannot determine causal paths or
application structure. This drawback has been addressed in Pip [39], which
aims at detecting bugs in a distributed system by comparing the perceived
system behavior along with expected system behavior. Pip allows developers
to instrument their system to collect actual system behavior. Additionally, they
can define their expectations of timing, protocols, and resource consumption
in a declarative language. Finally, they can use query and visualization tools
provided by Pip to understand and debug the system. Analogous to Pip, Para-
dyn[40] allows the developers to write their expectations of the system using
Paradyn Configuration Language (PCL). However, similar to PSpec, Paradyn
cannot detect causal path or the system structure. WebMon[41] can monitor
the performance of web services by instrumenting applications to use HTTP
cookies for performing request correlation. WebMon uses a sensor-collector
architecture, where sensors generate events by injecting special correlators into
HTTP cookies and forwarding them to the collector. The collector enables
further processing of the data by making it available in a persistent storage. Star-
dust[42] provides an infrastructure to collect end-to-end traces of distributed
storage systems. Stardust uses a component named activity tracking infrastruc-
ture (ATI), which monitors and measures CPU demand, buffer cache usage,
network demand, and disk demand of every client request. Finally, it sends the
activities to a querying infrastructure for future analysis.
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The root of modern distributed tracing systems can be traced back to systems
such as X-Trace, Dapper, and Canopy. X-Trace[20] generates a unique task
identifier for each request and injects additional metadata along with the request.
These are propagated along with all recursive requests, resulting in a task tree
representing all the network calls originating from the initial request. However,
X-Trace requires the underlying networking stack to be modified to enable the
propagation of the metadata. Dapper[18] was initially developed in Google to
monitor their web-search workloads. Most of the terminologies used in modern
tracing systems were first defined in Dapper. Dapper follows a similar workflow
as X-Trace and propagates request contexts across all the services. According to
Dapper, each unit of work along the path of a transaction is called a span, and a
collection of spans constitute a trace. Additionally, Dapper allows annotations
of the spans, enabling the developers to add additional information to the spans.
Canopy[43], developed by Facebook, extends the core concept of systems such
as Dapper and XTrace. However, Canopy primarily emphasizes solving the
challenges faced during scaling distributed tracing systems. Canopy addresses
the challenges by separating instrumentation from trace models, providing a
pipeline for extracting features from traces, and presenting different views of
the same tracing data for different use cases.

Modern open-source distributed tracing systems include Apache SkyWalk-
ingl44], Zipkin[45], and Jaeger[46]. Zipkin and Jaeger were initially developed
in-house in Twitter and Uber, but later, these tracing systems were open-sourced.
Skywalking was an open-source system from its inception, and it gained atten-
tion once it was accepted as an incubator project in Apache foundation.

As discussed in Section 2.4.5, sampling is the deciding factor in ensuring
the effectiveness of distributed tracing. As a result, researchers in this area
attempt to evaluate the effectiveness of different sampling algorithms that
perform sampling during distributed trace generation. Sifter[47] uses a Natural
Language Processing (NLP) technique called Masked Language Modeling
(MLM) ! to perform sampling of traces. Sifter maintains an online machine
learning > model of the common execution paths of a distributed application.
Using this model, Sifter can distinguish the edge cases from the common
execution paths and sample the traces representing the edge cases. Las-Casas et
el.[48] provide a clustering-based method to determine common execution paths

'In MLM, a language model has access to only parts of a sequence of input tokens where
the rest of the tokens are replaced with a special token called a mask. The model attempts to
reconstruct the original sequence of tokens by predicting the masked tokens.

2Online machine learning is used to train machine learning models using streaming data
where the model is updated on the arrival of new data points
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of a distributed application. Their method is biased towards sampling execution
graphs that do not fall into the common clusters, resulting in the sampling of
graphs representing infrequent execution patterns. Mace et el.[49] use graph
kernels * to evaluate trace similarity. In this method, graph representations of
newly generated traces are momentarily stored in memory and evaluated using
graph kernels to calculate similarity with existing graphs in a cluster. Sampling
decisions are made based on the similarity scores, and graphs having lower
similarity scores are prioritized.

2.6 OpenTracing and OpenCensus

OpenTracing was initiated with a vision of becoming an open-source, vendor-
neutral standard for distributed tracing. It provided a vendor-neutral API for
instrumenting applications along with instrumentation libraries the for most
popular frameworks. In 2016, it was accepted as a project under the Cloud
Native Computing Foundation (CNCF)[50], which increased the acceptance of
the project in the developer community devoted to distributed tracing. A few
years later, in 2018, Google open-sourced their distributed tracing and metrics
generation framework named Census as OpenCensus[51]. Both OpenTracing
and OpenCensus had the same goal of standardizing the domain of distributed
tracing. However, due to different architectural designs, the projects eventually
became a barrier to the standardization of distributed tracing. To mitigate this
issue, leadership from both projects decided to collaborate and created a single
project under CNCF called OpenTelemetry in 2019[52].

2.7 OpenTelemetry

OpenTelemetry (OTel), an open-source framework for observability, is the
merger of two previously popular open-source projects, namely OpenTracing
and OpenCensus. OpenTelemetry is a collection of vendor-agnostic API, Soft-
ware Development Kit (SDK), and tools for generating, instrumenting, and
collecting telemetry information such as traces, metrics, and logs from modern
cloud-native applications[53]. OpenTelemetry has well-defined specifications
for all telemetry data types[54]. OpenTelemetry also outlines the process of
transporting the generated telemetry data between different components of a
tracing infrastructure. OpenTelemetry is W3C Trace Context[23] compliant,

3A graph kernel is a function that reports the similarity of two graphs via a numeric value.
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which makes it compatible with any monitoring system following the W3C
Trace Context recommendation.

Figure 2.2 illustrates a typical OpenTelemetry deployment. In the diagram,
the services of an application are instrumented using the OpenTelemetry library,
which performs the task of generating telemetry data. Once generated, the
telemetry data are sent to an OpenTelemetry collector instance called Open-
Telemetry agent. OpenTelemetry agents can be deployed as a sidecar container
4 of each service of an application or as a Kubernetes DaemonSet °, which
ensures that an OpenTelemetry agent daemon runs inside every host of a Ku-
bernetes cluster. The agent relieves the services from the burden of batching,
retrying, encrypting, and compressing of tracing data. The agent sends the
telemetry data to an OpenTelemetry collector, which then processes and exports
the data to a storage backend. Finally, a trace querier such as Jaeger-UI or
Zipkin can query the traces from the storage backend and visualize them to the
developers.

Application
Service 1
¢ OTel Library ——— - Trace UI
\;O'I'eIALmtl +*" OTel Collector 3,
Servicen 7T zeKn
+ OTel Library

Figure 2.2: A reference architecture of OpenTelemetry

OpenTelemetry defines semantic conventions for specifying keys and values
for the telemetry data generated by the applications. The following sections
describe the semantic conventions for OpenTelemetry tracing data.

“A sidecar container enhances the functionalities of an application container and resides in
the same atomic container group as the application container[55].

