
Degree Project in Technology

Second cycle, 30 credits

A command-and-control malware
design using cloud covert channels
Revealing elusive covert channels with Microsoft Teams

MASSIMO BERTOCCHI

Stockholm, Sweden, 2023

A command-and-control malware
design using cloud covert channels

Revealing elusive covert channels with Microsoft
Teams

MASSIMO BERTOCCHI

Master’s Programme, Communication Systems, 120 credits
Date: June 30, 2023

Supervisors: Arve Gengelbach (KTH), Urs Müller (Compass Security Scheweiz AG)
Examiner: Cyrille Artho

School of Electrical Engineering and Computer Science
Host company: Compass Security Schweiz AG
Swedish title: En kommando och kontroll av skadlig programvara som använder en
hemlig molnkanal
Swedish subtitle: Avslöjar svårfångade hemliga kanaler med Microsoft Team

© 2023 Massimo Bertocchi

Abstract | i

Abstract

With the rise of remote working, business communication platforms such as
Microsoft Teams have become indispensable tools deeply ingrained in the
workflow of every employee. However, their increasing importance have made
the identification and analysis of covert channels a critical concern for both
individuals and organizations. In fact, covert channels can be utilized to
facilitate unauthorized data transfers or enable malicious activities, thereby
compromising confidentiality and system integrity. Unfortunately, traditional
detection methods for covert channels may face challenges in detecting covert
channels in such cloud-based platforms, as the complexities introduced may
not be adequately addressed.

Despite the importance of the issue, a comprehensive analysis of covert
channels in business communication platforms has been lacking. In fact, to
the best of the our knowledge, this Master’s thesis represents the first endeavor
in identifying and analysing covert channels within Microsoft Teams.

To address this problem, an in-depth literature review was conducted to
identify existing research and techniques related to covert channels, their
detection and their countermeasures. A thorough analysis of Microsoft Teams
was then carried out and a threat scenario was selected. Through extensive
experimentation and analysis, three covert channels were then identified,
exploited and compared based on bandwidth, robustness and efficiency.

This thesis sheds light on the diversity of covert channels in Microsoft
Teams, providing valuable insights on their functioning and characteristics.
The insights gained from this work pave the way for future research on effective
detection systems for covert channels in cloud-based environments, fostering
a proactive approach towards securing digital business communication.

Keywords

Covert channel, Command and Control, Microsoft Teams, Detection

ii | Abstract

Sammanfattning | iii

Sammanfattning

Med ökningen av distansarbete har företagskommunikationsplattformar som
Microsoft Teams blivit oumbärliga verktyg som är djupt rotade i arbetsflödet
för varje anställd. Deras ökande betydelse har dock gjort identifiering
och analys av dolda kanaler till ett kritiskt problem för både individer
och organisationer. I själva verket kan dolda kanaler användas för att
underlätta obehöriga dataöverföringar eller möjliggöra skadliga aktiviteter,
vilket äventyrar sekretess och systemintegritet. Tyvärr kan traditionella
detekteringsmetoder för dolda kanaler möta utmaningar när det gäller
att upptäcka dolda kanaler i sådana molnbaserade plattformar, eftersom
komplexiteten som introduceras kanske inte hanteras på ett adekvat sätt.

Trots frågans betydelse har det saknats en omfattande analys av dolda
kanaler i plattformar för affärskommunikation. Såvitt vi vet är denna
masteruppsats det första försöket att identifiera och analysera dolda kanaler
inom Microsoft Teams.

För att ta itu med detta problem genomfördes en djupgående litteraturge-
nomgång för att identifiera befintlig forskning och tekniker relaterade till dolda
kanaler, deras upptäckt och deras motåtgärder. Därefter gjordes en grundlig
analys av Microsoft Teams och ett hotscenario valdes ut. Genom omfattande
experiment och analys identifierades, utnyttjades och jämfördes sedan tre
dolda kanaler baserat på bandbredd, robusthet och effektivitet.

Denna avhandling belyser mångfalden av dolda kanaler i Microsoft Teams
och ger värdefulla insikter om deras funktion och egenskaper. Insikterna från
detta arbete banar väg för framtida forskning om effektiva detekteringssystem
för hemliga kanaler i molnbaserade miljöer, vilket främjar en proaktiv strategi
för att säkra digital affärskommunikation.

