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Abstract

Set-pieces such as free-kicks and corners have been thoroughly examined in studies

related to football analytics in recent years. However, little focus has been put on the

most frequently occurring set-piece: the throw-in. This project aims to investigate how

football teams can optimize their throw-in tactics in order to improve the chance of

taking a successful throw-in. Two different definitions of what constitutes a successful

throw-in are considered, firstly if the ball is kept in possession and secondly if a

goal chance is created after the throw-in. The analysis is conducted using logistic

regression, as this model comes with high interpretability, making it easier for players

and coaches to gain direct insights from the results. A substantial focus is put on the

investigation of the logistic regression assumptions, with the greatest emphasis being

put on the linearity assumption. The results suggest that long throws directed towards

the opposition’s goal are themost effective for creating goal-scoring opportunities from

throw-ins taken in the attacking third of the pitch. However, if the throw-in is taken

in the middle or defensive regions of the pitch, the results interestingly indicate that

throwing the ball backwards leads to increased chance of scoring. When it comes to

retaining the ball possession, the results suggest that throwing the ball backwards is an

effective strategy regardless of the pitch position. Moreover, the project outlines how

feature transformations can be used to improve the fitting of the logistic regression

model. However, it turns out that the most significant improvement in accuracy

of logistic regression occurs when incorporating additional relevant features into

the model. In such case, the logistic regression model achieves a predictive power

comparable to more advanced machine learning methods.

Keywords

Set-piece, throw-in, football analytics, optimal strategy, logistic regression, model

assumptions, feature importance, feature transformations, gradient boosting.

ii



Sammanfattning

Titel: Identifiering av optimal inkaststrategi i fotboll med logistisk regression

Fasta situationer såsom frisparkar och hörnor har varit välstuderade i studier rörande

fotbollsanalys de senaste åren. Lite fokus har emellertid lagts på den vanligast

förekommande fasta situationen: inkastet. Detta projekt syftar till att undersöka

hur fotbollslag kan optimera sin inkasttaktik för att förbättra möjligheterna till att

genomföra ett lyckat inkast. Två olika definitioner av vad som utgör ett lyckat

inkast beaktas, dels om bollinnehavet behålls och dels om en målchans skapas efter

inkastet. Analysen görs med logistisk regression eftersom denna modell har hög

tolkningsbarhet, vilket gör det lättare för spelare och tränare att få direkta insikter från

resultaten. Stort fokus läggs på undersökning av de logistiska regressionsantagandena,

där störst vikt läggs på antagandet gällande linjäritet. Resultaten tyder på att långa

inkast riktade mot motståndarnas mål är de mest gynnsamma för att skapa en

målchans från inkast tagna i den offensiva tredjedelen av planen. Om inkastet istället

tas från de mellersta eller defensiva delarna av planen tyder resultaten intressant nog

på att inkast riktade bakåt leder till ökad chans till att göramål. När det kommer till att

behålla bollinnehavet visar resultaten att kast bakåt är en gynnsam strategi, oavsett var

på planen inkasten tas ifrån. Vidare visar projektet hur variabeltransformationer kan

användas för att förbättra modellanpassningen för logistisk regression. Det visar sig

dock att den tydligaste förbättringen fås då fler relevanta variabler läggs till i modellen.

I sådant fall, får logistisk regression en prediktiv förmåga som är jämförbar med mer

avancerade maskininlärningsmetoder.

Nyckelord

Fasta situationer, inkast, fotbollsanalys, optimal strategi, logistisk regression,

modellantaganden, variabelvikt, variabeltransformationer, gradient boosting.
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Chapter 1

Introduction

1.1 Relevance

Set-pieces, such as free-kicks, corners, and penalties, play a crucial role in football

games, offering valuable opportunities for teams to score. In fact, prior studies have

demonstrated that set-pieces account for approximately 35% of all goals scored [26]

and as a result teams have put great emphasis on preparation and practice of corners,

free-kicks and penalties [20]. These set-pieces have also been the focus of recent

research in this area. For instance, in a paper by Shaw and Gopaladesikan [19],

offensive and defensive strategies used by football teams during corner kick situations

were identified.

Less focus has been put on throw-ins, which is a set-piece awarded to a team when

the opponents play the ball over the touchline, either on the ground or in the air [22].

In the MLS, the top professional football league in US and Canada, an average of 44

throw-ins per game occurred during the 2015–2018 seasons [11], making throw-ins

more frequent than corner kicks, free kicks and goal kicks [20]. One of the reasons for

the lack of research in the area of throw-ins could be explained by few goals originating

directly from throw-ins. However, throw-ins could be seen as an opportunity for a team

to increase possession of the ball, which in turn has shown to affect a team’s chance of

scoring and winning football games [9].

Stone et al. [20] conducted a recent study investigating the relationship between

throw-ins and team performance, as well as the effect of the direction and length of

a throw-in on possession retention and shot creation. The study found that 54% of the

throw-ins led to retained possession during the 2018–2019 Premier League season. In

another study, McKinley [11] created a model to predict possession retention using a

1



CHAPTER 1. INTRODUCTION

gradient-boosted ensemble of decision trees. Apart from these investigations, there is

a lack of studies specifically focused on throw-ins, which justifies further exploration

of this aspect of football.

1.2 Goals

With the absence of extensive research on throw-ins, this project aims to further

investigatewhat factors contribute to a successful throw-in. In particular, the following

research question will be addressed in the project:

How can players and teams optimize their throw-in tactics to improve

their chances of success?

To answer this question, two different ways of defining success will be explored. The

first definition considers if the control of the ball, or ball possession, is kept by the

team taking the throw-in, while the second definition takes into account whether the

execution of the throw-in leads to the creation of a goal-scoring opportunity.

The results are aimed to be presented in such a way that football coaches and players

can gain direct insights from the findings. The main goal is not to achieve the

highest possible prediction accuracy but rather to understand which factors are the

most important for the throw-in being successful. This is a key reason for why this

project will primarily use logistic regression as this model comes with a high degree

of interpretability. The analysis will be conducted using event data and a crucial part

of the project will be to extract relevant features from the data set which have a high

impact on the throw-in outcome based on football intuition.

In addition to seeking insights about the optimal throw-in strategy, this thesis also

aims to explore the use of logistic regression and gain a more thorough understanding

of how the underlying assumptions can be examined. In particular, great emphasis

will be put on examining the linearity assumption before fitting a logistic regression

model. Furthermore, another objective is to compare the logistic regression model

with a more advanced machine learning method, with the purpose of gaining a deeper

understanding of the strengths and limitations of logistic regression.

1.3 Data

Thedatawill be taken from the 2022 seasonof the Swedish top tierAllsvenskan andwill

consist of event data from the data provider Wyscout. This data contains information

from the 240 games played during the Allsvenskan season. In total, the data set

2



CHAPTER 1. INTRODUCTION

contains approximately 420 000 events, with an average of 1 750 events per game.

Every event is categorized based on the type of action that an event corresponds to. The

most frequent event type in the data set is the pass, with around 207 000 instances.

Throw-ins are less common, with about 10 000 instances recorded throughout the

season, resulting in an average of 42 throw-ins per game.

Apart from the event type, the Wyscout event data also includes a large number of

other parameters which describe the events happening on the pitch, for example the

match minute, start and end coordinates of events, which team is having possession of

the ball and metrics which estimate the goal-scoring probability when a shot is taken.

Using these parameters, in particular the start and end coordinates of a throw-in, it

will be possible to create new features, such as the angle of the throw, which could

yield significant value for the models.

1.4 Project outline

The report is structured as follows. Chapter 2 provides the necessary mathematical

background for the project. It primarily focuses on the theory of logistic regression,

but also provides an overview of gradient boosting and relevant football terminology.

Chapter 3 outlines the project methodology, including the definition of features and

targets. Another important part of this chapter is the description of how the linearity

assumption of the logistic regression model is investigated. Chapter 4 presents the

project’s results, including the analysis of the linearity assumption, evaluation of the

logistic regression models, results of gradient boosting and an analysis of the throw-in

strategies among the teams in Allsvenskan 2022. The results are then analyzed and

discussed in Chapter 5, followed by a summary of the main conclusions of the project

in Chapter 6. Lastly, the report includes an appendix that contains additional results,

which will be occasionally referred to throughout the report.
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Chapter 2

Background

This chapter provides the mathematical foundation for the project. First, it describes

the mathematics behind logistic regression, including the assumptions made in the

model and how to interpret the model coefficients followed by a presentation of the

evaluation metrics which will be used to assess the accuracy of the model. These

sections aim to create a thorough understanding of the logistic regression model,

enabling the reader to understand the model’s potential and limitations. After this

detailed review of logistic regression, gradient boosting is briefly introduced, as it

will be used for comparison purposes later in the project. Finally, relevant football

terminology is described to ensure that the reader is familiar with the key football

concepts used throughout the thesis.

2.1 Logistic regression

Logistic regression is selected as the main model of this project because of its high

degree of interpretability. This aspect is essential in this project as the aim is to provide

teams, andmore specifically coaches and players, with insights on how throw-ins could

be taken in themost successful way. Understanding which aspects of the throw-in play

the most important role and how these factors affect the throw-in outcome is of high

importance and the high interpretability of logistic regression enables to identify these

factors. Moreover, logistic regression has shown to be a good choice of model when

dealing with small data sets [15], whichmakes it a suitable choice for this project.

2.1.1 The model

Logistic regression is a regression model which can be used for predicting a binary

output, denoted by yi ∈ {0, 1}. More specifically, given a number n of p dimensional

data points x = (xi)
n
i=1, where xi ∈ Rp, one is interested in finding P (yi = 1|xi) = πi.

4



CHAPTER 2. BACKGROUND

If the probability πi is greater than a predefined threshold value, the data point xi is

assigned to class 1 and otherwise it is assigned to class 0. This classification threshold

value is often set to 0.5.

In order to obtain a value between 0 and 1 for the probability πi, one can make use

of the logit function, also known as the log odds, which is defined as ln πi

1−πi
in the

current setting. Assuming that the logit transformation of πi is linear with respect to

the regression coefficients β the following model can be defined:

ln
(

πi

1− πi

)
= xT

i β (2.1)

Having defined this structure of the model, the probabilities π = (πi)
n
i=0 can be

expressed as follows:

π =
exp

(
xTβ

)
1 + exp (xTβ)

(2.2)

The coefficients β = (βi)
k
i=0 are learned using maximum likelihood estimation

(MLE). Taking the log-likelihood and assuming that the observations are independent

yields:

lnL(y,β) =
∑
i

ln πyi
i (1− πi)

1−yi =
∑
i

yi ln
πi

1− πi

+
∑
i

ln (1− πi) (2.3)

The MLE can then be obtained numerically via an optimization algorithm. In this

project, the Python package statsmodels is used for this purpose. By default, the

MLE in statsmodels is obtained through the iteratively reweighted least squares (IRLS)

algorithm. This optimization algorithm can handle non-linearities in the model by

iteratively reweighting a least squares problem based on the current estimates of the

model coefficients [5].

One can show that the estimation of the model coefficients in logistic regression β̂ is

an unbiased estimator, i.e. that it satisfies E[β̂] = β. In addition, it can be shown that

variance of β̂ is given by

Var[β̂] =
(
XTV X

)−1
(2.4)

where X contains the unique samples of the predictor variables and V is a diagonal

matrix which contains the estimated variance of each observation, i.e. the i-th diagonal

element of V is given by Vii = niπ̂i (1− π̂i) [13] where ni is the total number of samples

of the i-th observation and π̂i is the estimated probability that the i-th observation

5



CHAPTER 2. BACKGROUND

belongs to class 1.

2.1.2 Assumptions and how to verify

The inferences drawn from binary logistic regression rely on three main underlying

assumptions, including i) linearity in the logit for continuous variables, ii) absence of

perfect multicollinearity, and iii) independence of observations [8]. If at least one of

these assumptions is not met, the logistic regression model may produce misleading

results. Apart from the three main assumptions, some literature also specifies that

there should be no outliers, high leverage values or highly influential points [18]. This

requirement will be checked in this project by investigating if there exist any extreme

points in the data sets, which will be more discussed in the Method section. The

paragraphs below will describe the three main assumptions in more detail and discuss

tests that can be conducted to ensure that the assumptions are met.