A DaemonSet is a Kubernetes construct that ensures that a copy of a pod(Kubernetes
construct representing an atomic container group) always runs in the selected nodes of a
Kubernetes cluster.
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Spans:

According to OpenTelemetry specifications[54], a span represents a unique
operation within a transaction. A span consists of the following states:

* Operation name

Timestamps (Start, Finish)

Attributes list (Key-value pair)

Event set (Zero or more)

Parent span identifier

Links to other causally-related spans (Zero or more)

SpanContext information

SpanContext:

SpanContext relates a span with a trace using tracing identifiers. SpanContext
must be propagated to child spans and across process boundaries to ensure the
correct reconstruction of a trace. The following fields are used to establish
SpanContext.

e Trace identifier (Traceld)
* Span identifier (Spanld)
* Trace flags (TraceFlags)

* Trace state (Tracestate)

Traces:

A trace is essentially a collection of spans. According to OpenTelemetry
specification [54] a trace is a Directed Acyclic Graph (DAG) of spans in which
the edges between the spans represent parent-child relationships. However, the
most popular distributed trace visualization tools represent traces using charts
similar to Gantt charts with a time axis, as shown in Figure 2.1.
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2.7.1 OpenTelemetry Collector

OpenTelemetry collector offers a vendor-neutral way to collect, process, and
export telemetry data. Being a vendor-agnostic tool, it can receive telemetry
data from any sources irrespective of the inbound data format, then process
and finally export the data to any commercial backend. The whole process of
receiving, processing, and exporting telemetry data is performed in a pipeline,
and multiple pipelines can exist in a single OpenTelemetry collector. A typical
OpenTelemetry pipeline consists of a number of receivers, followed by a chain
of processors and completed by a number of exporters. Receivers receive
telemetry data in a specified format and translate the data into an internal
format before passing it to processors or exporters. A single receiver can send
the same data to multiple pipelines using a fan-out connector. Each processor
receives the tracing data strictly from a single receiver or a preceding processor
and sends it to the following processor or an exporter. Processors can transform
the tracing data by performing operations such as batching, filtering, and tail-
based sampling. Finally, exporters convert the tracing data into the specified
format and forward the data to telemetry data storage backends. Figure 2.3
illustrates an example pipeline in an OpenTelemetry collector. Communication
between different telemetry sources, intermediate nodes, and telemetry backend
is specified by OpenTelemetry Protocol (OTLP). OTLP specifies the encoding,
transport, and delivery of telemetry data. OTLP is based on Google Remote
Procedure Call (gRPC) and HTTP/1.1 and uses Protocol Buffers (protobuf)
schemas for handling payloads.

Receiver 1
Receiver 2

Exporter 2

Processor 1 Processor 2 }—’{ Processor n

Figure 2.3: An example pipeline in an OpenTelemetry collector

2.8 Sampling Types

Sampling in distributed tracing is the process of generating a selective amount
of traces in order to reduce the performance and storage overhead. Applications
serving a heavy amount of traffic might exhibit poor performance due to the lack
of proper sampling. An example is the Dapper tracing system from Google,
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which initially introduced 1.5% throughput and 16% latency overhead for web
search workloads without any sampling. By reducing the sampling rate to
0.01% of the traces, both throughput and latency overhead were reduced to
0.06% and 0.20% , respectively[18]. The reduction of throughput and latency
demonstrates the importance of sampling in distributed tracing.

There are two main types of sampling in distributed tracing, namely head-
based sampling and tail-based sampling. Figure 2.4 illustrates both head-
based and tail-based sampling in action. In head-based sampling, the sampling
decision is taken upfront before generating any spans. Therefore, in head-based
sampling, the system experiences overhead due to tracing only if the sampling
decision is positive. Conversely, in tail-based sampling, the traces are generated
before taking the sampling decision. The generated traces are sent to a tracing
backend where the sampling decision is taken. As a result, tail-based sampling
can sample more informative traces and provide better insight into the system
as the newly generated traces can be taken into account to produce a biased
sampling decision. Both of these sampling types are detailed below.
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(a) Head-based, not sampled. (b) Head-based, sampled. (c) Tail-based, not sampled. (d) Tail-based, sampled.

Figure 2.4: Comparison of head-based and tail-based sampling. In head-based
sampling (a,b), the sampling decision is taken upfront. In tail-based sampling
(c,d), the sampling decision is made in the tracing backend after the trace
generation is complete [47]

2.8.1 Head-based Sampling

In head-based sampling, the sampling decision is taken upfront before gen-
erating any spans. Tracing libraries take a sampling decision once for every
trace, and the decision is propagated to all tracepoints in the system for main-
taining consistency. Head-based sampling ensures that either all or none of
the spans of a particular trace are generated. Hence, head-based sampling
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reduces the overhead when the sampling decision is negative. Head-based
sampling is employed by tracing systems such as Dapper[18] of Google and
Canopy[43] of Facebook. Moreover, all modern distributed tracing systems
support head-based sampling. The sampling decision of head-based sampling
can be obtained based on several methods, as discussed below.

Probabilistic Sampling:

Probabilistic sampling is the most common and popular sampling technique
used by many modern tracing systems today for performing head-based sam-
pling[3]. In probabilistic sampling, the sampling decision is taken uniformly
at random. Popular tracing systems, such as Jaeger[46] developed by Uber,
and Spring Cloud Sleuth[56], use probabilistic sampling as default. Although
probabilistic sampling is the simplest method to perform head-based sampling,
this method cannot control the selection of traces during sampling. As a result,
the sampled traces might not reflect the overall condition of the system.

Rate Limiting Sampling:

Rate limiting sampling is another simple sampling technique for performing
the head-based sampling. In a rate limiting sampling scenario, only a fixed
number of traces are allowed to be generated in a unit of time. The rate
limiting is enforced by using a rate limiting algorithm such as the leaky bucket
algorithm. Rate limiting sampling is beneficial for services having fluctuating
traffic patterns, as probabilistic sampling is not useful in such cases.

Adaptive Sampling:

In a microservices-based application, each service experiences a different load
due to serving a different volume of traffic. However, probabilistic sampling
and rate-limiting sampling do not take this varying load into account. As a
result, all API endpoints get equal priority for sampling. Adaptive sampling
aims at solving this problem by dynamically adjusting the sampling parameters
during runtime. This concept was first introduced in the Dapper tracing system
of Google. In this method, Dapper used to adjust the sampling probability
over time across all the services based on the traffic load[18]. Jaeger tracing
developed by Uber provides a similar but more sophisticated implementation
of adaptive sampling using the Proportional Integral Derivative (PID) con-
troller concept. In their implementation, the adaptive sampling infrastructure
calculates the desired sampling probability for each service during runtime. A
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feedback loop pushes the newly calculated sampling probabilities back to the
tracing libraries. Afterwards, the tracing libraries use the updated sampling
probabilities during the sampling traces of different services[3].

2.8.2 Tail-based Sampling

Tail-based sampling takes the sampling decision after generating the trace. As
a result, tail-based sampling does not play any role in reducing the performance
overhead of the application. Instead, tail-based sampling is useful for sampling
traces that provide crucial information about the overall status of the system.
In tail-based sampling, the newly generated trace itself can be factored into
the sampling decision. Thus, tail-based allows biased sampling (i.e., storing
only the useful traces, discarding others). Consequently, tail-based sampling
enables the storing of qualitatively better traces without exceeding the storage
budget[47].



Chapter 3
Design and Methodology

The aim of this thesis is twofold. First, to measure the overhead of distributed
tracing on Ericsson Security Manager (ESM) by instrumenting ESM with
OpenTelemetry API and SDK. Second, to develop a novel tail-based sampling
framework compliant with the OpenTelemetry specifications. This chapter
introduces ESM and details the design architecture of the developed tail-based
sampling framework. Furthermore, this chapter explains the design choices
made during the development of the tail-based sampling framework.