Nyckelord

Hemlig kanal, ledning och kontroll, Microsoft Teams, upptäckt

iv | Sammanfattning

Contents | v

Contents

1 Introduction 1
1.1 Background . 2
1.2 Problem . 3
1.3 Scientific and engineering issues 3
1.4 Purpose . 3
1.5 Goals . 4
1.6 Research Methodology . 4
1.7 Delimitations . 5
1.8 Ethics and sustainability . 5
1.9 Structure of the thesis . 6

2 Background 7
2.1 Network security . 7

2.1.1 Firewalls . 7
2.1.2 TLS and connection splitting 9
2.1.3 Security protection tools 11

2.2 Network communications . 12
2.2.1 Covert channels . 12
2.2.2 REST API . 13
2.2.3 Cloud Command and Control (C2) 14
2.2.4 Cloud and applications 15

2.3 MS Teams . 15
2.4 Related work . 18

2.4.1 Types of covert channels 19
2.4.2 Cloud Command and Control 19
2.4.3 Detection of covert channels 20
2.4.4 Countermeasures . 22

vi | Contents

3 Methods 23
3.1 Research Process . 23
3.2 Research Paradigm . 24
3.3 Research Strategy . 24
3.4 Threat modelling . 25
3.5 Data collection . 26

3.5.1 Targets and actors . 28
3.5.2 Assessing reliability and validity of the data collected . 28
3.5.3 Data analysis technique 28

3.6 Evaluation framework . 28
3.7 Software Tools . 29

4 Malware design 31
4.1 Testbed . 31
4.2 MS Teams analysis . 32

4.2.1 Traffic analysis . 32
4.2.2 Peculiar functionality 36
4.2.3 MS Teams user IDs 36
4.2.4 WebSockets connection 37
4.2.5 Message flows . 37
4.2.6 Preflight requests . 39
4.2.7 Primary and secondary APIs 39

4.3 Weaknesses in MS Teams . 40
4.4 Covert channels and malware design 44

4.4.1 Incoming channel . 45
4.4.2 Outgoing channel - webhook 47
4.4.3 Outgoing channel - message 47
4.4.4 Outgoing channel - call 48
4.4.5 Malware horizontal spreading 51
4.4.6 Malware flow . 51

4.5 Summary and key points . 54

5 Results and Analysis 57
5.1 Evaluation . 57

5.1.1 Bandwidth . 58
5.1.2 Robustness . 61
5.1.3 Efficiency . 64

5.2 Threats to validity . 67
5.3 Detection . 67

Contents | vii

5.3.1 Webhook channel . 68
5.3.2 Message channel . 69
5.3.3 Call channel . 69

5.4 Summary . 70

6 Conclusions and Future work 71
6.1 Conclusions . 71
6.2 Limitations . 72
6.3 Future work . 73
6.4 Reflections . 74

References 75

viii | Contents

List of Figures | ix

List of Figures

1.1 Covert channel scheme with MS Teams (Microsoft servers) . . 2

2.1 Packet filtering with a deny-all policy 9
2.2 Stateful firewall with deny-all policy: left side scenario where

the client starts the connection - right side scenario where
server starts the connection 9

2.3 TLS splitting architecture . 11
2.4 REST architecture . 14
2.5 C&C and botnet schema . 15
2.6 Teams messages schema with the involved protocols 17
2.7 Teams Calls using STUN . 18
2.8 Teams Calls using TURN . 18

3.1 Threat scenario . 27

4.1 Standby phase without background activities. Bytes sent over
400 seconds with one second sample size 33

4.2 Standby phase during background activities. Bytes sent over
600 seconds with one second sample size 34

4.3 Call traffic between two users. Bytes sent over 750 seconds
with one second sample size 35

4.4 File sharing using the MS Teams chat. Bytes sent over 750
seconds with one second sample size 35

4.5 Cookie decryption schema to retrieve the skypetoken_asm and
the bearer tokens . 43

4.6 Packet injection into a MS Teams call 44
4.7 Schema of malware design 45
4.8 Schema of incoming channel. Instructions are sent using a

chat message affected by input validation 46

x | List of Figures

4.9 Webhook outgoing channel with MS Teams card rendering
process . 48

4.10 Malware design flow . 55

5.1 Evaluation channel bandwidth over multiple samples. The
blue line marks the samples, and the red dotted line outlines
the minimum value. 60

5.2 Evaluation robustness over different samples. 63
5.3 Evaluation efficiency channels. Seconds taken from sender to

receiver. 66

Introduction | 1

Chapter 1

Introduction

The evolving threat landscape in cyberspace leads to the continuous
improvement of corporate network monitoring. The aim is to detect abnormal
network traffic, unusual accesses and associated infrequent actions; these are
often the first indication of a security incident. Suspicious events are identified
by the security operations centre, which may also take measures to counteract
them, if necessary.