The linearity assumption requires that every continuous regression variable is linear

with respect to the log odds of the predicted probabilities of the model. This

assumption is critical because the logistic regression model is based on a linear

relationship between the log-odds and the regressor variables, as shown in Equation

2.1. To test this assumption, an investigation of the relationship between the target and

every regressor has to be done before fitting a model, for example by plotting the log

odds for every regressor and then visually inspecting the relationship. This procedure

will be described in the Method section.

The absence of perfect multicollinearity implies that regressor variables are not

perfectly correlated to one another. To be more precise, it means that there

does not exist any linear relationship between the regressor variables. Including

regressor variables with strong linear dependencies, or correlation, could lead to

unstable results, meaning that the coefficients of the regression model could change

substantially if small changes in themodel or data aremade [12]. This can bemotivated

by considering Equation 2.4 where the matrix XTV X could become close to non-

invertible if there is strong multicollinearity among the regressors, resulting in high

variance for the estimated model coefficients β̂. Nevertheless, it is worth mentioning

that presence of multicollinearity does not affect the overall predictive power of the

model, but only the inferences made regarding individual regressor variables, such as

the variable importance [12].

To test formulticollinearity a first approach can be to calculate the correlation between

the features. However, this does not consider the correlation between a feature and a

set of other features. In order to handle this, it is common to use variance inflation

factor (VIF) analysis. The VIF is a measure that quantifies the increase in the variance

of a coefficient estimate due to multicollinearity among the regressor variables in a

6



CHAPTER 2. BACKGROUND

regression model. Typically, a VIF value greater than 10 is considered to indicate the

presence of strong multicollinearity [12]. If the VIF of the i-th regression coefficient

βi is 10, it implies that the variance of βi is 10 times higher than it would have been if

the i-th regressor variable had been linearly independent of the other regressors in the

model. However, as suggested in [14], caution should bemade regarding defining such

thresholds as it could vary in different contexts. For this reason, apart fromconsidering

the VIF values, the confidence intervals of the model coefficients will be examined to

determine to what extent multicollinearity is present in a model.

Lastly, the assumption regarding independent observations is related to themaximum

likelihood estimation of the coefficients, as could be seen fromEquation 2.3 and in this

project it will be assumed that the observations are independent. This is considered as

reasonable as throw-ins from all teams and over the entire season are analysed.

2.1.3 Interpreting model coefficients

Interpreting themodel coefficients of logistic regression is essential for using themodel

for inference. The interpretation of the coefficients can bemotivated by considering the

case when themodel has one regressor. If one denotes the log odds as η(xi) = ln π(xi)
1−π(xi)

where π(xi) is the probability that the regressor value xi belongs to class 1, the log odds

after coefficient estimation can be expressed as η̂ (xi) = β̂0+ β̂1xi based on the linearity

assumption according to Equation 2.1. Now, if the regressor variable value is increased

with one unit to xi + 1, the difference η̂ (xi + 1)− η̂ (xi) can be expressed as :

η̂ (xi + 1)− η̂ (xi) = β̂1

Rewriting the above in terms of log odds gives

η̂ (xi + 1)−η̂ (xi) = ln
π(xi + 1)

1− π(xi + 1)
−ln π(xi)

1− π(xi)
= ln

(
π(xi + 1)

1− π(xi + 1)
/

π(xi)

1− π(xi)

)
= β̂1

which provides an expression for the odds ratio

π(xi + 1)

1− π(xi + 1)
/

π(xi)

1− π(xi)
= eβ̂1 (2.5)

In this way, eβ̂1 represents the multiplicative change in odds of the regressor value

belonging to class 1 for a one unit increase in the corresponding predictor variable.

For example, if class 1 corresponds to a successful throw-in and if β̂1 is the estimated

coefficient for the predictor variable representing throwing length, then eβ̂1 represents

7



CHAPTER 2. BACKGROUND

the increase in odds of a successful throw-in for a one-meter increase in throwing

length, assuming that the length is the only regressor variable in the model.

For the case when having multiple regressors, i.e. for multiple logistic regression, the

interpretation of each coefficients is the same as for the case of one regressor, assuming

that the rest of the regressors are held constant [13].

2.1.4 Evaluating logistic regression

Evaluation Metrics in Binary Classification

Given that logistic regression is used for binary classification, there are four possible

outcomes of themodel given a classification threshold: true positive (TP), false positive

(FP), true negative (TN) and false negative (FN). For example, if predicting whether

a throw-in is successful, a positive outcome indicates that the throw-in is indeed

successful given a classification threshold, while a negative outcome corresponds to an

unsuccessful throw-in. A true outcome means that the model has correctly classified

the outcome of a throw-in, while a false outcome suggests that the classification is

incorrect.

With these four outcomes in mind, the following terms can be defined. The true

positive rate (TPR), or sensitivity, is the proportion of true positives out of all positives.

The true negative rate (TNR), or specificity, is the proportion of true negatives out of

all negatives. One can also define the false positive rate (FPR) which is the proportion

of false positives out of all negatives and the false negative rate (FNR), i.e. the

proportion of false negatives out of all positives. Together, TPR, TNR, FPR, and FNR

can provide a comprehensive evaluation of the performance of a classification model.

Note that these metrics can be of different importance in different situations, as for

example minimizing the FNR could be priority in medical applications. The metrics

are summarized with the following equations:

TPR =
TP

TP+ FN
TNR =

TN
TN+ FP

FPR =
FP

TN+ FP
FNR =

FN
TP+ FN

ROC curve

One way to evaluate the accuracy of a logistic regression model is by using a receiver

operating characteristic (ROC) curve. A ROC curve is created by plotting the TPR on

the y axis against the FPR on the x axis for a range of different classification thresholds

after which the points are connected to form a curve. By examining the ROC curve, it

is possible to obtain a measure of how well the model performs. A perfect model with

a perfectly defined classification threshold, i.e. resulting in a TPR and TNR of 100%,

8



CHAPTER 2. BACKGROUND

would generate a point in the upper left corner (x = 0, y = 1). Based on this, ROC

curves can be used to find the optimal classification threshold in terms of maximizing

the TPR and TNR, as a threshold of 0.5 is not always the most suitable choice in a

model. The optimal threshold corresponds to the point on the ROC curve that is the

closest to the upper-left corner.

ROC curves also include a diagonal line, ranging from (x = 0, y = 0) to (x = 1, y = 1)

which is called the line of equality or the random chance line. This line represents a

model where the classifications are made randomly and thus the closer a ROC curve

is to this line, the less accurate is the model. To quantify the goodness of a ROC

curve, one can use the area under curve (AUC), also known as the c-statistic. A perfect

classificationwould result in anAUCof 1while a value 0.5would suggest that themodel

is no better than a random prediction model [3].

Akaike information criterion (AIC)

The AIC is a statistical metric that allows for comparison betweenmodels and serves as

a suitable criterion for model selection. It takes into account both how well the model

fits to the data, as well as the model complexity measured in terms of the number of

used parameters and by doing so AIC punishes overly complex models. The objective

is to choose a model with the lowest AIC value, and in that way balancing the model’s

complexity and accuracy. Note that AIC is primarily used for models which have a

defined likelihood function and thus it may not be appropriate for many machine

learning models. The AIC is defined in the following way:

AIC = 2k − 2 ln(L)

where k is the number of parameters in the model and L is the maximum likelihood of

the model [4].

Log loss

Next, the idea behind the log loss is presented. Log loss, or cross entropy loss, is a

loss function which measures the difference between the predicted probabilities and

the true outcomes in a binary classification problem. A lower log loss score indicates

better model performance, with a value of 0 indicating perfect prediction accuracy,

while increasing values indicate increasingly worse performance. The log loss function

is defined as follows:

log loss = − [y log(p) + (1− y) log(1− p)]

9



CHAPTER 2. BACKGROUND

where y is the true binary outcome, 1 or 0, while p is the predicted probability of class

1. With this, the average log loss among all data samples can be expressed as:

average log loss =
1

n

n∑
i=1

− [yi log(pi) + (1− yi) log(1− pi)]

The log loss can be sensitive to outliers and class imbalance. However, unlike AIC,

log loss is not restricted to a specific class of models and can be used to compare the

performance of various families of models.

2.2 Gradient boosting

This section of the Background gives a brief explanation of the gradient boosting

algorithm, as thismodel will later be used for comparison purposes. Gradient boosting

is a powerful machine learning algorithm that can be used for both regression and

classification problems. The basic idea behind gradient boosting is to iteratively

combine many weak models, typically smaller decision trees, into a single strong

model, by learning from the incorrect predictions of the previous weak learner.

More specifically, the gradient boosting algorithm takes as inputs a training set

{(xi, yi)}ni=1 where n is the total number of data samples and a differentiable loss

function L(y, F (x)) where F (x) is the prediction of a weak learner and x = (xi)
n
i=0.

Additionally, the number M of weak learners used is also specified. The first step of

gradient boosting is to initialize the predictions F0(x) with a constant value. This is

done by choosing the constant γ which minimizes the sum of the loss functions across

all target values yi.

F0(x) = argmin
γ

n∑
i=1

L (yi, γ)

Having obtained an initial prediction F0(x), the second step of the algorithm is to

calculate the so-called pseudo residuals rim, wherem is the index of the current weak

learner, in the following way.

rim = −
[
∂L (yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, . . . , n

After calculating the pseudo residuals, which correspond to the negative gradient of

the loss function, a weak learner is trained on the data set {(xi, rim)}ni=1, producing

predictions denoted as hm(x). A natural step would be to now add these predictions of

the residuals to the previous prediction, which in the first step of the algorithm (m = 1)

10
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is F0(x). However, the predictions hm(x) are first multiplied by a multiplier γm which

is found by solving the following optimization problem, constituting step 3:

γm = argmin
γ

n∑
i=1

L (yi, Fm−1 (xi) + γhm (xi))

Finding γm nowmakes it possible to carry out step 4, which is to update the predictions

of the gradient boosting model, based on the previous prediction in the following

manner:

Fm(x) = Fm−1(x) + γmhm(x)

Having obtained the new predictions Fm(x), steps 2–4 of the algorithm are repeated

until the total numberM of the pre-specified weak learners have been trained, which

yields the final prediction FM(x).

One potential issue with the gradient boosting algorithm is overfitting, which can be

handled through several measures. A common approach is to use shrinkage, which

involves reducing the step size in the updating step by introducing a learning rate ν in

the following way:

Fm(x) = Fm−1(x) + νγmhm(x)

where ν takes a value between 0 and 1. The downside of introducing the learning

rate is that decreasing the learning rate requires more iterations to reach the optimum

solution, which increases the computational time of the gradient boosting algorithm.

Another way to reduce overfitting is to decrease the complexity of the weak learners,

which in the case of decision trees could be to reduce the maximum depth of each tree

or increasing the minimum number of data points required to split a node [1].

2.3 Football terminology

The following section provides a brief overview of the key football-related terms used

throughout the report.

Possession chain

Throughout this report, the term possession chain will be frequently used. In football,

a possession chain refers to a sequence of events where a team has control of the ball,

starting from the moment the team gains control until the ball is lost. If the team
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loses the ball, but recovers it immediately, the possession chain is not considered to be

broken [23].

Expected goals

In football, the expected goal metric (xG) is a commonly used measure to assess the

quality of a goal-scoring opportunity. This metric represents the probability that a

shot will result in a goal and it is calculated based on machine learning models using

historical data. For instance, if a shot has an xG value of 0.2, it means that a similar

shot historically resulted in a goal 20 % of the times.

The xG for all shots is provided in the Wyscout event data. Although the specific

machine learning model and the full description of the used features are not publicly

available, some of the parameters considered in the calculations of xG by Wyscout are

the shot location, shot type (foot or head), from where the ball was passed before the

shot was taken and whether the shot came from a set-piece or not [25]. To obtain

a better understanding of how xG varies across the pitch, an example of a heat map

representing the xG is visualized in Figure 2.3.1. The heat map is based on a basic xG

model developed by Sumpter et al. in the course Mathematical Modelling of Football

at Uppsala University [21]. It shows how the xG varies for different shot locations on

the pitch.