3.1 Ericsson Security Manager

ESM is a microservices-based software for automating network configuration
and management tasks in telecommunication, Internet of Things (IoT), and pri-
vate networks. It can enforce security policies on network nodes and automate
the process of compliance monitoring of network nodes. Additionally, ESM
can detect probable threats in any of its managed networks using predefined
threat detection logic and take necessary actions to mitigate the impact of
the threats. As a microservices-based application, it is imperative for ESM
to employ distributed tracing to increase the observability of the application.
However, it is also crucial to verify that the overhead of distributed tracing does
not overwhelm the business logic of ESM. For this purpose, we instrument a
selected set of services in ESM using OpenTelemetry and measure and evaluate
the impact of introducing distributed tracing. Insights from this evaluation will
be taken into consideration when instrumenting more services of ESM in the
future.

24



CHAPTER 3. DESIGN AND METHODOLOGY 25

3.2 Operational Requirements

The sampling of distributed traces is a task to be inherently accomplished online.
Sampling systems need to process a continuous stream of incoming spans and
produce the sampling decisions in real-time. Hence, the sampling framework
has to be developed using technologies that are robust and capable of dealing
with large-scale streaming data efficiently. Stream processing is a paradigm that
satisfies the requirements of developing such a tail-based sampling framework.
Another major motivation behind performing tail-based sampling is to col-
lect insightful traces which provide crucial information about the performance
and behavior of the application. The usefulness of the traces can be determined
by capturing and modeling the common executions path of an application so
that the framework can prioritize the uncommon executions paths representing
more insightful traces. Therefore, an additional requirement for the underlying
stream processing framework is to support stateful processing of incoming
data streams to enable the modeling of common executions paths. These re-
quirements played a vital role in selecting the underlying stream processing
framework to be used to build our tail-based sampling framework.

3.2.1 Stream Processing

Stream processing originates from big data analysis for handling unbounded
continuous data. Stream processors ingest a continuous stream of events and
trigger a predefined action for each event. This method differs from the tra-
ditional processing of data stored in data at rest ! infrastructures; instead of
waiting for all of the events to arrive, stream processing aggregates the events
over time to produce real-time outputs. The core principle in stream process-
ing is to partition infinite data streams into small finite windows and apply
computation on them to enable real-time outputs with minimal latency.

There are three main types of windows in stream processing, namely fum-
bling or fixed windows, sliding windows, and session windows, as shown in
Figure 3.1. Tumbling windows refer to slicing up the incoming data streams
into time intervals of fixed length without overlap. Sliding windows are fixed-
length windows that are spawned after a fixed period of time. Finally, session
windows are created upon arrival of events and terminated after a fixed time of
inactivity, resulting in a timeout.

Stateful stream processing is a special case of stream processing where
the stream processor maintains states containing information about the events

'Data at rest refers to storing data in any digital format in a persistent storage device
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that appeared previously. Maintaining past events information is called state
management, and it can be performed by storing the state in memory or external
storage. In memory, state management is only suitable for processing jobs with
moderately sized states. For processing jobs having significant state storage
requirements, external key-value stores are more appropriate.

Tumbling Windows Sliding Windows
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“ 000 ® e @ « 000 e e e
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Figure 3.1: Window types in stream processing

3.2.2 Flink and Kafka

Apache Flink[57] is a popular open-source framework written in Java support-
ing both batch and stream processing. Flink is the first open-source stream
processing framework to introduce native support for processing unbounded
data based on event time [58] using watermarks. > Watermarks denote the
progression of event time in Flink, allowing Flink to identify and handle out-
of-order data. On the contrary, alternatives such as Apache Spark perform
micro-batch operations to imitate stream processing. Flink is used in con-
junction with durable message queues, such as Apache Kafka[61], to achieve

2Watermark is a monotonically increasing timestamp of the latest data point that has been
processed by a stream processing engine[59]. A data point having a lower timestamp than the
watermark is considered as late[60].
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high throughput and low latency, ensuring exactly-once delivery guarantees.
Due to these aforementioned benefits, we developed our tail-based sampling
framework using Apache Flink.

Furthermore, we also used an open-source durable message bus called
Apache Kafka because it is highly scalable [62]. Kafka enables us to achieve
high throughput ingestion of spans which is pivotal for ensuring sampling
decisions within minimal latency in services with high-volume traffic.

3.3 Deployment Model

One of the main requirements for our tail-based sampling framework is to
make it compatible with existing OpenTelemetry deployments. Since we are
developing a tail-based sampling framework, deploying our framework along
with an OpenTelemetry collector instance is logical to enable immediate access
to the newly generated spans. Moreover, we decouple our framework from
the application being traced by deploying the framework with OpenTelemetry
collectors. Therefore, no further modifications are required to a previously
instrumented application for using our sampling framework. Furthermore, the
developed tail-sampling framework accepts spans in accordance with Open-
Telemetry specifications, enabling smooth integration with any OpenTelemetry
collector instance.

Figure 3.2 shows the integration of the developed tail-based sampling
framework with an existing OpenTelemetry deployment. In this figure, the
OpenTelemetry collector forwards the stream of spans to the developed frame-
work. The framework starts to process incoming spans and returns tail-based
sampling output to the OpenTelemetry collector instance. Upon receiving the
sampling results, the OpenTelemetry collector finally exports sampled spans to
the trace storage. The following section describes the dataflow model of our
tail-based sampling framework.

3.3.1 Dataflow Model

As discussed in Section 2.7.1, an OpenTelemetry collector can have multiple
pipelines to process incoming traces. Our tail-based sampling framework
requires the collector instance to have two pipelines, as shown in Figure 3.3.
Code snippet 1 shows the configuration of an OpenTelemetry collector for this
dataflow model. The configuration has two pipelines, namely traces/input and
traces/output. The traces/input pipeline receives spans via an otlp receiver
and passes them to the batch processor. Using a batch processor is optional
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Figure 3.2: Interaction of the developed sampling framework with a standard
OpenTelemetry deployment

but beneficial because the batch processor performs the batching of spans in
order to improve the compression of the data and to reduce the number of
outgoing connections while sending the data to the kafka exporter. Then the
kafka exporter sends the data to a Kafka topic named input_queue in OTLP
protobuf format (oltp_proto).

Our tail-based sampling framework reads the protobuf serialized spans and
starts processing them. Upon reaching a sampling decision, the framework
writes the spans of the traces to be sampled to another Kafka topic named
output_queue in oltp_proto format. At this point, the kafka receiver in the
traces/output pipeline reads the sampled spans from the output_queue topic
and passes them to the batch processor. Finally, the batch processor forwards
them to the jaeger exporter, which passes the sampled span to Jaeger, thus
completing the process of tail-based sampling.

Developed

sampling Framework
& katka g & katka

Flink

Incoming Traces _—’I Pipeline (Input) Pipeline (Output) Sampled Traces

4‘ OTel Collector

Figure 3.3: Dataflow between the developed sampling framework and Open-
Telemetry collector
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receivers:
otlp:
protocols:
grpc:
kafka:
brokers:
- kafka:9092
topic: output_gueue
encoding: otlp_proto
exporters:
jaeger:
endpoint: jaeger-collector:14250
kafka:
brokers:
- kafka:9092
topic: input_queue
encoding: otlp_proto
processors:
batch:
service:
pipelines:
traces/input:
receivers: [otlp]
processors: [batch]
exporters: [kafka]
traces/output:
receivers: [kafka]
processors: [batch]
exporters: [Jjaeger]

Code snippet 1: An OpenTelemetry collector pipeline configuration for using

our tail-based sampling framework
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3.4 Algorithm

As mentioned in Section 3.2.2, the tail-based sampling framework developed
for this thesis is built using Apache Flink and runs on top of a Flink cluster.
Upon submitting the tail-based sampling job to the Flink cluster, it reads two
configuration files for initializing the framework with user-defined settings. The
first configuration file contains information such as sampling budget, window
size, and names of the input and output queues. The other configuration file
accepts feature filter object definitions for performing feature selection of traces.