Today’s network infrastructures are built in such a way that it is hard to gain
direct access to a company’s corporate network from the outside. Therefore,
attackers rely on compromising workstations and initiating connections from
the internal network to the internet, usually via a web proxy or a DNS tunnel.
However, their strategy is getting more and more hindered as content filtering
in proxies, as well as the monitoring of DNS traffic, is getting more advanced.
Nowadays, with the increasing acceptance of remote working, the need for re-
mote collaboration introduces new threats for the company’s security through
essential tools such as virtual phones, chat software or videoconferencing like
offered by MS Teams, representing a new tunnel out of the company’s network.

2 | Introduction

1.1 Background

This work shows how it is possible to defy the network’s monitoring system
and security measures to exfiltrate information via Microsoft Teams. This is
done by establishing a communication with the victim’s machine using one of
the MS (Microsoft) Teams covert channels, and carrying out data extraction
with a command-and-control approach (see Figure 1.1).
A covert channel refers to a type of cybersecurity attack in which a channel
not intended for information transfer is actually exploited to exfiltrate data,
bypassing the company’s security policy [1].
A command-and-control approach refers to a computer-controlled by a third
party, used to execute programs and transfer data to a malicious server.

Microsoft server

Microsoft server

Attacker Victim

Internet

Microsoft network

Figure 1.1: Covert channel scheme with MS Teams (Microsoft servers)

Introduction | 3

1.2 Problem

The problem question tackled in this work may be summarised as it follows:
Are the traditional methods sufficient to detect modern covert channel

attacks using a cloud command-and-control architecture? Can we prove the
existence of covert channels in MS Teams?

1.3 Scientific and engineering issues

The security perimeters defined by the security engineers in companies take
for granted the security of the cloud applications and the ability of the provider
to analyse, detect and prevent malicious activities. This situation might lead to
malicious behaviour being undetected and network traffic not properly parse
and sanitise.

1.4 Purpose

As a proof of concept, this work aims at designing a malware capable of
exfiltrating information out of a victim’s machine in a network, despite the
security and monitoring measures, through Microsoft Teams. The logic
behind the malware design proposed may then be applied to other cloud-based
applications with equivalent functionality, pushing further the vulnerability
discovery in other scenarios. The cloud provider has an important role when
it comes to sensitive data transmitted through the cloud, and this work wants to
draw attention to a shared security protection duty between the cloud provider
and its customers.

New technologies have multiple weaknesses and vulnerabilities that might
be known by the service owner, but a lack of funds prevents those from being
fixed, stacking them up in a disregarded security backlog. However, as this
security backlog grows, a new serious vulnerability which builds on top the
previously noted ones might be discovered — like a covert channel, remote
code execution, or information leaks. This paper raises awareness on the
matter to security researchers and engineers, highlighting the importance of
communication channels hidden from the end user.

4 | Introduction

1.5 Goals

The goal of this project is to propose a covert channel attack using a cloud
infrastructure and then propose a mitigation technique to prevent this malware
class. This has been divided into the following four sub-goals:

1. Analyse the functionality of Microsoft Teams.

2. Prove the existence of covert channels in Teams.

3. Create a command-and-control Malware using the Teams security
weaknesses.

4. Evaluate the performance of the covert channel identified.

5. Analyse the covert channels against the state-of-the-art detection system.

The optimal outcome would be a custom malware to avoid state-of-the-
art detection systems and robust cybersecurity policies: this implies standard
procedures implemented by companies conforming to the best practices, such
as blocking all incoming connection from the firewall, using robust cipher
suite, or keeping the system updated to patch known security vulnerability.

1.6 Research Methodology

The project will start off with a security analysis of the MS (Microsoft) Teams
application and its architecture. By analysing the message exchange of the
Teams API, and comparing it with the documentation provided by Microsoft,
one can note that the application exhibits undocumented behaviour.
We study whether the undocumented API endpoints have fewer security
features implemented compared to the documented one, and a reverse
engineering process needs to be then performed to explore all the API’s
functionality. We can infer the above by relying on the concept of security by
obscurity, in order to avoid and maintain the system secure, the system needs
to be hidden and secret. Finding a vulnerability within a hidden system can
be more challenging than finding a vulnerability in a well-defined program.
After discovering its weaknesses, the malware design might take advantage of
one or more of these vulnerabilities.

Introduction | 5

1.7 Delimitations

The malware will be designed for Windows systems, and therefore has no
guarantee to work also on Linux or iOS systems. The proposed mitigation
is tested against the data collected from the Windows subsystem and it is not
reliable for other systems.