Figure 2.3.1: Heat map representing the xG for different shot locations on the pitch.

Pitch coordinates

The dimensions of a football pitch vary across different pitches, however the shape

has to be rectangular. The longer sides are named touchlines, while the shorter sides

are called goal lines and the recommended pitch dimensions by FIFA are 105 metres

x 68 metres [6]. These pitch dimensions will be referred to as the standard pitch

dimensions in this report. However, football data providers present pitch coordinates
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based on other systems. For example, Wyscout uses a coordinate system which

depends on the team currently having the possession of the ball. In this system, both

the x and y axis range from 0 to 100 and each coordinate is expressed in % of 100.

This way of defining the coordinates makes it easier to interpret a coordinate (x, y)

relative to the team having ball possession, as the goal of the teamwith ball possession

is always located at x = 0% while the opposition’s goal is always at x = 100% [24]. In

order to perform interpretable calculations based onWyscout pitch data, it is however

necessary to transform the coordinates. For example, to calculate the length of a pass

based on the start and end coordinates, the Wyscout pitch coordinates have to be

transformed to coordinates based on the standard pitch dimensions in order to obtain

an approximation of the pass length.
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Method

This chapter presents an overview of the method used in this project. First, the targets

and features are defined and explained. After this, a number of aspects of the data

pre-processing is presented. In the third section, the procedure of investigating the

linearity assumption is described. Lastly, the implementation of the gradient boosting

model is briefly explained.

3.1 Defining features and targets

As mentioned in the Introduction, the success of a throw-in depends on how success

is defined and in this project, two different definitions are considered. First, a throw-

in is considered as successful if the throwing team manages to maintain control, i.e.

possession, of the ball after the throw-in. To determine if the throwing team has

maintained possession, it is necessary to define for how long time the team must have

had control of the ball. This time is set to 7 seconds in this project, in the same way as

done by Stone et al. in [20]. Thus, if the throwing team retains possession for at least 7

seconds, the throw-in is considered as successful according to this first definition.

The second definition of a successful throw-in considers if the throw-in leads to a goal

chance opportunity. To determine this, the possession chain that follows the throw-in

is considered. If the throwing team creates a chance with an expected goal (xG) of at

least 3%, then the throw-in is considered as successful. This relatively low threshold is

chosen in order to capture more instances of successful throw-ins, as this definition of

success is practically relatively difficult to achieve.

With these two definitions of a successful throw-in, two corresponding target variables

are defined. The target retained is a binary variable that indicates whether possession

of the ball is retained 7 seconds after the throw-in. A value of 0 indicates that the

possession is lost, while a value of 1 indicates that the possession is kept. The second
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target chance_created is also a binary variable which indicates whether a goal-scoring

opportunity is created during the possession chain following a throw-in. A value of

0 indicates that no goal-scoring opportunity is created, while a value of 1 indicates

that a goal-scoring opportunity is created. The two targets are summarized in Table

3.1.1.

Table 3.1.1: Description of targets.

Target Description

retained Binary variable that indicates whether possession of the ball was

retained after the throw-in.

chance_created Binary variable that indicates whether a goal-scoring opportunity

was created after the throw-in.

In order to obtain a better understanding of how common it is to carry out a successful

throw-in according to the two definitions, the frequency of both success types is

presented in Table 3.1.2. From here, it is seen that it is relatively rare to create a goal-

scoring opportunity from a throw-in. Due to the lack of data of the positive instances

(1) of this target, it could be more challenging for the logistic regression model to

accurately predict the success of a throw-in based on this definition.

Table 3.1.2: The frequency of each definition of a successful throw-in out of 9861
throw-ins. Note that these numbers are obtained after conducting data pre-processing,
which is described in Section 3.2.

Success definition Number of

samples

Share of total

Possession retained after 7 seconds 6502 65.9%

xG> 0.03 created in same possession chain 462 4.7%

Having provided the twodefinitions of a successful throw-in and the targets used in this

project, the focus next turns to defining the features used in the models of this project.

Four of these features can be seen as fundamental and these are named start_x_adj,

angle, length and time_since_last. The feature start_x_adj is the start x position of

the throw-in along the touchline, based on the standard pitch dimensions, as displayed

in Figure 3.1.1. A value of 0 indicates the start of the pitch relative to the attacking team,

while a value of 105 refers to the end of the pitch relative to the attacking team. The

ending “adj ” refers to the fact that the pitch length has been transformed from the

original length of 100 in the Wyscout coordinate system to 105 meters.

Next, the feature angle is defined as the angle in radians between the throwing

direction and the attacking direction and is denoted as α in Figure 3.1.1. An angle of 0

15



CHAPTER 3. METHOD

represent a throw straight up the pitch towards the opposition’s zone, while an angle

of π represent a throw straight down the pitch towards the player’s own zone. Note

that this angle is calculated based on the transformed start and end coordinates of the

throw-in. The length of the throw-in in meters is simply named length and it is also

calculated based on the start and end location of the throw-in, using the transformed

coordinates. Finally, time_since_last reflects how fast the throw-in is being taken, i.e.

the time in seconds since the ball went out of the pitch before a throw-in. It is calculated

as the time difference between the game interruption caused by the ball going out of

the touchline and the moment when the ball is thrown.

Figure 3.1.1: Scheme showing coordinate system of pitch with standard dimensions
and definition of two different throwing angles.

In order to obtain a better understanding of these four fundamental features, the

frequencies are plotted in histograms as shown in Figure 3.1.2.

Figure 3.1.2: Histogram showing distribution of four event data features. The units
of the four subplots are: meters, radians, meters and seconds respectively. Note that
these histograms are obtained after conducting data pre-processing, which is described
in Section 3.2.

Based on these fundamental features, together with the start y coordinate and end x
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and y coordinates of the throw-in, most of the other features are defined. For example,

distance_to_goal measures the distance from the end location of the throw-in to the

center of the opposition’s goal. Apart from this distance, it can also be relevant to

measure how much closer to the opposition’s goal the ball is after the throw-in. This

difference in distance is represented by distance_to_goal_diff and it is calculated by

taking the difference between the distance to the center of the opposition’s goal at the

end and start location of the throw-in. A positive value of this variable indicates that

the ball has been thrown towards the opposition’s goal, while a negative value indicates

that the ball has been thrown away from the opposition’s goal.

A similar feature is x_diff whichmeasures the relative change in x coordinate between

the end and start position of the throw-in. A positive value means that the ball has

been thrown in the attacking direction, while a negative value indicates that the ball

has been thrown in the direction of the throwing team’s own goal. Another feature

related to distance is distance_to_middle which measures the distance from the start

x position of the throw-in to the middle x coordinate of the pitch.

Furthermore, another feature that is investigated is named angle_throw_goal and it is

the angle in radians between the throwing direction and the line from the start location

of the throw-in towards the center of the opposition’s goal. An angle of 0 represents

a throw straight towards the center of the opposition’s goal. This angle is referred as

β in order to differentiate from angle which is denoted as α and is also illustrated in

Figure 3.1.1.

All of the above described features are summarized in Table 3.1.3. Using these features,

it is then possible to create feature interactions and feature transformations. Feature

interactions are created by for example multiplying two feature with each other, while

feature transformations involve applying a function on a feature, such as taking a

feature to the power of two. Relevant feature interactions and feature transformations

will be presented in the Results section of this report.

3.2 Target exceptions and removal of data

points

The data fromWyscout includes the duration of each possession chain, which is highly

relevant when defining one of the target variables, namely the one which indicates if

the possession was kept after a throw-in. As previously mentioned, the possession will

be considered as kept if the throwing team still has possession of the ball 7 seconds

after the throw-in. However, there could be situations when it is natural to classify

the possession as being kept, even though the length of the possession chain is less

than 7 seconds. Thus, a couple of exceptions related to the definition of possession
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Table 3.1.3: Explanation of features described in the Method section.

Feature Description
angle (α) angle in radians between the throwing direction and the

attacking direction.
angle_throw_goal
(β)

angle in radians between the throwing direction and the line
towards the center of the opposition’s goal.

distance_to_goal distance in meters from the end location of the throw to the
center of the opposition’s goal.

distance_to_goal_diff indicates how much closer or further the ball is from the
center of the opposition’s goal after a throw-in.

distance_to_middle the distance between the start x position of the throw-in and
the middle x coordinate of the pitch.

length length of the throw-in in meters.
start_x_adj the start x position of the throw-in along the length of the

pitch.
time_since_last time in seconds since the ball went out of game before a

throw-in.
x_diff difference in x coordinates of the end location of the throw-

in and the start position of the throw-in.

retention are specified. If a possession chain is shorter than 7 seconds, but ends by an

infraction, i.e. a violation of the game rules, by the opposition team, the ball possession

after the throw-in is considered as kept by the team taking the throw-in. Another

introduced exception is if a possession chain is shorter than 7 seconds and ends with

an event tagged as interruption but the next possession chain starts with the throwing

team having possession, the throw-in is regarded as successful in regards to keeping

possession. Also, if the team taking the throw-in scores within 7 seconds after the

throw-in, the possession is considered as retained as well.

Continuing with the outlier removal, the following actions are taken. For the feature

length, all samples with a length outside of the interval 0.1–60 m are removed. This

is motivated by throw-ins being longer than 60 m are unrealistic since this is the

world record for the longest throw-in in football [7]. Throw-ins shorter than 0.1 m

are also considered as unrealistic and by removing these samples singularity issues are

avoided.

For the variable time_since_last, samples having a value larger than 60 seconds are

removed. This is since this time would most probably be due to an interruption of the

game such as an injury, which in turn could then affect the execution of the succeeding

throw-in. The starting x positions and the angles are all between 0–105 and 0–π

respectively and thus no outliers are identified within these features. Also, throw-ins

which have the event fair_play in the same possession chain are removed. For these

throw-ins, it is probable that the throwing team hands the ball over to the opposition
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after the throw-in as a gesture of fair-play and these throw-ins are not considered in

the analysis.

3.3 Investigating feature target relationship

In order to check whether the linearity assumption of logistic regression is fullfilled,

it is highly helpful to investigate the relationship between every feature and the target

before fitting a model. If the relationship in the logit scale turns out to be non-linear,

relevant feature transformations can be explored. The analysis of the regressor feature

dependence is conducted using a procedure presented by Marin [10]. This procedure

is visualized in Figure 3.3.1 and is described below.

(a) (b) (c)

Figure 3.3.1: Scheme of procedure for investigating feature and target relationship. In
(a) the binary target values are plotted for all regressor values and the regressor values
are divided into five bins based on percentiles. In (b) the share of successful throw-ins
(class 1) is plotted for every bin. Finally, in (c) the log odds are plotted and the obtained
relationship approximates to what extent the linearity assumption is fulfilled.

In this example, which has the purpose of explaining the procedure of this method,

the effect of the throwing angle α has been analysed in relation to the ball retention

based on 500 throw-ins. When choosing a feature for a binary class problem, one

wants the two classes (0 and 1) to be clearly distinguishable by the feature. Looking at

Figure 3.3.1a, it is seen that high angle values imply a higher rate of successful throw-

ins (having class 1), while smaller throwing angles tend to lead to more unsuccessful

throw-ins (having class 0). This indicates that the angle could be a useful feature in a

logistic regression model, however it is at this point hard to say if the relationship is

linear in the logit scale. The first step of the feature investigation is thus to divide the

feature values into five bins, determined by the 20th, 40th, 60th and80th percentile, as

seen in subfigure (a). Then, for the data points in every bin, the fraction, or probability

p, of points classified with target 1 is calculated. In subfigure (b), these probabilities

have been plotted against the median feature value of every bin. The red curve in (b)

intends to illustrate that themedian values and the retention probabilities could have a
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relationship that reminds of the shape of a sigmoid. Now, if the data is in fact linear in

the logit scale, applying the logit function to the retention probabilities, i.e. log p
1−p

,

should result in a linear relationship. This is investigated by plotting the log odds

against the median values of every bin, as shown in subfigure (c). From this figure,

it is seen that the relationship is not completely linear. Thus this suggests that it could

be suitable to apply a transformation on the angle, in order to better fulfill the linearity

assumption.