After the initialization phase, the framework starts processing the inbound
stream of spans. It reads the incoming spans serialized in OTLP protobuf format
from the input queue and creates a new data stream of spans after deserializing
them into plain old Java objects (POJOs). The spans in this stream are keyed
by Traceld which allows the aggregation of all spans of a particular trace into
a single trace object. The framework handles out-of-order spans and maintains
the causality relations of the spans of these trace objects. A new data stream is
formed by using these newly created trace objects, which are partitioned using
fixed-length windows for further processing.

Each of the traces in a particular window has to pass through a two-step
evaluation process. In the first step, the framework checks for feature matches
according to the feature filter object definitions. If a feature match is found, the
trace is selected for sampling. In case there are no feature matches, the trace is
evaluated in the next step, where the framework decides either to sample the
trace or to add the trace to a candidate list for sampling.

The framework determines the outcome of the possibilities mentioned above
by following a principle which we refer to as the Least Appearances First (LAF)
principle. According to this principle, our framework prioritizes the traces
that have appeared at the framework the least times. The philosophy behind
the LAF principle is that the traces which appear more frequently represent
the common execution paths of the system. Therefore, in order to capture
unusual behaviors of the system, such as a newly introduced bug, the LAF
principle prioritizes the traces which appear less frequently. As a result, a
trace representing an erroneous transaction due to a newly introduced bug has
more sampling priority than a trace representing a typical execution. The LAF
principle requires the framework to track the frequency statistics of previously
appeared traces, which is accomplished by using the state backends provided
by Flink.

Once all of the traces of a window traverse this two-step evaluation process,
the framework populates a list of traces to be sampled following the LAF
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principle known as candidate list. Finally, the traces are sampled from the
list of candidates within the remaining sampling budget. Figure 3.4 shows a
flowchart of the tail-based sampling process described above. Before sending
the sampled traces back to the collector, the framework serializes them in OTLP
protobuf format and writes them to the output queue.

NO

@ Load Pﬂﬂiii?nr; ;lreum
Confi
e tumbling window

Trace remaining
in window?2
YES

Select Trace for
Processing

Check for Feature Feature Filters
Match Enabled?

NO
YES

YES

Add to Candidate
List

YES

Sample I—
z in window?
NO
Select Candi Sample

I

Figure 3.4: Flowchart of the developed tail-based sampling algorithm

3.5 Feature Selection

As described in Section 3.4, the developed tail-based sampling framework
supports feature selection to sample traces. The classes performing feature
selection are called feature filters, and the framework accepts zero or more
feature filters provided in a configuration file. The framework allows simple
configuration through a YAML file, which contains the object definitions
of feature filters used in the sampling process. The framework ships with
three predefined feature filters, namely LatencyFilter, ResourceFilter, and
ErrorCodelFilter, and it is straightforward to add more custom feature filters.
As described in Section 3.4, the developed tail-based sampling framework
supports feature selection to sample traces. The classes performing feature
selection are called feature filters, and the framework accepts zero or more
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feature filters provided in a configuration file. The framework allows simple
configuration through a YAML file, which contains the object definitions
of feature filters used in the sampling process. The framework ships with
three predefined feature filters, namely LatencyFilter, ResourceFilter, and
ErrorCodePFilter, and it is straightforward to add more custom feature filters.

Code snippet 2 shows an example configuration having three feature filters.
This configuration sets up the framework to sample all the traces having latency
beyond 500 milliseconds or the traces which were generated in cart_service
from region us_west_I. To add a custom filter, the developer has to write his
own implementation of a filter class extending a class named FilterConfig,
which is the superclass of all feature filters. Finally, to use the newly defined
feature filter, it is sufficient to add an entry to the configuration file, as Code
snippet 2 demonstrates.

LatencyFilter:
args:
duration: 500

ResourceFilter:
args:
service.name: cart_service
region: us_west_1

CustomFilter:
args:
key: value

Code snippet 2: Configuration file for enabling feature filters
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Evaluation

In this chapter, we evaluate the overhead of distributed tracing on ESM and com-
pare our tail-based sampling framework with the tail-based sampling processor
of the OpenTelemetry collector. We measure the memory requirements and
present a detailed comparison of available features of both tail-based sampling
implementations.

4.1 Overhead of Tracing on ESM

In order to measure the performance overhead of distributed tracing on ESM, we
instrumented a scheduler service in ESM that is used to schedule periodic jobs.
We selected five different tasks that the scheduler service executes periodically
at regular intervals. We measured the end-to-end latency of these tasks both
before and after the introduction of distributed tracing. Figure 4.1 illustrates
the findings from this experiment in a bar chart where the x-axis lists five
different tasks, and the y-axis represents the end-to-end latency of the tasks in
milliseconds. The green bars in the chart represent the measurements taken
before enabling distributed tracing, while the red bars denote the measurements
after enabling distributed tracing. The black lines on each bar represent the
standard error of the corresponding latency measurements. In this figure, the
red bars exhibit higher latencies than the corresponding green bars for all five
tasks. The figure implies that the introduction of distributed tracing induces
performance overhead on the instrumented application.

33
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Tracing Enabled vs. Tracing Disabled

Hl Tracing Enabled
500 A I Tracing Disabled

400 A

300 A

200 A

Latency (milliseconds)

100 ~

T1 T2 T3 T4 T5
Task Identifier

Figure 4.1: Latency comparison of the scheduled tasks with tracing toggled

Figure 4.2 shows the amount of overhead experienced by each of the instru-
mented tasks in terms of increase in latency. In this figure, the x-axis lists all
the tasks, and the y-axis denotes the latency increase in percentage. According
to this figure, the latency overhead of the scheduled tasks varies from 9% up to
almost 16%.

4.2 Memory Requirements

In this section, we measure the memory requirements of the OpenTelemetry
collector for performing tail-based sampling. For this evaluation, we consider
three scenarios as follows: disabling sampling, performing tail-based sampling
with the developed framework, and performing tail-based sampling using the
tail-based sampling processor provided by OpenTelemetry. The measurements
were conducted using the configurations listed in Table 4.1. In this table,
spans/second refers to the number of spans sent to the OpenTelemetry collector
instance per second. Window size or decision time is the waiting period before
generating sampling output. Each measurement run lasted for 15 minutes,
and the collector instance was allocated a dedicated CPU core running at 2
GHz to ensure stable operation of OpenTelemetry collector across different
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Tracing Overhead
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Figure 4.2: Latency increase of the scheduled tasks in percentage

measurement runs.

Criterion Value
Spans/second 255
Window size/Decision time 1 second
Duration 15 minutes
CPU 1 core @ 2GHz

Table 4.1: Test configuration

4.2.1 Memory Consumption of OpenTelemetry Collec-
tor

Figure 4.3 compares the memory consumption of an OpenTelemetry collector
instance in three different scenarios. In this figure, the x-axis represents the
memory consumption of the OpenTelemetry collector instance in megabytes
(MB), and the y-axis denotes the three different sampling scenarios described
in Section 4.2. The topmost bar shows the memory consumption of the Open-
Telemetry collector instance with sampling disabled, which is slightly more than
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70 MB. The middle bar shows that while using the developed tail-based sam-
pling framework, the memory consumption goes up by only a few megabytes
but remains below 80 MB. Finally, the bottom bar shows that the memory
consumption of the collector spikes up to almost 120 MB when using the
OpenTelemetry tail-based sampling processor.