The security analysis of MS Teams is not exhaustive, and new covert
channels might still be discovered in the application or in the architecture of
the system.
Additionally, Microsoft can roll out new patches to prevent and secure the
weaknesses found during this thesis.

The code for this project will not be included in the Master’s thesis, due
to an NDA (Non-disclosure agreement) between the student and the company.
Nevertheless, the concept behind the attack and the detection methodology are
explained in detail.

1.8 Ethics and sustainability

When examining the design of malware, it is essential to consider the ethical
and sustainability implications of such actions. The creation and use of
malware can cause significant harm to individuals and organisations, leading
to financial losses, compromised security, and even personal harm. As such, it
is important to approach the thesis with a strong sense of ethical responsibility
and to consider the potential consequences of creating such tools.

Furthermore, it is essential to consider the sustainability implications of
malware design. Malware can have a long-lasting impact on systems, leading
to prolonged security vulnerabilities and potential data loss. As such, creating
malware that is designed to be sustainable, meaning it can be quickly and
effectively removed, is crucial to reducing the overall impact on systems and
the environment.

During the last phase of the project, all the found vulnerabilities and
weaknesses are reported to the Microsoft security team. They would
eventually take care of the security concerns and appropriately patch the

6 | Introduction

software to block threat actors to take advantage of this research.

1.9 Structure of the thesis

Chapter 2 presents relevant background information about network security,
network communication and detection of covert channels. Chapter 3 presents
the methodology and method used to solve the problem. Chapter 4 shows
the security analysis made on MS Teams and the possibility to create covert
channel over the Microsoft architecture. Chapter 5 highlights the properties
and evaluate the covert channel described in the previous Chapter. Lastly,
Chapter 6 indicates the future work on this topic and address the problem
statement.

Background | 7

Chapter 2

Background

This chapter provides basic background information about network security,
the technologies used in business networks to safeguard the environment from
malicious third parties, as well as the network communication, protocol and
architecture that will be employed in this project. This chapter also discusses
prior research in the field of covert channels, along with their potential
implementation, cloud-based command and control, a collection of tools and
strategies used by an attacker to maintain influence over the victim’s users, and
covert channel detection.

2.1 Network security

Network security is the combination of multiple technologies together in order
to keep applications, devices and systems that are connected to a network
infrastructure secure. An abstract definition might be a set of rules and actions
to maintain the protection of the Confidentiality, Integrity, and Availability
(CIA) [2] throughout a network environment, thus a set of mechanisms to
avoid unauthorized traffic to move around the system.

There are multiple aspects of network security, but this project will mainly
discuss secure connections and intrusion detection systems.

2.1.1 Firewalls

Firewalls are systems that monitor and analyse incoming and outgoing
connections based on defined policies and rules [3]. This prevents

8 | Background

unauthorised access to a network since they are placed inline on the border
between an external and internal network. There are multiple types of
firewalls:

• Packet filtering firewall [4]: This is the simplest firewall solution,
filtering the packet based on the IP and port of its source and destination.
As it does NOT have any connection context, it is a stateless firewall.
Figure 2.1 shows how you can block a specific inbound IP connection:
the client might reach the server, but the reply will be blocked by the
Packet filtering firewall.

• Stateful inspection firewall [4]: In contrast with the previous one, this
firewall has the connection context, and it then keeps track of the
connection and allows traffic if it’s related to another packet or to another
flow. A firewall with a stateful “deny-all” policy for incoming traffic will
reject any incoming packet unless it is a response to an earlier outgoing
packet, as shown in Figure 2.2.
The three pictures show the “deny-all” policy in three different cases: the
packet filtering Firewall would block all the connections from outside,
the stateful firewall would allow incoming connection if it’s related
to a previous request, and finally, the third case where the stateful
firewall would block the incoming connection due to missing request
from the client. It is important to monitor the context of the network
communication since it allows identifying threats based on where they
are coming from and where they are going to.

• Proxy Firewall [4]: Adding onto the previous firewall, the proxy firewall
is able to analyse the content of the packets. Thus, it can filter and
distinguish valid packets from malicious ones.
This extra feature allows engineers to protect and monitor incoming data
and deny specific requests made for the external network. For instance,
a proxy firewall can analyse the HTTP request and deny a POST request
for a specific endpoint; the supplementary feature allows companies to
set a more granular policy compared to the previous cases.