Thus this procedure serves as an approximate method to investigate if the features

are linear to the target in the logit scale, which is one of the assumptions of logistic

regression as previously stated. The plots corresponding to subfigure (c) will hereafter

be referred to as logit plots and such plotswill be presented in theResults section. If the

logit plots show a non-linear relationship, feature transformations can be investigated

in order to create a linear relationship. Using thismethod, relevant features and feature

transformations are found.

3.4 Training a gradient boosting model

In order to compare the predictive power of the logistic regression model to a more

advanced method, a gradient boosting classifier is trained. Separate hyperparameter

optimization is conducted for each of the targets, retained and chance_created. The

hyperparameter optimization is based on the four fundamental features shown in

Figure 3.1.2. The log loss is chosen as the loss function in the gradient boosting

algorithm and different parameter options are compared in regards to AUC using grid

search [17]. The considered parameters are the number of learners (n_estimators),

the learning rate (learning_rate), the minimum number of data samples in the leaf

nodes (min_samples_leaf ) and the maximum depth of every tree (max_depth).

The optimization is started by finding a suitable combination of n_estimators

and learning_rate while keeping the parameters min_sample_leaf and max_depth

constant at 10 and 3 respectively. The learning rate is set to 0.05 after which

n_estimators is varied, with values ranging from 20 to 100 with increments of 10.

Having obtained a first rough optimum of n_estimators, the grid is refined around

the optimum with increments of 5 in order to further improve the optimization.

After finding an optimized combination of n_estimators and learning_rate, the tree-

specific hyperparameters are optimized by considering min_samples_leaf in the

range 10 to 60, with increments of 10 and max_depth in the range 2 to 6 with

increments of 1. All combinations of these two parameters are evaluated using grid

search. After finding a rough optimum, the grid for min_samples_leaf is further

refined with increments of 5.

20



CHAPTER 3. METHOD

Using this procedure, the hyperparameters for the possession retention model are

set to: learning_rate = 0.05, n_estimators = 70, min_samples_leaf = 55 and

max_depth = 4. For the chance creation model, the following choices are made:

learning_rate = 0.05, n_estimators = 40,min_samples_leaf = 40 andmax_depth =

2. The rest of the hyperparameters are kept to the default values, according scikit

learn’s implementation (version 1.2.0) of the gradient boosting classifier [16].
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Results

This section presents the results of the project in five parts. Firstly, relevant

features are investigated in terms of their variability, linearity and different feature

transformation are explored. Secondly, the results of the models used to predict

possession retention are presented, which includes a comparison of different

feature collections, visualization of the results, feature importance analysis and an

investigation of the multicollinearity assumption. Thirdly, the corresponding results

are presented for the model used to predict goal chance creation. In the fourth part,

the results of the gradient boosting method are presented and lastly, an investigation

regarding the throw-in strategies of the Allsvenskan teams is presented.

4.1 Feature and feature transformation

analysis

In this section, an investigation of how the target variables depend on the features is

presented and relevant transformations are outlined. The investigation is first based

on the target retained, and then on chance_created. Note that only a selection of

the regressors and transformations is presented. A supplementary presentation of the

feature analysis is given by Figures B.0.1 and B.0.2 in the Appendix.

Before presenting the logit plots of the different features, the considered feature

transformations and interactions are presented and the naming convention is

explained. Starting with the feature transformations, these mostly include squaring,

cubing, taking exponential with various bases and the natural logarithm of a feature.

The naming convention is made in the following way: if a feature is squared or cubed,

the endings _squared and _cubed respectively are added to the feature name. When

applying an exponential function on a feature, the ending _exp is added followed by

the value of the base of the exponential unless the base is e in which case only _exp is
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added. For example, if applying an exponential transformation with base 0.2 on the

angle α, i.e. 0.2α, the transformed feature is named angle_exp_0_2. Moreover, when

applying the natural logarithm on a feature, the ending _log is added.

The feature interactions are created by multiplying two different features. In this case,

both names are added to the new feature name, separated by an underscore. For

example, the feature which is obtained by multiplying the feature angle with length

is given the name angle_length.

With these naming conversions in mind, it should be possible for the reader to

understand the names of the features. However, a complete description of the feature

transformations and interactions is given by Table A.0.1 in the Appendix.

4.1.1 Possession retention model

Firstly, an investigation of the dependence between the possession retention and the

angle α of the throw-in, as well as various transformations, is presented as shown in

Figure 4.1.1.

Figure 4.1.1: Dependence between the log odds of the retention rate and the angle α,
together with relevant transformations. The red line is a linear fit of the five log odds
values.

The leftmost subfigure of Figure 4.1.1 shows that the log odds of retaining the ball after

a throw-in increase noticeably when the throwing angle α is increased, indicating that

throwing the ballmore backwards leads to higher retention rates. The increase appears

to be gradual for smaller angles, but becomes more prominent as the angle increases.

This suggests that the relationship between the throwing angle and the retention rate

is not linear, as one can see from the difference between the blue and the red line in

the leftmost subfigure, where the red line is the linear fit of the points. To explore this

further, three additional transformations, namely the angle raised to the power of two

and three aswell as the the exponential of the angle are presented in Figure 4.1.1 aswell.

These transformations result in a more linear relationship indicating that they could

be useful options when selecting features for the model. In particular, the features

angle_cubed and angle_exp result in themost linear dependencies, whichmake these

transformations particularly interesting.

The feature analysis is continued by investigating how the start x position of the throw-

in affects the retention rate, as presented in Figure 4.1.2.
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Figure 4.1.2: Dependence between the log odds of the retention rate and start_x_adj
as well as distance_to_middle.

The left subfigure of Figure 4.1.2 shows that the start x position of the throw-in seems

to have an impact on the retention rate, even though this impact is smaller compared

to the impact of the angle, as shown in Figure 4.1.1. This is seen as the variation

in the log odds is smaller for start_x_adj compared to angle. Furthermore, the

retention rates are the highest when the ball is thrown from the middle region of

the pitch, and decreases as the throw-in is taken closer to one of the goals. This

suggests that the relationship between the start x position of the throw-in and the

retention rate is not linear. Based on this, start_x_adj is transformed such that the

distance from the middle of the pitch is measured instead, represented by the feature

distance_middle, resulting in a more linear relationship, as seen in the right subfigure

of Figure 4.1.2.

The feature analysis is continued by examining the effect of the feature distance_ to_

goal_diff, as shown in Figure 4.1.3.

Figure 4.1.3: Dependence between the log odds of the retention rate and
distance_to_goal_diff and relevant transformations.

Figure 4.1.3 shows that that distance_to_goal_diff seems to be a feature with a high

impact on the retention rate, as the variation in log odds is relatively large between

low and high values of the regressor. One can see that the variation in log odds is

higher for distance_to_goal_diff than for angle, shown in Figure 4.1.1. Taking a

closer look at the dependence it can be noticed that the retention rate is relatively

low for small values of distance_to_goal_diff, and then increases substantially for

higher values. This indicates that it is easier to retain the ball when throwing

away from the opposition’s goal. The relationship between the log odds of retaining

the ball and distance_to_goal_diff appears to be exponential and thus exponential

transformations are considered. First, an exponential transformation with base e is

considered, denoted by the feature distance_to_goal_diff_exp which results in the

logit plot shown in the middle subfigure of Figure 4.1.3. With this transformation
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a higher degree of linearity seems to be achieved. However, it is noticed that this

transformation could be too aggressive, as the first four points appear to end up in

the same x value. Thus, an exponential with a slower growth rate is considered as

well, by decreasing the value of the base of the exponential from e to 1.1. Applying the

transform 1.1distance_to_goal_diff results in the rightmost logit plot. This transformation

seem to result in a linear dependence without squeezing points too much.

As mentioned above, a supplementary overview of the dependence between the

retention rate and the considered features and feature transformations is given in the

Appendix.

4.1.2 Goal chance creation model

Next, the relationship between a number of features and the log odds the goal

opportunity creation rate is presented. Note that since a goal-scoring opportunity is

a rarely occurring event, the log odds values are lower compared to the log odds of the

possession retention.

To start with, the effect of the throwing angle α is considered.

Figure 4.1.4: Dependence between the log odds of the goal chance creation rate and
the angle α as well as an exponential transform.

Figure 4.1.4 shows that the goal-scoring opportunity rate seems to be highly dependent

on the throwing angle α, relative to other features, presented in Appendix B. The

increase is significant for smaller values of the angle and then attenuates for larger

values. For this reason, a function which also attenuates for increased values of the

independent variable could be relevant to use for the feature transformation in this

situation. A reasonable transform to consider would be taking the logarithm of the

angle since the log function satisfies the desired behaviour, however since a number

of angles take a value of 0, this transformation is not feasible. Another class of

functions with the desired property are exponential functions with a base smaller than

1. After having investigated different bases, a base value of 0.2 is considered as the

exponential 0.2α has a suitable decline rate. More specifically, since the values of the

angle span from 0 to 3.14 (π), one wish to choose a base of the exponential for which

the attenuation is reached for these values and this is rather satisfied by the base 0.2.

The result of the transform is presented in the right subfigure of Figure 4.1.4 and shows

that the relationship is more linear.
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Next, the effect of the start x position of the throw-in in relation to goal chance creation

is investigated, as shown in Figure 4.1.5.

Figure 4.1.5: Dependence between the log odds of the goal chance creation rate and
the start x position of the throw-in and a quadratic and cubic transformation.

Figure 4.1.5 illustrates that the log odds of creating a goal chance increase when the

start x position is increased. One can note that the increase is more prominent for

larger values of the regressor. Thus a transformation, taking start_x_adj to the power

of 2 and 3 is considered. After the transformation the dependence appears to be more

more linear, especially for start_x_adj_cubed as seen in the right subfigure of Figure

4.1.5.

Figure 4.1.6: Dependence between the log odds of the goal chance creation rate and
distance_to_goal and a logarithmic transformation.

Next, the effect of the distance between the end location of the throw-in and

the center of the opposition’s goal is analysed, as shown in Figure 4.1.6. The

dependence appears to be decaying, meaning that increasing the distance_to_goal

from an already high value has lower effect on the goal chance creation than

increasing distance_to_goal from low values. Thus a transformation by taking the

natural logarithm of distance_to_goal is considered. The dependence after the

transformation, presented in the right subfigure, results in a more linear relationship

even though there is an increase in log odds for the highest values.

More features and transformations related to goal chance creationwere investigated in

a similar way as described above, and the rest of the results can be found in Appendix

B.

4.2 Model analysis

Based on the feature and transformation analysis, presented in the section above,

a number of models with different properties were created. The results of these
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models are first shown when predicting possession retention and then for goal chance

creation.

4.2.1 Possession retention model

Model comparison

In order to predict possession retention, five models with different properties were

constructed. The models and the included features are presented in Table 4.2.1

below.

Table 4.2.1: Possession retention models

Model name Included features

Basic Model start_x_adj, angle, length, time_since_last

Basic Model

Transformed

distance_to_middle, angle, length, time_since_last

Full Model start_x_adj, angle, length, time_since_last, distance_to_goal,

distance_to_goal_diff, x_diff, angle_start_x, angle_length,

length_start_x

Full Model

Transformed

distance_to_to_middle, angle_cubed, length, time_since_last,

distance_to_goal_log, distance_to_goal_diff, x_diff,

angle_start_x, angle_length, length_start_x

Full Model

Transformed &

Non-Correlated

distance_to_middle, time_since_last, distance_to_goal,

distance_to_goal_diff, angle_length

The Basic Model refers to the model that includes the fundamental features that

describe the basic characteristics of a throw-in and serves as a benchmark for

evaluating the performance ofmore complexmodels. TheBasicModel Transformed is

the model obtained when replacing features in the Basic Model with transformations,

however only if the replacement results in better model fitting in terms of AIC. The

Full Model includes those features which are considered to best describe the retention

rate after a throw-in. The feature selection process for this model is conducted by

starting with all relevant features and then iteratively removing the feature which

results in the largest decrease in AIC, until no improvement in AIC is achieved. The

Full Model Transformed replaces those features in Full Model with the transformed

versions that result in higher accuracy. Finally, the Full Model Transformed & Non-

Correlated includes a set of features from the Full Model Transformed that exhibit no

strong correlation with each other. This is determined by considering the correlation

coefficients and VIFs for the included features, as will be shown further below. All of
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the above mentionedmodels were evaluated in regards to three metrics: the AIC, AUC

and the log loss and the results are presented in Table 4.2.2.