Collector Memory Consumption for Tail-based Sampling

Il No Sampling
B Developed Framework
B OTel Tail Sampling

Sampling Tool Used

1
L7
Sony,
i
9

0 20 40 60 80 100 120
< Memory Consumed (MB)

Figure 4.3: Comparison of memory consumption of an OpenTelemetry collec-
tor instance in different scenarios: without tail-based sampling, while using
the developed tail-based sampling framework, and while using OpenTelemetry
tail-based sampling processor

4.2.2 Memory Consumption of Flink Cluster

The developed tail-based sampling framework runs on top of a Flink cluster that
has its own memory requirements. Figure 4.4 shows the memory consumed by
the developed sampling framework where the x-axis represents time, and the
y-axis denotes memory consumption. According to this figure, the developed
framework consumes maximally 220 MB memory in the Flink cluster. The
spikes in this figure are due to the garbage collection mechanism in Java. This
result implies that despite consuming less memory than the OpenTelemetry tail-
based sampling processor in an OpenTelemetry collector instance, according
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to Figure 4.3, our framework requires more memory to operate due to the
additional memory requirement of the Flink cluster.

300 Memory Consumption of the Developed Framework
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Figure 4.4: Memory consumption of developed tail-based sampling framework
running on a Flink cluster

4.3 Comparison

The following table lists a detailed comparison of the features available in both
tail-based sampling implementations.

Criterion OTel Implementation | Developed Framework
Minimum decision latency Seconds Milliseconds
Supports collector scaling No Yes

Rate limiting Spans/sec Traces/sec
Rate limiting enforced No Yes

Table 4.2: Comparison between tail-based sampling implementation of Open-
Telemetry and the developed tail-based sampling framework
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Discussion and Future Work

In this chapter, we examine and explore our research findings from the previous
sections to answer the research questions listed in Section 1.3. Additionally, we
list potential future directions for improving our tail-based sampling framework.

5.1 Overhead of Tracing on ESM

In our quest of investigating the overhead of distributed tracing on ESM, we
discovered a significant increase in the end-to-end latencies of the tasks in-
strumented with distributed tracing. Figure 4.2 reported an average of around
12.75% latency increase across all five tasks. Head-based sampling can be
employed in order to tackle this deterioration of performance. However, to
ensure representative sampling of the traces during head-based sampling, it is
necessary to define varying sampling probabilities for different endpoints of
each service.

5.2 Capturing Insightful Traces

One of the main motivations behind performing tail-based sampling is to aid
debugging and performance evaluation by storing insightful traces. Frequently
appearing traces represent common cases of execution of a system. In contrast,
the traces that appear rarely represent unusual behaviors of the system, and thus
they are more beneficial for future analysis. Our tail-based sampling framework
excels in this area due to its ability to collect rare traces. Currently, the LAF
principle prioritizes the traces in ascending order of their occurrence. This
policy ensures the sampling of uncommon traces, which is the distinguishing
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feature of our developed tail-based sampling framework compared to the tail-
based sampling processor of OpenTelemetry.

5.3 Benefits over OpenTelemetry Tail-based
Sampling Processor

As demonstrated in Section 4.2.1, our framework has a smaller memory foot-
print in the OpenTelemetry collector instance compared to the OpenTelemetry
tail-based sampling processor. However, considering the additional memory
requirement of the Flink cluster discussed in Section 4.2.2, our framework
requires more memory to operate. Nevertheless, the developed framework
offers the advantages listed in Table 4.2, which make it more effective than the
tail-based sampling processor of OpenTelemetry, despite its excess memory
requirement. The advantages of using our tail-based sampling framework are
as follows.

Firstly, the minimum decision latency in our framework can be defined in
milliseconds compared to seconds in the OpenTelemetry tail-based sampling
processor. As a result, our framework can produce sampling output faster than
the OpenTelemetry tail-based sampling processor.

Secondly, our tail-based sampling framework provides better performance
at scale as it supports the scaling of the collectors. The developed framework
does not rely on the collector instances to aggregate all spans of a single
trace. Instead, it performs the aggregation of spans internally. Conversely, the
tail-based sampling processor of OpenTelemetry expects all spans of a single
trace to arrive at the same collector instance within a fixed time frame which
complicates the scaling of the collectors.

The next advantage of using the developed tail-based sampling framework
is related to the ease of configuration of rate limiting. Our framework enables
rate limiting by specifying the number of traces to be sampled per second.
In contrast, the OpenTelemetry tail-based sampling processor supports rate
limiting by specifying the number of spans to be sampled per second. As aresult,
our framework relieves the developer from the responsibility of determining a
suitable value to ensure sampling of all spans of a single trace.

Finally, rate limiting is strictly enforced by our tail-based sampling frame-
work, which is one of the primary goals of performing any variety of sampling
in the first place. However, the OpenTelemetry tail-based sampling processor
does not strictly enforce rate limiting. Spans matching with any feature filter
get sampled, regardless of the threshold defined in the rate limiting filter.
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5.4 Compatibility

The framework developed for this thesis is compliant with the OpenTelemetry
specifications. The internal representations of spans are constructed from the
OTLP protobuf schemas. As a result, the developers can easily add custom
filters for feature selection without learning new schemas. Moreover, the
framework accepts and emits the spans in OTLP protobuf format, making the
framework compatible with any existing OpenTelemetry deployments.

5.5 Future Work

One general improvement of the developed tail-based sampling framework
would be optimizing the memory usage of the framework. This optimization
can be achieved by using a compact representation of spans for state manage-
ment of the stream processing. Furthermore, our implementation of a tail-based
sampling framework prioritizes the traces based on their frequency following
the LAF principle, as explained in Section 3.4. A future direction of work in
our framework could be supporting custom algorithms in addition to the LAF
principle for prioritizing traces. Another future work item could be extending
the developed tail-based sampling framework to perform real-time data analyt-
ics on the incoming traces leveraging the underlying stream processing engine.
Supporting real-time data analytics would allow our framework to generate
custom metrics beneficial for the business context.
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Conclusion

In recent years, the growing popularity of microservice architecture has in-
creased the importance of employing distributed tracing in order to enhance the
observability of microservices-based applications. Nevertheless, establishing a
balance between obtaining better visibility into the systems and reducing the
overhead of distributed tracing has always been a barrier to the widespread
adoption of distributed tracing in organizations. Moreover, the extra storage
cost of persisting traces causes additional complications. These issues can be
addressed by using various sampling techniques to reduce the number of traces
generated and stored.

In this thesis, we used OpenTelemetry to instrument a microservices-based
application for examining the overhead of introducing distributed tracing. Later,
we developed a tail-based sampling framework that can perform tail-based
sampling in any OpenTelemetry deployments.

Specifically, in the first part of this thesis, we surveyed the core concepts of
distributed tracing and explained various sampling methods used in distributed
tracing. Later, we introduced OpenTelemetry, an open-source vendor-neutral
observability project aimed at unifying the end-to-end processing of telemetry
data, including metrics, logs, and traces. We examined the formation of traces in
OpenTelemetry and discussed the architecture of the OpenTelemetry collector,
which is at the core of performing tail-based sampling.

Next, we examined the impact of introducing distributed tracing to a
microservices-based application. Our experiments demonstrated latency over-
heads ranging from 9% to 16% after the introduction of distributed tracing.
To tackle this deterioration of performance, we recommended the usage of
head-based sampling.