• NGFW (Next Generation Firewall) [4]: This final firewall adds
the features of application awareness and IPS (Intrusion Prevention
Systems). With application awareness, it comes into play the idea of
QoS (Quality of Service) [5] and of IPS (Intrusion prevention system).
QoS has been developed to prioritise the different types of network
traffic. Using QoS permits prioritising time-sensitive and crucial time

Background | 9

over web browsing data for instance, ensuring that the traffic is delivered
quickly and in a more reliable way. On the other hand, the IPSs
help to filter out malicious activities before they are executed on the
target host. They also efficiently work at detecting vulnerabilities and
exploits. During the rollout of a new free-bug version of specific
software the system might be exploitable, therefore to prevent these
malicious actions, an IPS can be configured to block the exploitation
in the traffic patterns.
This IPS can usually block traffic patterns, block the source address or
alarm the administrator of an anomaly.

Figure 2.1: Packet filtering with a deny-all policy

Figure 2.2: Stateful firewall with deny-all policy: left side scenario where
the client starts the connection - right side scenario where server starts the
connection

2.1.2 TLS and connection splitting

TLS is a cryptographic protocol used by applications to communicate
securely across the network, ensuring integrity and confidentiality across the
devices [6]. Although it has been extensively used in VPNs, IoT, and other

10 | Background

communication patterns over an insecure network like the internet, it is mostly
used in web browser communication. The first TLS comes after the evolution
of the SSL (Secure Socket Layer), which provides the same functionality with
a weak implementation, standardized by RFC 2246 in 1999 [7], while the most
recent version is 1.3 regulated by the RFC 8846 in 2018 [6].
Historically, the data were sent over the network unencrypted, and therefore,
a person in the network path could easily check the network traffic and
every credential, sensitive data and company secret bound to the packets.
The monitoring of network traffic as well as the tampering, erasing, and
rearranging of packets on the network posed additional risks for end users.

TLS uses a combination of symmetric and asymmetric techniques to
deliver excellent performance and high levels of data security. The data is
encrypted and decrypted using symmetric cryptography, when both the sender
and the recipient are aware of the security key. If compared to asymmetric
cryptography, this cryptography is more effective, faster, and only needs a
smaller key for both the encryption and decryption phases. From a client
perspective, symmetric cryptography is required to encrypt the data of the
request and decrypt the response web page; from a server perspective, it is
necessary to receive the request, which may contain personal data, and respond
with a general or customized webpage for the users.

Connection splitting (TLS proxy) is a feature provided by firewalls to
analyse the inbound and outbound connections of the network. Since
practically all connections now use TLS encryption, businesses are unable
to effectively monitor the traffic, therefore it was required to find a method to
exploit this situation. In this architecture, the proxy intercepts the connection
and functions as a man-in-the-middle or TLS server as opposed to end-to-
end encryption from client to server. Therefore, there will not be a TLS tunnel
between the client and the server; instead, all communication will be encrypted
by the client up until the proxy, which will then decrypt and parse it before
making a new connection to the target server as shown in Figure 2.3.

The response will follow the same path, it will be sent from the server over
a TLS tunnel to the TLS proxy and over a new TLS connection to the client.
This architecture allows companies to deploy and configure multiple security
systems and help to unfold security branches or prevent new vulnerabilities.
Besides, it introduces downsides to the system, the confidentiality and
integrity will be no longer guaranteed for the connection since the packets

Background | 11

might be changed and read by the man-in-the-middle, the TLS proxy.

Figure 2.3: TLS splitting architecture

2.1.3 Security protection tools

IPSs are security protection tools that identify malicious traffic in the network.
They are employed and embedded in NGFW and other modern firewall
systems to monitor traffic from inside to outside the network [8]. In order
to work efficiently, these security tools are most of the time combined with the
TLS splitting, allowing a full plain-text inspection of traffic. The traffic cannot
be analysed if the encryption is made in the application layer; in that case, the
IPS cannot decrypt the data.
There are two different types of IPS:

1. Signature based: the system tries to match the signature of a known
threat against the request. The drawback of this method is that it is able
to identify only a known threat, or a variant of it, but it cannot identify
new ones;

2. Anomaly-based: the system tries to find anomalies in the network by
comparing a traffic span against a baseline. This method is widely
used since it can detect unknown threats, and in recent years researchers
exploited machine learning techniques to achieve better performance;

A further classification can be applied:

1. Network-Based IPS: It is positioned at the network perimeter and
continually monitors all incoming and outgoing traffic;

12 | Background

2. Host-Based IPS: It is deployed in hosts and keeps track of the ingress
and egress traffic from the host perspective.

IPSs are not infallible security measures, and there is typically a trade-off
between false positives and real negatives: while skimming through all the
warnings is very time-consuming, overlooking one may lead to an assaulter
leaking data without the company being aware of it. Therefore, to improve the
level of security, multiple methods can be combined to achieve better accuracy.