Table 4.2.2: Accuracy of various logistic regression models predicting possession
retention. Note that the AIC is based on the entire data set, while AUC and log loss
were calculated on a test set comprising 25% of the data.

Model AIC AUC Log loss

Basic Model 10875 0.737 0.554

Basic Model Transformed 10866 0.742 0.551

Full Model 10429 0.770 0.529

Full Model Transformed 10423 0.770 0.528

Full Model Transformed & Non-Correlated 10528 0.764 0.534

Starting with the comparison of Basic Model and Basic Model Transformed,

one can see that the transformed model results in better accuracy based on all

three metrics. Note, however, that the improvement originated only from the

transformation of start_x_adj to distance_to_middle, as one can deduce from Table

4.2.1. Transforming angle to angle_squared, angle_cubed or angle_exp did not result

inmodel improvement in this case, as one could have anticipated based on Figure 4.1.1

above. The AIC for the various transformations can be found in Table C.0.1 in the

Appendix.

Including all relevant features, comprising the Full Model, results in a significant

improvement in all three metrics. Next, the Full Model Transformed results in a slight

decrease in AIC, which mostly originates from the replacement of distance_to_goal

with distance_to_goal_log. Replacing angle with angle_cubed results in a minor

AIC improvement, while introducing the transformation distance_to_middle instead

of start_x_adj leads to a negligible change in AIC. Nevertheless, distance_to_middle

is kept in themodel as this is considered to be amore reasonable feature for measuring

the position along the touchline based on logit plot presented in Figure 4.1.2. All

other transformations resulted in an increase in AIC and are thus not included

in the Full Model Transformed. For example, the exponential transformations

distance_to_goal_diff_exp and distance_to_goal_diff_exp_1_1 turned out to be

particularly poor as these transformation resulted in a substantial increase in AIC.

Once again, for details regarding the change in AIC after introducing the various

feature transformation, the reader is referred to Table C.0.1 in the Appendix.

Finally, introducing the model without highly correlated features (Full Model

Transformed & Non-Correlated) results in a decrease in model accuracy, even though

it is still considerably higher than for the Basic Model. Before presenting the

results of the underlying multicollinearity analysis, the ROC curve for three different
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models is presented in Figure 4.2.1. From this plot it becomes clearer that the Full

Model Transformed & Non-Correlated is only slightly shifted down compared to Full

Model Transformed, indicating that these two models have similar predictive power.

However, compared to the Basic Model, the ROC curve for Full Model Transformed

& Non-Correlated is clearly higher suggesting that this model is more accurate in the

predictions than the baseline model.

Figure 4.2.1: Comparison of ROC curves for three logistic regressionmodels predicting
possession retention. Note that themodel namedNon-CorrelatedModel in the legend
refers to Full Model Transformed & Non-Correlated.

Multicollinearity

The formation of the Full Model Transformed & Non-Correlated is motivated

hereafter by presenting the results of the multicollinearity analysis. The features of

the Full Model Transformed were removed in an iterative manner based on the VIFs

and the correlation coefficients between pairs of features. The removal of features was

conducted by identifying sets of correlated features, and then removing the feature that

resulted in the least increase in AIC value after its removal.

In order to understand the effect that the feature removal has on the multicollinearity,

the correlation matrices and VIFs of the features in the Full Model Transformed

and Full Model Transformed & Non-Correlated are compared. First, the correlation

matrices for the two models are shown in Figure 4.2.2.
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Figure 4.2.2: Correlation matrices of the possession retention models Full Model
Transformed and Full Model Transformed & Non-Correlated.

Starting with the Full Model Transformed, the left subfigure of Figure 4.2.2

shows that this model includes a number of highly correlated features. For

example, the features distance_to_goal_diff and x_diff have a correlation of

−0.94. After removing highly correlated features, the features distance_to_middle,

time_since_last, distance_to_goal, distance_to_goal_diff and angle_length are left.

This model exhibits a lower degree of multicollinearity and the feature pair with

the highest correlation is angle_length and distance_to_goal_diff with a value of

0.70.

Next, the VIFs of the two models are presented in Tables 4.2.3 and 4.2.4.

Table 4.2.3: VIF for Full Model Trans-
formed, predicting possession reten-
tion.

Feature VIF

distance_to_middle 5.75

angle_cubed 19.82

length 209.78

time_since_last 2.72

distance_to_goal_log 12.63

distance_to_goal_diff 37.14

x_diff 142.41

angle_start_x 31.02

angle_length 281.33

length_start_x 19.57

Table 4.2.4: VIF for Full Model Trans-
formed & Non-Correlated, predicting
possession retention.

Feature VIF

distance_to_middle 3.75

time_since_last 2.64

distance_to_goal 3.64

distance_to_goal_diff 2.20

angle_length 3.30
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Tables 4.2.3 shows once again that Full Model Transformed exhibits a high degree of

multicollinearity, as seen by the high VIFs and Table 4.2.4 show the decreased VIFs for

Full Model Transformed & Non-Correlated. As the Full Model Transformed & Non-

Correlated exhibits no strong multicollinearity, this model will be further interpreted

and evaluated below.

Result visualization

First, the results of the non-correlated model Full Model Transformed & Non-

Correlated are evaluated visually, as presented in Figure 4.2.3.

(a) Defensive (b) Middle (c) Attacking

Figure 4.2.3: Shows the probability of retaining the ball possession for three different
scenarios, i.e. throw-ins taken from the defensive, middle and attacking region of the
pitch using logistic regression. The color of each heat map reflects the probability of
retention given the end location of the throw-in. The start location of the throw-in is
marked with a dark half-circle along the touchline and the time since the ball went out
of the touchline is set to 10 seconds.

The results displayed in Figure 4.2.3 are obtained when training the non-correlated

model on the entire data set. The subfigures display three situations when a throw-in

is taken, and the location of the throw-in is marked with a dark half circle. The figures

show the probability of possession retention for different end locations of the throw-

in, as lighter areas of the heat maps correspond to regions where it is harder to retain

the possession. Comparing the heat maps, one can see that according to the model it

is harder to retain the ball for a throw-in taken in the attacking zone as seen by the

lighter color in (c), especially if the ball is thrown towards to opposition’s goal. It is

also seen from (c) that the highest retention rate for attacking throw-ins is achieved

when throwing backwards or towards the corner. Moreover, even though the maps

of the defensive (a) and mid-pitch (b) throw-ins are similar, one can deduce a slightly

darker color for the middle scenario. For both the defensive and middle situations,

the model shows that the highest retention rate is obtained when throwing backwards,

which aligns with the results in Figure 4.1.1.
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Feature importance

Next, the importance of the included features in the non-correlatedmodel is presented.

This is done by standardizing the feature values before fitting the model, and then

plotting the magnitude and confidence interval of every feature coefficient in the

model, as seen in Figure 4.2.4.

Figure 4.2.4: Standardized model coefficients, for non-correlated model predicting
possession retention.

The larger themagnitude of a coefficient, the greater is the impact of the corresponding

feature on the model’s predictions. As observed in the plot, the features with the

highest impact are distance_to_goal_diff and angle_length, both of which have a

positive effect on the retention rate when being increased. The other three features,

namely distance_to_middle, time_since_last and distance_to_goal seem to have

approximately equal magnitudes of impact, although distance_to_goal has a positive

effect while the other two have negative effects for increased feature values.

The next part of the results shows the effect that each feature has on the retention rate,

when increasing the feature value with one unit.

Table 4.2.5: Odds ratio for unscaled coefficients, for non-correlated model predicting
possession retention.

Regressor Odds ratio 95 % confidence interval

distance_to_middle 0.828 [0.790, 0.868]

time_since_last 0.840 [0.800, 0.881]

distance_to_goal 1.17 [1.12, 1.24]

distance_to_goal_diff 1.89 [1.76, 2.03]

angle_length 1.86 [1.72, 2.02]

Table 4.2.5 shows the odds ratio, defined in Equation 2.5, of each feature in the

non-correlated model, together with a 95 % confidence interval which is based on

the confidence interval of the model coefficients. As one could also see in Figure

4.2.4, increased feature values of distance_to_middle and time_since_last result

in lower retention rates, while increasing distance_to_goal, distance_to_goal_diff
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and angle_length leads to higher possession retention rates. For example, if

time_since_last is increased with one second, the odds of retaining the ball will

decrease with 16 % as the multiplicative factor is 0.84.

4.2.2 Goal chance creation model

In this section, the results for the model predicting the goal chance creation is

presented, similarly to the presentation of the results of the retention possessionmodel

in the previous section. Note that the heatmaps and correlationmatrices are displayed

in shades of blue in order for the reader to more easily navigate between the different

sections of the report.

Model comparison

Once again, the different models are defined, as shown in Table 4.2.6. The motivation

of the models is the same as for the models of possession retention, but note that other

sets of features are used compared to before. The accuracy of the models in regards to

AIC, AUC and log loss is presented in Table 4.2.7.

Table 4.2.6: Chance creation models

Model name Included features

Basic Model start_x_adj, angle, length, time_since_last

Basic Model

Transformed

start_x_adj_squared, angle_exp_0_2, length, time_since_last

Full Model start_x_adj, angle, length, distance_to_goal,

distance_to_goal_diff, x_diff, angle_start_x, angle_length,

length_start_x

Full Model

Transformed

start_x_adj_squared, angle_exp_0_2, length,

distance_to_goal_log, distance_to_goal_diff, x_diff,

angle_start_x, angle_length, length_start_x

Full Model

Transformed &

Non-Correlated

angle_exp_0_2, length, distance_to_goal_log
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Table 4.2.7: Accuracy of various logistic regression models predicting goal chance
creation. Note that the AIC is based on the entire data set, while AUC and log loss
were calculated on a test set comprising 25% of the data.

Model AIC AUC Log loss

Basic Model 3640 0.627 0.193

Basic Model Transformed 3621 0.621 0.193

Full Model 3601 0.609 0.196

Full Model Transformed 3597 0.611 0.195

Full Model Transformed & Non-Correlated 3592 0.627 0.193

When comparing the results of the Basic Model with the Basic Model Transformed,

it can be observed that the AIC decreases after introducing feature transformations.

In this case, start_x_adj and angle are transformed to start_x_adj_squared and

angle_exp_0_2 respectively, as shown in Table 4.2.6. However, the AUC decreases

slightly after the transformations, suggesting lower predictive power, while the log

loss remains unchanged. When introducing the Full Model, the AIC decreases

again, however the accuracy decreases slightly based on the AUC and log loss.

When fitting the transformed model Full Model Transformed, i.e. transforming

start_x_adj to start_x_adj_squared, angle to angle_exp_0_2 and distance_to_goal

to distance_to_goal_log negligible accuracy improvement is obtained with respect

to all three metrics. After removing correlated features to create the Full Model

Transformed & Non-Correlated, the AIC decreases further slightly, resulting in the

lowest AIC among the tested models for predicting goal chance creation. Note that the

effect that each transformation has on the AIC is presented in Tables C.0.3 and C.0.4

in the Appendix.

Before presenting the results of the multicollinarity comparison between the models

Full Model Transformed and Full Model Transformed & Non-Correlated, the ROC

curve is presented for three of themodels, as shown inFigure 4.2.5. In general, theROC

curves show that predicting the goal chance creation using logistic regression model is

rather challenging as the ROC curves are relatively close to the random chance line,

shown by the dotted diagonal.
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Figure 4.2.5: Comparison of ROC curves for three logistic regressionmodels predicting
goal chance creation. Note that the model namedNon-CorrelatedModel in the legend
refers to Full Model Transformed & Non-Correlated.

Multicollinearity

As for the possession retention model, the results of the multicollinarity results are

presented next.

Figure 4.2.6: Correlation matrices of the goal chance creation models Full Model
Transformed and Full Model Transformed & Non-Correlated.