Finally, we explored the prospective of using stream processing to perform
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tail-based sampling. We elected stream processing to perform tail-based sam-
pling as stream processing engines can efliciently handle a high volume of
streaming data in real-time, which is essential for coping with traces gener-
ated by services serving a high traffic volume. We used an industry-leading
open-source stream processing framework named Apache Flink to develop
our tail-based sampling framework, and the built framework is compliant with
OpenTelemetry specifications. As a result, the framework is readily compatible
with any existing OpenTelemetry deployments.

Our experiments have demonstrated promising performance of the devel-
oped framework by saving approximately a third of memory-based storage
compared to an OpenTelemetry tail-based sampling module. Furthermore,
our framework provides additional features that are currently missing in the
OpenTelemetry tail-based sampling module.



Bibliography

[1]

(2]

[5]

C. Richardson, Microservices Patterns: With examples in Java. Manning
Publications, 2018, 1sBN: 9781617294549. [Online]. Available: https:
//books.google.fi/books?id=UeK1lswEACAAJ.

C.Richardson, What are microservices?, https://microservices.
io/, Online; Accessed April 14, 2021.

Y. Shkuro, Mastering Distributed Tracing: Analyzing performance
in microservices and complex systems. Packt Publishing, 2019, 1sBN:
9781788627597. [Online]. Available: https://books.google.
fi/books?id=4AuLDwAAQBAJ.

J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing security
of virtual machine images in a cloud environment”, in Proceedings of
the 2009 ACM workshop on Cloud computing security, 2009, pp. 91-96.

D. Bernstein, “Containers and cloud: From Ixc to docker to kubernetes”,
IEEE Cloud Computing, vol. 1, no. 3, pp. 81-84,2014. por: 10.1109/
MCC.2014.51.

A. Khan, “Key characteristics of a container orchestration platform to
enable a modern application”, IEEE Cloud Computing, vol. 4, no. 5,
pp- 42-48,2017.po1: 10.1109/MCC.2017.4250933.

M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, security
threats, and solutions”, ACM Comput. Surv., vol. 45, no. 2, Mar. 2013,
1ssN: 0360-0300. por: 10 .1145/2431211.2431216. [Online].
Available: https://doi.org/10.1145/2431211.2431216.

R. Bankston and J. Guo, “Performance of container network technologies
in cloud environments”, in 2018 IEEE International Conference on
Electro/Information Technology (EIT), 2018, pp. 0277-0283. por: 10.
1109/EIT.2018.8500285.

43


https://books.google.fi/books?id=UeK1swEACAAJ
https://books.google.fi/books?id=UeK1swEACAAJ
https://microservices.io/
https://microservices.io/
https://books.google.fi/books?id=4AuLDwAAQBAJ
https://books.google.fi/books?id=4AuLDwAAQBAJ
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1109/MCC.2017.4250933
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1145/2431211.2431216
https://doi.org/10.1109/EIT.2018.8500285
https://doi.org/10.1109/EIT.2018.8500285

44

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices
architecture by using docker technology”, in SoutheastCon 2016, 2016,
pp.- 1-5.po1: 10.1109/SECON.2016.7506647.

M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and
C. A. F. De Rose, “Performance evaluation of container-based virtualiza-
tion for high performance computing environments”, in 2013 21st Eu-
romicro International Conference on Parallel, Distributed, and Network-
Based Processing, 2013, pp. 233-240. por: 10.1109/PDP.2013.
47.

“leee standard glossary of software engineering terminology”, IEEE
Std 610.12-1990, pp. 1-84, 1990. por: 10.1109/IEEESTD.1990.
101064.

C. Sridharan, Distributed Systems Observability: A Guide to Building
Robust Systems. O’Reilly Media, 2018, 1sBn: 9781492033424, [On-
line]. Available: https: //books . google . fi/books?id=
07EswAEACAAJ.

M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, “Performance debugging for distributed systems of black
boxes”, ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 74—
89, 2003.

P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat,
“Wap5: Black-box performance debugging for wide-area systems”, in
Proceedings of the 15th international conference on World Wide Web,
2006, pp. 347-356.

J. Turnbull, The Art of Monitoring. James Turnbull, 2014, 1sBN:
9780988820241. [Online]. Available: https://books.google.
fi/books?id=w5QfDAAAQRAJ.

M. Gopal, Modern Control System Theory. USA: Halsted Press, 1984,
1sBN: 0470274247.

B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic instrumen-
tation of production systems”, in Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ser. ATEC *04, Boston, MA:
USENIX Association, 2004, p. 2.

B. H. Sigelman, L. A. Barroso, M. Burrows, et al., “Dapper, a large-scale
distributed systems tracing infrastructure”, 2010. [Online]. Available:
https://research.google/pubs/pub36356/.


https://doi.org/10.1109/SECON.2016.7506647
https://doi.org/10.1109/PDP.2013.41
https://doi.org/10.1109/PDP.2013.41
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
https://books.google.fi/books?id=07EswAEACAAJ
https://books.google.fi/books?id=07EswAEACAAJ
https://books.google.fi/books?id=w5QfDAAAQBAJ
https://books.google.fi/books?id=w5QfDAAAQBAJ
https://research.google/pubs/pub36356/

[23]

[25]

BIBLIOGRAPHY 45

P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Magpie: Online
modelling and performance-aware systems”, in Proceedings of the 9th
Conference on Hot Topics in Operating Systems - Volume 9, ser. HO-
TOS’03, Lihue, Hawaii: USENIX Association, 2003, p. 15.

R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and 1. Stoica, “X-trace:
A pervasive network tracing framework™, in Proceedings of the 4th
USENIX Conference on Networked Systems Design &amp; Implemen-
tation, ser. NSDI’07, Cambridge, MA: USENIX Association, 2007,
p. 20.

M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mys-
tery machine: End-to-end performance analysis of large-scale internet
services”, in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’ 14, Broomfield, CO:
USENIX Association, 2014, pp. 217-231, 1sBN: 9781931971164.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie
for request extraction and workload modelling”, in Proceedings of the
6th Conference on Symposium on Operating Systems Design &amp;
Implementation - Volume 6, ser. OSDI’04, San Francisco, CA: USENIX
Association, 2004, p. 18.

S. Kanzhelev, M. McLean, A. Reitbauer, B. Drutu, N. Molnar, and
Y. Shkuro, “Trace context”, W3C, W3C Working Draft, Feb. 2020,
https://www.w3.org/TR/trace-context/.

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system”, Commun. ACM, vol. 21, no. 7, pp. 558-565, Jul. 1978, 1ssN:
0001-0782. por: 10.1145/359545.359563. [Online]. Available:
https://doi.org/10.1145/359545.359563.

T. Holl, P. Klocke, F. Franzen, and J. Kirsch, “Kernel-assisted debug-
ging of linux applications”, in Proceedings of the 2nd Reversing and
Offensive-Oriented Trends Symposium, ser. ROOTS °18, Vienna, Aus-
tria: Association for Computing Machinery, 2018, 1sBn: 9781450361712.
por: 10.1145/3289595.3289596. [Online]. Available: https:
//doi.org/10.1145/3289595.3289596.