On the other side of the attack, a bad actor must manage to overcome
the security mechanisms implemented, including frequently IPS and firewall,
to achieve his goal. A strategy for the attacker’s point of view would be to
properly craft, obfuscate, or hide traffic parts in the traffic pattern; this requires
a thorough knowledge of the system and how it operates for a given packet.
One further layer of security may be injected by the host, which for instance
would include an endpoint security or an antivirus, so that the IPSs do not
represent alone the protection shields built by companies.

2.2 Network communications

Network communications can be defined as a set of protocols, or rules, that
allow computers to exchange information with each other, independently of
the operative system they are running on [9].
There are four main entities in each network communication: a client, a server,
the data and a protocol. The client is the entity that requests a service on the
network, while the server is the entity that tries to fulfil the request made by the
client. The data is the object of the request, contained in the response from the
server, while the protocol is the communication method used for transmitting
the response data.

2.2.1 Covert channels

Covert channels were firstly defined by Butler W. Lampson [1] in 1973
as channels “not intended for information transfer at all”, yet exploited for
unauthorised data leakage. They represent an attack in computer security
where an attacker communicates with another party in a manner that bypasses
normal security controls. This type of communication can be used to transfer
sensitive information, or to exfiltrate data from a target system. They can take
many forms, such as exploiting unused or hard-to-detect network bandwidth,

Background | 13

hiding data within seemingly innocent packets or files, or even using physical
storage devices to physically transport information. Covert channels are
often difficult to detect, and defending against them requires a multi-layered
approach that includes regular security audits, monitoring, and continuous
system updates.

2.2.2 REST API

Representational State Transfer, or REST, is a protocol for inter-application
communication [10] and it allows exchanging of data among applications over
an HTTP(s) connection as shown in Figure 2.4. It was designed based on the
following constraints: (1) requests should identify resources, (2) the client can
receive, modify or delete a resource, (3) the server does not store information
about previous connections/requests, (4) cacheable resources and (5) the
possibility to create layered application [11]. An application programming
interface created on top of the REST architecture is known as a REST API.
A REST request is composed of four main parts:

1. URL Endpoint: a service implements a REST API endpoint for
exchanging the data and this is represented by a URL (domain, port,
path) - blue square in Figure 2.4;

2. HTTP method: different HTTP methods can be used by the endpoint
to map them to a different action - GET (read), POST (create), PUT
(update) and DELETE (delete) - light blue square in Figure 2.4;

3. HTTP headers: information sent in the HTTP request, like cookies,
authentication tokens and other standard HTTP headers - purple square
in Figure 2.4;

4. Body data: data sent with the HTTP request. It allows defining
objects transmitted with a POST request for instance - green square in
Figure 2.4.

In most cases, the body data is used from the POST request to query or
create objects on the server side. It can be defined using HTML, XML, raw
data or JSON. The JSON format is the most common one, since it allows the
definition of a dynamic data structure and it can be easily parsed by the server
due to its key-value structure. It is then the duty of the server to properly extract
the needed data from the JSON body.

14 | Background

Figure 2.4: REST architecture

2.2.3 Cloud Command and Control (C2)

Command and control, also known as C2 or C&C, is a technique to
communicate with compromised devices over a network using a hard-to-detect
channel [12].
Malicious actors exploit the channel to send instructions to the compromised
devices, which will then be executed by these devices upon receival and their
results will be sent back. In this way, the attacker gains complete control of
the compromised device and can execute any code. The network architecture
of the C2 consists of the malware in the compromised device acting as a
client, and the attacker’s device acting as a server; relatively known as Zombie
and MasterBot by the security community. The malware can be horizontally
spread across the compromised device’s network creating a botnet, see Figure
2.5. In such scenario, all the compromised devices are still acting as clients,
and the attacker is a server that instructs and controls them.

Once the malware is spread to a new device, there is a beaconing process
to let the server be aware of the new device. These continued requests allow
the attacker to know of the existence of the new machine and periodically poll
the server for new commands that the compromised device needs to execute.
The C2 channels are used for fetching internal information as well as
exfiltrating data storage from the environment. This allows stealing data from
companies, for example, over covert channels (Section 2.4.1) or some hard-to-
identify communication methods like out-of-band channels.