Figure 4.2.6 shows that the Full Model Transformed includes several feature pairs

with high correlation, the largest pair once again being distance_to_goal_diff and

x_diff with a value of -0.94. The right subfigure shows the presence of correlation

after removing correlated features. Among these three features, no pair exhibits any

strong correlation.

Next, the VIFs of the two models are presented. Table 4.2.8 shows that the features
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Table 4.2.8: VIF for Full Model Trans-
formed, predicting chance creation

Feature VIF
start_x_adj_squared 21.92

angle_exp_0_2 140.30
length 262.26

distance_to_goal_log 100.63
distance_to_goal_diff 24.32

x_diff 123.45
angle_start_x 19.29
angle_length 323.32
length_start_x 36.50

Table 4.2.9: VIF for Full Model Trans-
formed & Non-Correlated, predicting
chance creation

Feature VIF
angle_exp_0_2 23.02

length 5.05
distance_to_goal_log 24.50

in the Full Model Transformed in general have large VIFs, indicating that this model

has strong presence of multicollinearity. Table 4.2.9 indicates that there are still

two features in Full Model Transformed & Non-Correlated with rather high VIFs.

However, as the confidence intervals of the coefficients in the Full Model Transformed

& Non-Correlated are tight, which is presented in Figure 4.2.8 below, the features

angle_exp_0_2, length and distance_to_goal_log are kept in the non-correlated

model.

Result visualization

As for the possession retentionmodel, the non-correlatedmodel is further investigated

and the results are first presented visually in three different situations in the field, as

shown in Figure 4.2.7.

(a) Defensive (b) Middle (c) Attacking

Figure 4.2.7: Shows the probability of creating a goal chance opportunity for three
different scenarios, i.e. throw-ins taken from the defensive, middle and attacking
region of the pitch using logistic regression. The color of each heat map reflects the
probability of chance creation given the end location of the throw-in. The start location
of the throw-in ismarkedwith a dark half-circle along the touchline. Note that the color
scale is different in Attacking, compared to Defensive andMiddle.

Firstly, note that the color scale in Figure 4.2.7 is different in (c) compared (a) and
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(b) in order to clearer interpret the results. From these figures, one can see that the

goal-scoring opportunity increases as the throw-in is taken further up in the pitch. For

the defensive and middle situations, the goal chance creation rate is higher for throws

that are directed backwards than forwards. Apart from this, it can be noticed that

a relatively high chance creation rate is obtained when throwing a long ball straight

ahead. For the attacking situation, the highest chance of creating a goal-scoring

opportunity is obtained when throwing the ball close to the opposition’s goal. Also,

one can note in (c) that throwing the ball backwards results in higher goal-scoring

opportunity than throwing the ball towards the corner flag.

Feature importance

Next, the importance among the features in the non-correlated model is

presented.

Figure 4.2.8: Standardized model coefficients, for non-correlated model predicting
chance creation.

Figure 4.2.8 shows that the feature having themost impact on the goal chance creation

is angle_exp_0_2. The secondmost influential feature is distance_to_goal, while the

least important feature among the three is the length of the throw-in. Increasing the

feature distance_to_goal has a negative effect on goal chance opportunity creation,

while angle_exp_0_2 and length have a positive effect. Table 4.2.10 shows how

the goal chance creation rate changes when increasing each of the features with one

unit.

Table 4.2.10: Odds ratio for unscaled coefficients, for non-correlatedmodel predicting
chance creation.

Regressor Odds ratio 95 % confidence interval

angle_exp_0_2 21,3 [10,7, 42,6]

length 1.02 [1.00, 1.03]

distance_to_goal_log 0.52 [0.44, 0.60]

The information presented in Table 4.2.10 can be interpreted in the following way.

When the length of the throw is increased by one meter, the odds of creating a goal
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chance increase by a factor of 1.02 and similar reasoning can be applied to the other

two features. Note that odds ratio for angle_exp_0_2 differs substantially from the

others. This can be explained by the angle being measured in radians, and thus a one

unit increase is a substantial change in angle.

4.3 Results for gradient boosting model

This section presents a comparison to a more advanced model, namely gradient

boosting. The same feature combinations are examined as for the possession retention

and goal chance creation models. However, the models are only evaluated in regards

to AUC and log loss, as AIC is more suitable for statistical methods with a well defined

likelihood function.

Table 4.3.1: Accuracy of various gradient boosting models predicting the possession
retention.

Model AUC Log loss

Basic Model 0.766 0.532

Basic Model Transformed 0.758 0.537

Full Model 0.770 0.528

Full Model Transformed 0.768 0.529

Full Model Transformed & Non-Correlated 0.768 0.529

First, the different models for predicting possession retention are investigated. From

Table 4.3.1 one can see that the transformations do not seem to have any clear positive

effect on themodel fitting accuracy. Comparing the two basic models, the transformed

version has a lower AUC and the log loss increases slightly indicating poorer predictive

power. When adding more features to the model and thus creating the Full Model, the

model fitting is slightly improved. Introducing the transformations in the full model

does not change the AUC or log loss noticeably compared to the non-transformed

version of the full model and same the applies to the non-correlated model.

Moving on to the model that predicts goal chance creation, Table 4.3.2 presents the

results of the model fitting for different sets of features.
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Table 4.3.2: Accuracy of variousmodels predicting goal chance creation using gradient
boosting.

Model AUC Log loss

Basic Model 0.611 0.194

Basic Model Transformed 0.611 0.194

Full Model 0.600 0.194

Full Model Transformed 0.600 0.194

Full Model Transformed & Non-Correlated 0.592 0.195

Table 4.3.2 shows once again that feature transformations do not have any positive

impact in regards to AUC and log loss when using gradient boosting to predict the

goal chance creation after a throw-in. Moreover, it is interesting to note that the basic

models are slightly better in regards to AUC than the rest of the models while the log

loss barely changes across the models.

Since the the transformations and addition of features did not contribute to any clear

improvement in terms of AUC and log loss, the visual representation of the results are

presented based on the Basic Model. As for the logistic regression case in the previous

section, the results are presented in three different scenarios for each model.

(a) Defensive (b) Middle (c) Attacking

Figure 4.3.1: Shows the probability of retaining the ball possession for three different
scenarios, i.e. throw-ins taken from the defensive, middle and attacking region of the
pitch using gradient boosting. The color of each heat map reflects the probability of
retention given the end location of the throw-in. The start location of the throw-in is
marked with a dark half-circle along the touchline and the time since the ball went out
of the touchline is set to 10 seconds.

Figure 4.3.2 shows the probability of retaining the possession depending on the end

location of the throw, according to gradient boosting. In all three situations the

retention rate is the highest when throwing the ball backwards. In the attacking zone,

the retention rate as clearly lower when the end location of the throw-in is close to the

opposition’s goal. The corresponding results for the model predicting the goal chance

creation is presented below.
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(a) Defensive (b) Middle (c) Attacking

Figure 4.3.2: Shows the probability of creating a goal chance opportunity for three
different scenarios, i.e. throw-ins taken from the defensive, middle and attacking
region of the pitch using gradient boosting. The color of each heat map reflects the
probability of retention given the end location of the throw-in. The start location of
the throw-in is marked with a dark half-circle along the touchline and the time since
the ball went out of the touchline is set to 10 seconds.

Figure 4.3.2 shows that when taking the throw-in in the attacking zone, throwing the

ball further away results in higher goal chance creation rate as seen in (c). Also, one

can note from the defensive (a) andmiddle (b) situation that the ball should be thrown

backwards in order to have greater chance of creating a goal-scoring opportunity,

even though the probability of creating a goal-scoring opportunity is low in these

situations.

4.4 Team analysis

This section will present the results of the comparison of the Allsvenskan 2022 teams

in regards to their throw-in strategies. Using this it will be possible to investigate if

there are teams that stand out when it comes to successful throw-ins and in that case

what distinguishes these teams from the rest.

The results will be presented using club emblems and thus a specification of the club

emblems and the corresponding team names is given in Table 4.4.1.
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Table 4.4.1: The Allsvenskan 2022 teams and corresponding emblems.

AIK IFK Göteborg

BK Häcken IFK Norrköping FK

Degerfors IF IFK Värnamo

Djurgården IK Sirius FK

GIF Sundsvall Kalmar FF

Hammarby Malmö FF

Helsingborgs IF Mjällby AIF

IF Elfsborg Varbergs BoIS FC

Figure 4.4.1 shows how a team’s average throwing angle affects the possession

retention and goal chance creation rate for throw-ins taken in the attacking third of the

pitch. As a reminder, an angle of 0 degrees represents a throw-in directed straight up

towards the opposition’s half, while an angle of 180 degrees corresponds to a throw-in

straight down the pitch towards the own half. The left subfigure of Figure 4.4.1 shows

that, in general, the larger the average throwing angle of a team is, the higher is the

rate of retaining the ball after a throw-in.

The right subfigure of 4.4.1 demonstrates how the a team’s average throwing angle

affects the goal chance creation rate during attacking throw-ins. Notably, Varbegs

BoIS is a team that stands out as this team throws the ball with the smallest angle, i.e.

most forward, and creates most goal-scoring chances. By observing both subfigures

it can also be noticed that teams which were successful at retaining the ball, such

as Kalmar FF and BK Häcken, are relatively less successful at creating goal-scoring

opportunities.
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Figure 4.4.1: Shows the relationship between a team’s average throwing angle and the
average success rate of the throw-ins, with respect to possession retention to the left
and goal chance creation to the right. Note that only throw-ins taken in the attacking
third of the pitch are includedhere. Thehigher the throwing angle, themore backwards
is the throw-in directed.

Figure 4.4.2 shows how the average throwing angle affects the success rate for throw-

ins taken in the defensive and middle thirds of the pitch. Once again, it it clear that

teams that throw the ball backwards are also better at keeping possession of the ball.

When it comes to the angle’s effect on the goal chance creation, there appears to be a

positive correlation between the angle and the chance creation rate. Teams with high

chance creation rate, such as Hammarby, BK Häcken and Kalmar FF, have a relatively

large angle on their throw-ins. In contrast, teams with small throwing angles, such as

Varbergs BoIS and IFK Norrköping tend to create less chances.

Figure 4.4.2: Shows the relationship between a team’s average throwing angle and the
average success rate of the throw-ins, with respect to possession retention to the left
and goal chance creation to the right. Note that only throw-ins taken in the defensive
and middle thirds of the pitch are included here. The higher the throwing angle, the
more backwards is the throw-in directed.

Next, the effect of the average throwing length on the success rate is presented. In

Figure 4.4.3 it is seen how the throwing length affects the success rate for throw-ins
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taken in the attacking third of the pitch. In the left subfigure it can be noticed that

teams which take long throw-ins are also worse at retaining the ball. In particular it

can be seen that Varbergs BoIS is clearly the team that throws the ball the furthest, and

are also least successful when it comes to keeping possession of the ball. In contrast,

Kalmar FF throws the shortest throw-ins on average, and they are one of the most

successful teams at keeping possession after a throw-in.

By considering the right subfigure of Figure 4.4.3, it can be seen that Varbergs BoIS is

clearly the most successful team when it comes to creating goal chance opportunities

after a throw-in in the attacking third of the pitch. Moreover, it is seen that Mjällby

AIF has the second longest throw-ins among the teams and that they are relatively

successful at creating goal-scoring opportunities.

Figure 4.4.3: Shows the relationship between a team’s average throwing length and the
average success rate of the throw-ins, with respect to possession retention to the left
and goal chance creation to the right. Note that only throw-ins taken in the attacking
third of the pitch are included here.

Finally, Figure 4.4.4 considers throw-ins taken in the defensive and middle thirds of

the pitch, and shows how the average throwing length affects the success rate. By

considering both subfigures, it can be noticed that team’s which have a higher rate of

successful throw-ins tend to take relatively short throw-ins. However, note that there

are also teams with short average throw-ins which are less successful.
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Figure 4.4.4: Shows the relationship between a team’s average throwing length and the
average success rate of the throw-ins, with respect to possession retention to the left
and goal chance creation to the right. Note that only throw-ins taken in the defensive
and middle thirds of the pitch are included here.
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Discussion

This section contains a discussion and analysis of the obtained results. First, the

logit plots are evaluated as a tool for finding relevant features and transformations.