J. Keniston, A. Mavinakayanahalli, and V. Prasad, “Ptrace , utrace ,
uprobes : Lightweight , dynamic tracing of user apps”, 2007. [On-
line]. Available: https://landley.net/kdocs/0ls/2007/
01s2007vl-pages—215-224.pdf.


https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3289595.3289596
https://doi.org/10.1145/3289595.3289596
https://doi.org/10.1145/3289595.3289596
https://landley.net/kdocs/ols/2007/ols2007v1-pages-215-224.pdf
https://landley.net/kdocs/ols/2007/ols2007v1-pages-215-224.pdf

46

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

BIBLIOGRAPHY

A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy,
and M. Hiramatsu, ‘“Probing the guts of kprobes”, 2010. [Online].
Available: https : / / landley . net / kdocs / ols /2006 /
0ls2006v2-pages—109-124.pdf.

Z.Zhang, J. Zhan, Y. Li, L. Wang, D. Meng, and B. Sang, “Precise re-
quest tracing and performance debugging for multi-tier services of black
boxes”, in 2009 IEEE/IFIP International Conference on Dependable
Systems Networks, 2009, pp. 337-346. por: 10.1109/DSN.2009.
5270321.

J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd
Edition. O’Reilly Media, Inc., 2005, 1sBn: 0596005903.

B. Gregg and J. Mauro, DTrace: Dynamic Tracing in Oracle Solaris,
Mac OS X and FreeBSD, 1st. USA: Prentice Hall Press, 2011, 1SBN:
0132091518.

D. Narayanan, “End-to-end tracing considered essential”, in Proceedings
of High Performance Transaction Systems—Eleventh Biennial Workshop
(HPTS’05), 2005.

B. Miller, “Dpm: A measurement system for distributed programs”,
Computers, IEEE Transactions on, vol. 37, pp. 243-248, Mar. 1988. por:
10.1109/12.2157.

S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham, “E2eprof:
Automated end-to-end performance management for enterprise systems”,
in 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’07), 2007, pp. 749-758. po1: 10.1109/
DSN.2007.38.

E. Koskinen and J. Jannotti, “Borderpatrol: Isolating events for black-
box tracing”, in Proceedings of the 3rd ACM SIGOPS/EuroSys Euro-
pean Conference on Computer Systems 2008, ser. Eurosys 08, Glasgow,
Scotland UK: Association for Computing Machinery, 2008, pp. 191—
203, 1sBN: 9781605580135. por: 10.1145/1352592.1352613.
[Online]. Available: https://doi.org/10.1145/1352592.
1352613.

M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services”, in Proceed-

ings International Conference on Dependable Systems and Networks,
2002, pp. 595-604. por: 10.1109/DSN.2002.1029005.


https://landley.net/kdocs/ols/2006/ols2006v2-pages-109-124.pdf
https://landley.net/kdocs/ols/2006/ols2006v2-pages-109-124.pdf
https://doi.org/10.1109/DSN.2009.5270321
https://doi.org/10.1109/DSN.2009.5270321
https://doi.org/10.1109/12.2157
https://doi.org/10.1109/DSN.2007.38
https://doi.org/10.1109/DSN.2007.38
https://doi.org/10.1145/1352592.1352613
https://doi.org/10.1145/1352592.1352613
https://doi.org/10.1145/1352592.1352613
https://doi.org/10.1109/DSN.2002.1029005

[37]

[42]

BIBLIOGRAPHY 47

M. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer, “Using run-
time paths for macro analysis”, in 9th Workshop on Hot Topics in Op-
erating Systems, May 2003. [Online]. Available: https : / / www .
microsoft.com/en-us/research/publication/using-
runtime-paths—-for-macro—analysis/.

H. Zhang, J. Rhee, N. Arora, et al., “Clue: System trace analytics for
cloud service performance diagnosis”, in 2014 IEEE Network Operations
and Management Symposium (NOMS), 2014, pp. 1-9. por: 10.1109/
NOMS.2014.6838348.

S. E. Perl and W. E. Weihl, “Performance assertion checking”, SIGOPS
Oper. Syst. Rev., vol. 27, no. 5, pp. 134-145, Dec. 1993, 1ssn: 0163-5980.
por: 10.1145/173668 .168630. [Online]. Available: https :
//doi.org/10.1145/173668.168630.

P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and
A. Vahdat, “Pip: Detecting the unexpected in distributed systems”, in
Proceedings of the 3rd Conference on Networked Systems Design &amp;
Implementation - Volume 3, ser. NSDI’06, San Jose, CA: USENIX
Association, 2006, p. 9.

B. Miller, M. Callaghan, J. Cargille, et al., “The paradyn parallel perfor-
mance measurement tool”, Computer, vol. 28, no. 11, pp. 37-46, 1995.
por: 10.1109/2.471178.

T. Gschwind, K. Eshghi, P. Garg, and K. Wurster, “Webmon: A per-
formance profiler for web transactions”, in Proceedings Fourth IEEE
International Workshop on Advanced Issues of E-Commerce and Web-
Based Information Systems (WECWIS 2002), 2002, pp. 171-176. por:
10.1109/WECWIS.2002.1021256.

E. Thereska, B. Salmon, J. Strunk, et al., “Stardust: Tracking activity
in a distributed storage system”, in Proceedings of the Joint Interna-
tional Conference on Measurement and Modeling of Computer Systems,
ser. SIGMETRICS ’06/Performance ’06, Saint Malo, France: Associ-
ation for Computing Machinery, 2006, pp. 3—14, 1sBN: 1595933190.
por: 10.1145/1140277.1140280. [Online]. Available: https:
//doi.org/10.1145/1140277.1140280.

J. Kaldor, J. Mace, M. Bejda, et al., “Canopy: An end-to-end perfor-
mance tracing and analysis system”, in Proceedings of the 26th Sym-
posium on Operating Systems Principles, ser. SOSP ’17, Shanghai,
China: Association for Computing Machinery, 2017, pp. 34-50, 1sBN:


https://www.microsoft.com/en-us/research/publication/using-runtime-paths-for-macro-analysis/
https://www.microsoft.com/en-us/research/publication/using-runtime-paths-for-macro-analysis/
https://www.microsoft.com/en-us/research/publication/using-runtime-paths-for-macro-analysis/
https://doi.org/10.1109/NOMS.2014.6838348
https://doi.org/10.1109/NOMS.2014.6838348
https://doi.org/10.1145/173668.168630
https://doi.org/10.1145/173668.168630
https://doi.org/10.1145/173668.168630
https://doi.org/10.1109/2.471178
https://doi.org/10.1109/WECWIS.2002.1021256
https://doi.org/10.1145/1140277.1140280
https://doi.org/10.1145/1140277.1140280
https://doi.org/10.1145/1140277.1140280

48

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

BIBLIOGRAPHY

9781450350853. por: 10 .1145 /3132747 .3132749. [Online].
Available: https://doi.org/10.1145/3132747.3132749.

Apache SkyWalking, Apache SkyWalking, https://skywalking.
apache.org/, Online; Accessed April 14, 2021.

Zipkin, Zipkin, https://zipkin.io/, Online; Accessed April 14,
2021.

Jaeger, Sampling, https://www. jaegertracing.io/docs/
1.23/sampling/, Online; Accessed April 14, 2021.

P. Las-Casas, G. Papakerashvili, V. Anand, and J. Mace, “Sifter: Scalable
sampling for distributed traces, without feature engineering”, in Proceed-
ings of the ACM Symposium on Cloud Computing, ser. SOCC 19, Santa
Cruz, CA, USA: Association for Computing Machinery, 2019, pp. 312—
324, 1sBN: 9781450369732. por: 10.1145/3357223.3362736.
[Online]. Available: https://doi.org/10.1145/3357223.
3362736.