Background | 15

Figure 2.5: C&C and botnet schema

2.2.4 Cloud and applications

With the advent of the cloud, many applications have been moved from an
enterprise solution to a cloud-based solution. Cloud computing is an on-
demand computer resources available over the internet, offering a fast, flexible
and scalable service [13]. Therefore, instead of using in-house servers to
provide services to clients, the application runs on the cloud infrastructure
offered by the provider. As the cloud allows for a full horizontal scalability,
each response to a client’s request might come from different physical servers,
yet looking like they are coming from a single one.

2.3 MS Teams

The malware in this project is designed on top of the cloud application
Microsoft Teams (Section 2.2.4) and the covert channel (Section 2.2.1) will
be established between the attacker and the victim machine on the Teams
architecture. It follows a commands and control architecture (Section 2.2.3),
where both channels (the attacker-to-victim channel and victim-to-attacker
channel) are hidden inside the client-server messaging exchange.

Microsoft Teams is a messaging app that allows to share the workplace,
communicate, and exchange information among users. It continuously

16 | Background

provides additional plugins and features, with new updates, to enhance the
user’s communication experience. The application recently became popular
due to the shift from on-site work to remote work, becoming fundamental in
the new hybrid workflow of many companies; this new key role played by the
application made it gain unsolicited attention also from hackers and malicious
actors, trying to find ways to penetrate it.

The application is usable across many devices and operative systems,
allowing it to be quite common among worldwide companies, especially for
businesses where it is not possible to create their own messaging application.
We can then highlight a few features provided by this application:

• Chat: message with someone, a few people, or a group;

• Call: call/video-call someone, a group, or join external calls by links;

• Teams: group across the company to share resources;

• Sync: synchronisation with other Microsoft Apps.

Looking in detail into the Microsoft Teams system, we could see the
possibility to send messages to users using a REST API, with the proper
request and authentication we are able to send text messages to another user.
This message will not be directly forwarded to the end user, instead, the text
message is sent to a Microsoft server and later pushed down to the client using
a WebSocket.

WebSocket is a protocol used for bi-directional and real-time communica-
tion between a client (typically a web browser), this allows to receive messages
from the server without any prior request from the client.

The diagram presented in Figure 2.6 illustrates an established channel
utilising WebSocket for client and server notifications, specifically for
notifying the arrival of a new message. The REST request to send the messages
is also visible in the figure, where the client will send the information without
using the WebSocket.

The calling system works a little bit differently: There are mainly two
options either a peer-to-peer connection or a client-server connection. The
first option establishes a peer to peer connection between the two clients using
the STUN protocol. STUN (Session Traversal Utilities for NAT) is a protocol

Background | 17

Figure 2.6: Teams messages schema with the involved protocols

used to assist in the discovery of network address translation (NAT) devices
and to facilitate communication between clients behind a NAT. The STUN
protocol allows clients to determine their public IP address and port, as seen
by the outside world, as well as the type of NAT they are behind. STUN also
has a variant called TURN (Traversal Using Relay NAT) that can be used when
direct communication is not possible due to firewalls (Section 2.1.1) or other
network restrictions (Section 2.1.2). In this case, a TURN server acts as a
relay for the client’s communication, which is the protocol used in the second
option. It establishes a client-to-server communication between each client
and the Microsoft servers, the last one will act as a relay server, transmitting
information between the two users.

Regardless of the options, the protocol used to carry the call data
is WebRTC (Web real-time communication), which enables real-time
communication directly in web browser without the need for plugins or
additional software. Figures 2.7 and 2.8 describe the major difference
in terms of architecture between the two options. In the scenario above
2.7, the WebRTC channel is established between the two peers allowing a
connection without any third entity. In the scenario below 2.8, the firewall
(see section 2.1.1 for more details) prevents the peer-to-peer connection due
to security concerns and the system will fallback into a TURN scenario, where
the webRTC channel is established with a third entity relaying the traffic to the
other client.

18 | Background

STUN
STUN

NAT NAT

WebRTC

Figure 2.7: Teams Calls using STUN

TURN TURN

NAT/FW NAT/FW

WebRTC

WebRTC

Figure 2.8: Teams Calls using TURN

2.4 Related work

This section refers to the literature on the definition and categorisation of
covert channels, as well as the latest detection techniques employed to identify
them. The primary research emphasis lies in the employment of machine
learning, statistical methods, and traffic anomalies for detection, although only
a limited number of studies explore the detection of covert channels within a
cloud-based architecture. Typically, detection is established when a sufficient
amount of data is available for a particular scenario, such as DNS or TCP
covert channels, resulting in a gap in security detection systems when the cloud
is involved.