Secondly, the results of the logistic regression models are discussed and interpreted.

Thirdly, the predictive power of the logistic regression is compared to the gradient

boostingmethod and finally, the team analysis is further discussed and analysed.

5.1 Logit plots and transformations

To startwith, the approach of determining the feature target dependence prior to fitting

a logistic model, as presented in Section 4.1, is discussed in more detail. These plots

serve for two objectives: the first being to understand whether a feature actually has an

impact on the target, and secondly how the relationship looks like between the feature

and target, i.e. if it is linear or non-linear. With the feature importance plots for the

two targets in mind, i.e. Figure 4.2.4 and 4.2.8, the usefulness of the logit plots when

it comes to finding impactful features can be evaluated. According to Figure 4.2.4,

distance_to_goal_diff and angle_length are the most important features in the non-

correlated model for predicting possession retention. This is consistent with the logit

plots for these two features, as seen in Figure 4.1.3 and B.0.1 in the Appendix, which

show relatively high variation in the log odds when varying these features. Same can

be seen for angle_exp_0_2, see Figure 4.1.4, which was the most impactful feature

in the non-correlated model predicting the goal chance creation. Based on this, the

logit plots can be highly useful when trying to find important features for a logistic

regression model.

Regarding the use of these kind of plots for determining potential transformations the

following can be concluded. The transformations used in the models were based on

the logit plots, and in several cases they resulted in better model fitting, as could be
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seen in Tables 4.2.2 and 4.2.7, suggesting that the logit plots served an effective way

of linearising the feature target dependencies, improving the model fitting. However,

not all feature transformations resulted in better model fitting, even though one could

have thought that they would based on the logit plots. For example, the transformation

of the feature distance_to_goal_diff to an exponential with base 1.1 or 1.2 appeared

to be an effective transformation in order to obtain a linear relationship, according

to the logit plots in Figure 4.1.3. However, when adding these transformations to the

possession retention model, the model fitting results became worse, and thus these

features were not included in the transformed versions of the models. One potential

reason for this is that the feature transformations were based on the logit plots, which

only approximate how the log odds depend on the feature values before fitting amodel,

as described by Figure 3.3.1. A possible way of improving the approximation would be

acquire more data of taken throw-ins, such that the data could be divided into a larger

number of bins making the approximation more precise.

The results of the feature transformations imply that caution should be taken when

using the logit plots as a way of determining a potential transformation, even though

this might in many times be a advantageous procedure. Also, when conducting the

transformations there is also a trade-off between improving the model accuracy and

decreasing the interpretability of the features in the model. Furthermore, the feature

selection and feature transformation should be conducted together with one’s own

understanding and intuition of football. To sum up, the plots presented in Section 4.1

could serve as a guidance when trying to find relevant features and transformations for

a logistic regression model.

5.2 Logistic regression models

Next, the possession retention model is discussed in more detail. Starting of with

the heat maps presented in Figure 4.2.3, the obtained results are rather expected.

The heat map for the defensive and mid-field situations illustrate that the ball should

primarily be thrown backwards in order to keep possession of the ball. This is

expected as the opposition team is naturally positioned up the pitch. For the attacking

situation it is considerably more difficult to retain possession when throwing towards

the opposition’s goal, while the highest retention rate is obtained when throwing close

to the touchline. Another feature that has an impact on the retention rate, but that

can not be observed from the heat maps, is how fast the throw-in is taken, denoted

by the feature time_since_last. The longer time the thrower waits, the harder it is to

keep possession after a throw-in as shown by the odds ratio presented in Table 4.2.5.

An explanation for this could be that the opposition players then have more time to

organize.
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Another observation that could be made in the possession retention model is that a

transformed feature could have a positive impact on the model when being part of one

set of features, while in another set of features it could have the opposite effect. For

example, the transformed feature angle_cubed resulted in lower AIC when applied

to the Full Model, while when applying it to the Basic Model it resulted in the model

having a higher AIC value. One possible explanation for this could be the presence

of multicollinearity in the data sets, particularly in the one used for the Full Model.

Remember that if a set of features have a strong degree of multicollinearity, a small

change in the data set could result in a substantial change in themodel coefficients and,

consequently, the model’s output. For this reason, replacing angle with angle_cubed

in the Full model could have a substantial impact on themodel’s result and in this case,

the effect appears to be positive based on the improvement in AIC.

Comparing the possession retention model with the goal chance creation model, one

can observe that the latter results in poorer accuracy in terms of AUC and log loss as

seen from Tables 4.2.2 and 4.2.7. Note that the AIC values are not comparable for

the possession retention and goal chance creation models. From the AUC and log loss

values one can conclude that, using logistic regression, it is harder to predict whether

a throw-in results in a goal chance compared to predicting possession retention. One

reason for this could be that it is relatively rare to create a goal chance opportunity

directly from a throw-in, which makes the data set unbalanced in regards to the target

variable chance_created. Thismakes it harder to learn how a throw-in should be taken

in order to create a goal-scoring opportunity.

Continuing the comparison, one can observe that the feature transformations included

in the model for predicting goal chance creation have a positive impact on the model

fitting, although the improvement for the Full Model was negligible as seen by Table

4.2.7. Also, not all transforms resulted in an improved model fitting, as previously

stated. Another interesting observation is that the model which was created after

removing correlated features, resulted in the lowest AIC as seen in Table 4.2.7.

Furthermore, the heat maps presented for the goal chance creation model provide

some interesting insights. The heat maps, but also the odds ratio in Table 4.2.10

suggest that it is more effective to throw the ball backwards in defensive and middle

parts of the pitch in order to create a goal-scoring opportunity. This could appear

counterintuitive as one could think that it is better to throw the ball towards the

opposition’s goal in order to score. This is however true for the attacking situation,

as seen in Figure 4.2.7. An explanation of this result can be that the model has

two features, angle_exp_0_2 and distance_to_goal_log with opposite effects, and

when the end location location of the throw-in is close to the opposition’s goal,

distance_to_goal_log becomes dominant. Furthermore, interestingly, the heat map

for the attacking situation shows that it is more effective to throw the ball backwards
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than throwing towards the corner flag as the region around the corner flag has a slightly

lighter color.

To sum up, the results of the non-correlated logistic regressionmodels show that when

the aim is to keep the possession of the ball, the rate of success is relatively high when

throwing the ball backwards, and this applies for all three investigated positions of

the pitch. For attacking situations, the rate of possession retention is also high when

throwing the ball forward but close to the touchline. In contrast, if a team’s goal is to

create a goal-scoring opportunity, the model suggests that the ball should be thrown

forward towards to opposition’s goal if the throw-in is taken in the attacking part of

the pitch. However, when taking the throw-in from the middle or defensive parts of

the pitch, it is surprisingly more effective to throw the ball backwards than forwards. A

conclusion that can be made consequently is that keeping possession is an important

factor in order to create an goal-scoring opportunity.

5.3 Comparison to gradient boosting method

In order to further evaluate the possession retention and goal chance creation

models, a comparison to a more complex model is made, namely gradient boosting.

Compared to logistic regression in the context of predicting possession retention, the

gradient boosting results in noticeably higher accuracy for the Basic Model. The

logistic regression achieved an AUC of 0.737 compared to 0.766 of gradient boosting.

However, when adding more features to the models, both methods performed rather

equally. For example, the Full Model of both methods obtained an AUC of 0.770.

When predicting goal chance creation, logistic regression surprisingly produces more

accurate results in terms of AUC for all models. This is unexpected since gradient

boosting is considered to be amore complexmethodwith higher predictive power. For

example, the BasicModel of the logistic regression achieved an AUC of 0.627 while the

corresponding result for the gradient boosting method was 0.611. This could suggest

that the gradient boosting algorithm is more sensitive to imbalanced data compared to

logistic regression.

One approach to handle the class imbalance would be to resample the data set by

oversampling the goal chance creation class so that both classes were approximately

equally frequent [2], which could potentially improve the results of gradient boosting.

The logistic regression models can also be adjusted to be more suitable for imbalanced

data sets. One way is to introduce weights to the likelihood function so that

misclassifications of the minority class are penalized more [27]. Including these

techniques for handling imbalanced data sets could givemore accurate results for both

models and thus a deeper understanding of how to throw the ball in order to maximize

the chance of scoring.
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Continuing with the comparison, one can observe that feature transformations play

a less important role when using gradient boosting, as presented in Tables 4.3.1 and

4.3.2. This is rather expected as gradient boosting is a non-linear method, and thus

this method can learn non-linear relationships without the need of transformations.

Also, note that the hyperparameter optimization was conducted based on the features

in the Basic Model and thus it is possible that better accuracy results would have been

obtained for the non-basic models if separate optimization was conducted for every

gradient boosting model.

Having elaborated on the differences in accuracy of logistic regression and gradient

boosting, the two methods are further compared by considering the heat maps of the

success rate depending on where the ball is thrown. Note that the heat maps of the

logistic regression model were based on the features in Full Model Transformed &

Non-Correlated while the features in the Basic Model were used for generating the

heat maps for gradient boosting, since the addition and transformation of features did

not result in any clear accuracy improvement for gradient boosting.

If first comparing the results for possession retention, by considering Figures 4.2.3

and 4.3.2, both methods suggest that throwing the ball backwards results in relatively

high retention rate. However, the results of gradient boosting show a clearer angle

dependence, as the variation in retention rate is larger for different angles. Both

methods show that for attacking throw-ins, it is most difficult the retain the ball when

it is thrown towards the opposition’s goal. However, the logistic regression method

also suggests high retention rate when throwing the ball forward towards the corner,

which gradient boosting does not do.

Moving on to the comparison of the heat maps of the goal chance creation rate, shown

in Figure 4.2.7 and 4.3.2, the following observations can be made. Starting with

the attacking throw-in, both methods suggest that throwing a long ball towards the

opposition’s goal results in considerably higher goal chance creation rate. Also, the

results of both methods show that short throws directed forward lead to slightly lower

goal chance creation rate, compared to short throws directed backwards. However, a

major difference between the two methods is that gradient boosting also suggests that

high retention rate is achieved for long throws directed backwards. Comparing the

results for the middle and defensive throw-ins, one can firstly notice that the variation

in goal chance creation rate is relatively low for both methods. This indicates that no

matter of how the throw-in is taken, it is difficult to create a goal-scoring opportunity

from a throw-in in these parts of the pitch. However, if the chances of scoring should

be maximized, the results of both methods suggest that the ball should not be thrown

with a small angle, i.e. forward.
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5.4 Team analysis

Finally, the conducted team analysis for the teams participating in the 2022 season of

Allsvenskan is discussed. Comparing these results to the fitted models also makes it

possible to evaluate whether the conclusions drawn from the models are reasonable

and have support.

Combining the effect of the average throwing angle and length on the success rate

among the Allsvenskan teams, presented in Section 4.4, can give some insightful

conclusions. If the aim is to create a goal-scoring opportunity from a throw-in in

the attacking third of the pitch, the results of the team analysis demonstrate that the

most effective strategy is to take a long throw-in with a relatively small angle, i.e. a

throw-in directed to the oppositions’ goal as suggested by Figures 4.4.1 and 4.4.3. As

shown by the figures, Varbergs BoIS is the team that clearly takes the longest throw-

ins and with the smallest angle, in the attacking third. Having a goal chance creation

rate of 11.6 %, Varbergs BoIS is the most successful team in creating goal-scoring

opportunities from attacking throw-ins. Mjällby AIF uses a similar strategy for their

attacking throw-ins andhave a goal chance creation rate of 8.4%whichmakes them the

thirdmost successful team in the league. Throwing long balls towards the opposition’s

goal in order to increase the chance of scoring is consistent with the inferences drawn

from the logistic regression and gradient boosting models which gives support to the

models.