P. Las-Casas, J. Mace, D. Guedes, and R. Fonseca, “Weighted sampling
of execution traces: Capturing more needles and less hay”, in Proceed-
ings of the ACM Symposium on Cloud Computing, ser. SOCC 18, Carls-
bad, CA, USA: Association for Computing Machinery, 2018, pp. 326—
332, 1sBN: 9781450360111. por: 10.1145/3267809.3267841.
[Online]. Available: https://doi.org/10.1145/3267809.
3267841.

J. Mace and R. Fonseca, “Revisiting end-to-end trace comparison with
graph kernels”, 2013. [Online]. Available: https://cs .brown.
edu/~Jjcmace/papers/macel3revisiting.pdf.

Natasha Woods, OpenTracing joins the Cloud Native Computing Foun-
dation, https : / /www . cncf . io/blog /2016 /10/11/
opentracing— joins—the-cloud—-native—-computing-
foundation/, Online; Accessed April 14, 2021.

Pritam Shah and Morgan McLean, The value of OpenCensus, https:

/ /opensource .googleblog.com/2018/03/the-value-
of-opencensus.html, Online; Accessed April 14, 2021.

Ben Sigelman, A brief history of OpenTelemetry (So Far), https :
//www.cncf.io/blog/2019/05/21/a-brief-history-
of-opentelemetry—-so-far/, Online; Accessed April 14, 2021.


https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3132747.3132749
https://skywalking.apache.org/
https://skywalking.apache.org/
https://zipkin.io/
https://www.jaegertracing.io/docs/1.23/sampling/
https://www.jaegertracing.io/docs/1.23/sampling/
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/3267809.3267841
https://doi.org/10.1145/3267809.3267841
https://doi.org/10.1145/3267809.3267841
https://cs.brown.edu/~jcmace/papers/mace13revisiting.pdf
https://cs.brown.edu/~jcmace/papers/mace13revisiting.pdf
https://www.cncf.io/blog/2016/10/11/opentracing-joins-the-cloud-native-computing-foundation/
https://www.cncf.io/blog/2016/10/11/opentracing-joins-the-cloud-native-computing-foundation/
https://www.cncf.io/blog/2016/10/11/opentracing-joins-the-cloud-native-computing-foundation/
https://opensource.googleblog.com/2018/03/the-value-of-opencensus.html
https://opensource.googleblog.com/2018/03/the-value-of-opencensus.html
https://opensource.googleblog.com/2018/03/the-value-of-opencensus.html
https://www.cncf.io/blog/2019/05/21/a-brief-history-of-opentelemetry-so-far/
https://www.cncf.io/blog/2019/05/21/a-brief-history-of-opentelemetry-so-far/
https://www.cncf.io/blog/2019/05/21/a-brief-history-of-opentelemetry-so-far/

BIBLIOGRAPHY 49

OpenTelemetry, OpenTelemetry: An observability framework for cloud-
native software, https : / / opentelemetry . io/, Online; Ac-
cessed April 14, 2021.

——, OpenTelemetry Specification,https://github.com/open-
telemetry/opentelemetry - specification, Online; Ac-
cessed April 14, 2021.

B. Burns, Designing Distributed Systems: Patterns and Paradigms
for Scalable, Reliable Services, 1st. O’Reilly Media, Inc., 2018, 1sBN:
1491983647.

Spring, Spring Cloud Sleuth, https://spring.io/projects/
spring-cloud-sleuth, Online; Accessed April 14, 2021.

Flink, Apache Flink ™ — Stateful Computations over Data Streams,
https://flink . apache . org/, Online; Accessed April 14,
2021.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K.
Tzoumas, “Apache flink™: Stream and batch processing in a single
engine”, IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28-38, 2015. [Online].
Available: http://sites.computer.org/debull/Al5dec/
p28.pdf.

T. Akidau, S. Chernyak, and R. Lax, Streaming Systems: The What,
Where, When, and How of Large-Scale Data Processing, 1st. O’Reilly
Media, Inc., 2018, 1sBN: 1492034142.

T. Akidau, E. Begoli, S. Chernyak, et al., “Watermarks in stream pro-
cessing systems: Semantics and comparative analysis of apache flink and
google cloud dataflow”, Proc. VLDB Endow., vol. 14, no. 12, pp. 3135—
3147, Jul. 2021, 1ssn: 2150-8097. por: 10 . 14778 / 3476311 .
3476389. [Online]. Available: https://doi.org/10.14778/
3476311.3476389.

J. Kreps, N. Narkhede, and J. Rao, “Kafka : A distributed messaging sys-
tem for log processing”, 2011. [Online]. Available: http://notes.
stephenholiday.com/Kafka.pdf.

P. Dobbelaere and K. S. Esmaili, “Kafka versus rabbitmq: A comparative
study of two industry reference publish/subscribe implementations: In-
dustry paper”, in Proceedings of the 11th ACM International Conference
on Distributed and Event-Based Systems, ser. DEBS *17, Barcelona,
Spain: Association for Computing Machinery, 2017, pp. 227-238, 1sBN:


https://opentelemetry.io/
https://github.com/open-telemetry/opentelemetry-specification
https://github.com/open-telemetry/opentelemetry-specification
https://spring.io/projects/spring-cloud-sleuth
https://spring.io/projects/spring-cloud-sleuth
https://flink.apache.org/
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.14778/3476311.3476389
https://doi.org/10.14778/3476311.3476389
https://doi.org/10.14778/3476311.3476389
https://doi.org/10.14778/3476311.3476389
http://notes.stephenholiday.com/Kafka.pdf
http://notes.stephenholiday.com/Kafka.pdf

50 BIBLIOGRAPHY

9781450350655. por: 10 . 1145 /3093742 .3093908. [Online].
Available: https://doi.org/10.1145/3093742.3093908.


https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1145/3093742.3093908

TRITA-EECS-EX-2021:820




	1 Introduction
	1.1 Motivation
	1.2 Goals and Objectives
	1.3 Research Questions
	1.4 Benefits, Ethics and Sustainability
	1.5 Methodology
	1.6 Stakeholders
	1.7 Delimitations
	1.8 Outline

	2 Background and Related Work
	2.1 Virtual Machines and Containers
	2.2 Container Orchestration
	2.3 Monitoring and Observability
	2.4 Distributed Tracing
	2.4.1 Components of a Trace
	2.4.2 Request Correlation
	2.4.3 Causality Preservation
	2.4.4 Clock Skew Adjustment
	2.4.5 Sampling

	2.5 Evolution of Distributed Tracing
	2.6 OpenTracing and OpenCensus
	2.7 OpenTelemetry
	2.7.1 OpenTelemetry Collector

	2.8 Sampling Types
	2.8.1 Head-based Sampling
	2.8.2 Tail-based Sampling


	3 Design and Methodology
	3.1 Ericsson Security Manager
	3.2 Operational Requirements
	3.2.1 Stream Processing
	3.2.2 Flink and Kafka

	3.3 Deployment Model
	3.3.1 Dataflow Model

	3.4 Algorithm
	3.5 Feature Selection

	4 Evaluation
	4.1 Overhead of Tracing on ESM
	4.2 Memory Requirements
	4.2.1 Memory Consumption of OpenTelemetry Collector
	4.2.2 Memory Consumption of Flink Cluster

	4.3 Comparison

	5 Discussion and Future Work
	5.1 Overhead of Tracing on ESM
	5.2 Capturing Insightful Traces
	5.3 Benefits over OpenTelemetry Tail-based Sampling Processor
	5.4 Compatibility
	5.5 Future Work

	6 Conclusion
	Bibliography