These results can be valuable for teams that aim to create more chances from their

attacking throw-ins. For example, teams like IFK Göteborg and IFK Värnamo also

throw their throw-ins with a relatively small angle in the attacking third, however the

throw-ins are in general rather short. Thus, the results of this project suggest that

these teams would have to increase the length of their throw-ins in order to be more

successful. Note however that taking long throw-ins requires players who actually have

the physical ability to throw the ball long. Also, long balls towards the opposition’s goal

could demand that the players in the penalty area are good at winning aerial duels

or that the team develops a certain player movement strategy among the attacking

players. For this reason, it is not straightforward for a team to increase their goal

chance creation rate in the attacking zone as this could require special training for

throwing further or recruiting players with the ability of throwing long and winning

aerial duels.

Throwing long and with a small angle does however not seem to be a successful

approach if the aim is to retain possession of the ball. Varbergs BoIS and Mjällby AIF

are the least successful teams in the league at keeping possession of the ball after taking

their attacking throw-ins. This also agreeswith the results of the logistic regression and

gradient boostingmodels, which suggested that it wasmost difficult to keep possession
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of the ball when it was thrown towards the opposition’s goal. Thus there seems to be

a trade-off for attacking throw-ins: throwing long with a small angle is effective for

increasing the chance of scoring, but ineffective for keeping control of the ball.

If a throw-in is instead taken in the middle or defensive parts of the pitch and the

aim is to create a goal-scoring opportunity, the team analysis indicates that teams

which throw the ball backwards to a greater extent are in general better at creating

goal-scoring opportunities. These results align with the inferences drawn from the

fitted models. Remember that the logistic regression and gradient boosting models

both suggested that throwing the ball backwards in middle and defensive throw-ins

was more successful for creating goal-scoring opportunities than throwing forwards,

even though the chance was still comparably low compared to attacking throw-ins.

Consequently, these results could be of high value for teams which throw the ball with

a small angle in the middle and defensive thirds of the pitch, hoping to increase their

chance to score. For example, the results presented in Figure 4.4.2 suggest that if teams

like Varberg BoIS and IFK Norrköping would throw the ball with a larger angle, i.e.

more backwards, they could becomemore successful at both keeping possession of the

ball and creating goal chances. The effect of the throwing length on the success rate of

middle and defensive throw-ins is less obvious and seems to have a smaller impact on

the throw-in outcome, based on Figure 4.4.4.

When it comes to retaining the ball, Figures 4.4.1 and 4.4.2 show that teamswhich tend

to throw the ball with a larger angle, are alsomore successful at keeping the possession

of the ball after the throw-in, regardless of the location of the pitch. This finding

aligns rather well with the results obtained from the logistic regression and gradient

boosting models, which both suggested that throwing the ball backwards increased

the rate of possession retention. The logistic regression model also suggested that

throwing a short ball forward resulted in an increased retention rate as well, especially

for attacking throw-ins. This is less clear from the team analysis results. However

one can see a tendency for this by considering the results for IFK Göteborg and IFK

Värnamo in Figure 4.4.1. These two teams throw relatively short throw-inswith a small

angle in the attacking third, and compared to Varbergs BoIS and Mjällby AIF, which

also throw with a small angle but longer distance, IFK Göteborg and IFK Värnamo

demonstrate a higher rate of retaining ball possession compared to the other teams

mentioned.

To sum up, the results of the team analysis align rather well with the inferences drawn

from the fitted models. It is clear that the optimal strategy highly depends on whether

the goal is to keep possession of the ball or to create a goal-scoring opportunity.
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Conclusions

To conclude, this project has provided findings which can be useful when designing

a logistic regression model and insights regarding throw-in strategies which can be

valuable for football teams.

It has been shown how logit plots could serve as a guidance when trying to find

relevant features and transformations for a logistic regression model. In particular,

logit plots can be highly helpful for finding features with a high impact on the target.

The feature transformations have in several cases lead to improved model accuracy.

However, it is important to note that not all transformations have resulted in improved

accuracy, andwhen improvements have been observed, they have often beenmarginal.

The substantial accuracy improvements have often originated from finding relevant

features and adding them to themodels, especially for themodel predicting possession

retention. This indicates that in this project it has been more useful to identify useful

features based on intuition of football than searching for appropriate transformations.

Nevertheless, the transformations have still had an important role in fine-tuning and

optimizing the models.

Moving on to the football related results, the non-correlated logistic regressionmodels,

together with the conducted team analysis, have given a couple of insights that could be

useful for football players and coaches. First of all, if a team wishes to keep possession

of the ball, the results suggest that it is effective to throw the ball backwards regardless

of where the throw-in is taken from. However, if a team prioritises to increase the

chance of scoring, the results indicate that the optimal tactics depend on where on

the pitch the throw-in is taken from. When taking a throw-in in the attacking third

of the pitch, the most effective strategy has shown to be throwing a long ball towards

the opposition’s goal. If the throw-in is instead being executed from the middle or

defensive parts of the pitch, the chance of scoring after the throw-in is relatively low.

However, in order to optimize this chance, the results of the logistic regression model
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have shown that it is more effective to throw the ball backwards than forwards. This

suggests that it is more advantageous to play safe and keep possession of the ball in

order to create a goal-scoring opportunity from middle and defensive throw-ins. This

finding can offer teams valuable insight that can improve their chances of scoring after

a throw-in and winning football games.

Comparing the logistic regressionmodels to gradient boosting, a couple of conclusions

can be drawn. When predicting possession retention, which is based on a relatively

balanced data set, the gradient boosting clearly outperforms the logistic regression

whenonly including the fundamental features describing the throw-in. However, when

includingmore relevant features, the logistic regression and gradient boosting perform

rather similarly. When instead predicting goal chance creation, the accuracy of the

models decreases. Notably, the logistic regression outperforms gradient boosting, even

though the difference is not substantial. As discussed, a possible explanation to this

might be that gradient boosting is more sensitive to class imbalance. For this reason,

a potential improvement of this project could be to incorporate techniques for class

imbalance in order to improve the accuracy of the models used to predict goal chance

creation.

Summarizing the comparison of logistic regression to gradient boosting, this project

has shown that even though logistic regression is considered to be a simple method,

it obtains a predictive power comparable to gradient boosting if valuable features

and transformations can be found. In this case, logistic regression becomes a

powerful method at the same time as having a high interpretability and keeping the

computational speed high.
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Appendix A

Feature definitions

Appendix A presents a description of the features which have not been explicitly

described in the Method section of the report.
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Table A.0.1: Definition of investigated features, which were not described in the
Method section

Feature Description

angle_cubed &

angle_squared

angle α to the power of 3 and 2 respectively,

i.e. α3 and α2.

angle_exp &

angle_exp_0_2 &

angle_exp_0_3

exponential transformation of the angleαwith

the base e, 0.2 and 0.3 respectively, i.e. eα, 0.2α

and 0.3α.

angle_length multiplication of angle α and the length of the

throw-in.

angle_length_squared angle_length to the power of two, i.e.

(angle_length)2.

angle_start_x multiplication of angle α and the x position of

the location from which the throw-in is taken.

angle_throw_goal_cubed &

angle_throw_goal_squared

angle β to the power of 3 and 2 respectively,

i.e. β3 and β2.

distance_to_goal_diff_exp &

distance_to_goal_diff_exp_1_1 &

distance_to_goal_diff_exp_1_2

exponential transformation of the feature

distance_to_goal_diff with the base e, 1.1,

and 1.2 respectively, i.e. edistance_to_goal_diff ,

1.1distance_to_goal_diff and 1.2distance_to_goal_diff .

distance_to_goal_log natural logarithm of the variable

distance_to_goal, i.e. ln(distance_to_goal).

length_start_x multiplication of the length of the throw-in

and the start x position of the throw-in.

match_minute The match minute when the throw-in was

taken.

start_x_cubed &

start_x_squared

the variable start_x_adj to the power of 3

and 2 respectively, i.e. start_x_adj3 and

start_x_adj2.

x_diff_exp_0_9 &

x_diff_exp_1_1

exponential transformation of the feature

x_diff with the base 0.9 and 1.1 respectively,

i.e. 0.9x_diff and 1.1x_diff .
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Logit plots

Appendix B presents the logit plots of features which were not included in the Results

section, first for the possession retention model, and then for the goal chance creation

model.

B.0.1 Logit plots for possession retention

Figure B.0.1: Logit plots for features considered in the possession retention model,
which are not included in the Results section of the report. Note that the scale is not
the same for the different plots.
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B.0.2 Logit plots for goal chance creation

Figure B.0.2: Logit plots for features considered in the goal chance creation model,
which are not included in the Results section. Note that the scale is not the same for
the different plots.
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Appendix C

Feature selection

Appendix C presents the AIC after introducing various feature transformations, which

were investigated when determining the transformed models in the project.

C.0.1 Feature transformations for possession retention

model

Basic Model Transformed

Table C.0.1: Choosing features for Basic Model Transformed for the possession
retention model. The model fit is evaluated using AIC.

Features AIC

start_x_adj, angle, length, time_since_last 10875

distance_to_middle, angle, length, time_since_last 10866

distance_to_middle, angle_squared, length,

time_since_last

10868

distance_to_middle, angle_cubed, length, time_since_last 10954

distance_to_middle, angle_exp, length, time_since_last 10916
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Full Model Transformed

Table C.0.2: Choosing features for Full Model Transformed for the possession
retention model. The model fit is evaluated using AIC.

Features AIC

start_x_adj,

angle, length, time_since_last, distance_to_goal, distance_to_goal_diff,

x_diff, angle_start_x, angle_length, length_start_x

10429

distance_to_to_middle,

angle, length, time_since_last, distance_to_goal, distance_to_goal_diff,

x_diff, angle_start_x, angle_length, length_start_x

10429

distance_to_to_middle, angle_squared, length, time_since_last,

distance_to_goal, distance_to_goal_diff, x_diff, angle_start_x,

angle_length, length_start_x

10434

distance_to_to_middle, angle_cubed, length, time_since_last,

distance_to_goal, distance_to_goal_diff, x_diff, angle_start_x,

angle_length, length_start_x

10428

distance_to_to_middle, angle_cubed,

length, time_since_last, distance_to_goal_log, distance_to_goal_diff,

x_diff, angle_start_x, angle_length, length_start_x

10423

distance_to_to_middle, angle_cubed, length, time_since_last,

distance_to_goal_log, distance_to_goal_diff_exp, x_diff,

angle_start_x, angle_length, length_start_x

10529

distance_to_to_middle, angle_cubed, length, time_since_last,

distance_to_goal_log, distance_to_goal_diff_exp_1_1, x_diff,

angle_start_x, angle_length, length_start_x

10540

distance_to_to_middle, angle_cubed,

length, time_since_last, distance_to_goal_log, distance_to_goal_diff,

x_diff_exp_0_9, angle_start_x, angle_length, length_start_x

10439

distance_to_to_middle, angle_cubed,

length, time_since_last, distance_to_goal_log, distance_to_goal_diff,

x_diff_0_9, angle_start_x, angle_length_squared, length_start_x

10455
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C.0.2 Feature selection for goal chance creation model

Table C.0.3: Choosing features for Basic Model Transformed for the goal chance
creation model. The model fit is evaluated using AIC.

Features AIC

start_x_adj, angle, length, time_since_last 3640

start_x_adj_squared, angle, length, time_since_last 3636

start_x_adj_cubed, angle, length, time_since_last 3636

start_x_adj_squared, angle_exp_0_2, length, time_since_last 3621

Table C.0.4: Choosing features for Full Model Transformed for the goal chance
creation model. The model fit is evaluated using AIC.

Features AIC

start_x_adj, angle, length, distance_to_goal, distance_to_goal_diff,

x_diff, angle_start_x, angle_length, length_start_x

3601

start_x_adj_squared, angle,

length, distance_to_goal, distance_to_goal_diff, x_diff, angle_start_x,

angle_length, length_start_x

3601

start_x_adj_cubed, angle,

length, distance_to_goal, distance_to_goal_diff, x_diff, angle_start_x,

angle_length, length_start_x

3601

start_x_adj_squared,

angle, length, distance_to_goal_log, distance_to_goal_diff, x_diff,

angle_start_x, angle_length, length_start_x

3599

start_x_adj_squared,

angle_exp_0_2, length, distance_to_goal_log, distance_to_goal_diff,

x_diff, angle_start_x, angle_length, length_start_x

3597
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