Background | 19

2.4.1 Types of covert channels

Traditionally, covert channels may be discerned into two main categories: (1)
storage covert channels and (2) timing covert channels. These categories are
defined based on the method to encapsulate and transmit information to the
receiving side.

Storage covert channels

Storage covert channels [14] allow communication with one process writing
to a storage location and another reading from it.

It has been shown that the cellular voice channel in Android can serve
as storage covert channels to leak information [15]. The designed rootkit for
Android permits outbound connection to transmit data in “speechless” calls,
avoiding the notification to the phone owner. But storage covert channels
attack may also occur in cloud storage applications, such as Dropbox. The first
work to allow two endpoints covertly exchanging data through Dropbox in fact
suggested two methods involving the tampering of files: in the “Renaming of
File”, the filename is exploited as the information carrier, while the “Alteration
of File” method exploits the content of a file as carrier [16]. Both methods
resulted to be robust and performing, leading the way for next-generation
malware for cloud storage applications [16].

Timing covert channels

Timing covert channels [14] allow communication through measurements of
the timing of packets/processes to represent the communication being sent
over the channel.

An example of attack carried out through a timing channel is present in the
past work of M. Torkashvan and H. Haghighi [17], in which the Wi-Fi signal
is jammed based on the message that one wants to send as a bit sequence, and
the data is transmitted outside the network through this time interval.

2.4.2 Cloud Command and Control

Covert channel attacks using the Cloud Command and Control can occur
when an attacker uses the communication channels within a cloud computing
environment to transfer sensitive information or to exfiltrate data.
A cloud environment could be exploited for instance through one of the
following:

20 | Background

• Abusing cloud storage: an adversary can leverage the storage mecha-
nisms within a cloud environment to transfer sensitive information, such
as by hiding data within seemingly innocent files or packets;

• Abusing network bandwidth: an adversary can take advantage of unused
network bandwidth of the cloud environment to transfer data;

• Misusing APIs: an adversary can misapply the API to transfer
information outside the target system.

Compared to old-fashion attacks, a BotCloud attack needs a lower budget and
fewer skills to be set up [18, 19].

2.4.3 Detection of covert channels

Nowadays, systems’ security policies are frequently violated through covert
channels being leveraged to retrieve sensitive information and packet data.

Traffic normalization [20] is one of the techniques used to counteract this
phenomenon, and it consists in enforcing a constant stream of fixed-length
data packets, using padding when needed. Exploiting this technique, a traffic
normalization protection tool could annihilate storage covert channels that
based on changing the lengths of transmitted packets [21].

Code augmentation techniques in the Linux kernel, like the extended
Berkeley Packet Filter (eBPF), may also be exploited to gather useful
data revealing the presence of covert communication. This information
may include system calls, page faults, memory occupation and network
packets [22]. eBPF is a mechanism for Linux applications to execute code
in the Linux kernel, and running your code in eBPF allows full access to
all hardware, like CPU, memory, network cards, etc. Analysis metrics such
as the Kolmogorov-Smirnov Test and entropy may also be a valid option to
detect covert channels [23]. These last techniques detect the anomalies by
comparing the traffic distribution in a given time frame against the baseline
traffic distribution of the system.

Most covert channel detection methods rely on discerning normal traffic
from the abnormal one that characterises a data leak. However, most
traditional methods are failing to detect covert channels with only slight
deviations of traffic, which are constantly introduced by new efforts in
research.

Background | 21

In this regard, recent studies suggest that the usage of machine learning
techniques may enhance traffic detection capabilities in these cases [24].
However, there is no state-of-the-art machine learning or deep learning model
that is effective in every case, as each approach has its own strengths and
limits [25]. In fact, such methods were observed to struggle to perform
accurately and reliably [26]. However, this under-performance may be due
to the absence of representative data, without which such methods cannot be
properly trained and fine-tuned, since the available datasets are characterised
by uneven and outdated content [25]. As the main idea behind most of
the relevant detection methods is to discern a statistical variance from the
median of the normal traffic pattern, no machine learning technique is then
able to generalise for such a task, and it would anyway require extensive and
continuous training to constantly adapt and learn the network traffic pattern
even for a specific case [26].

Among the machine learning techniques investigated over the years, SVM
(Support Vector Machine) was found to be very effective in the IP/TCP
protocols, while storage covert channels in DNS protocols were detected best
by decision trees [27]. Nevertheless, SVM is unable to detect non-linear
chaotic data in a TCP packet if the Sequence Number, the TCP Control Flag
or the TCP checksum are not provided [28]. In such cases, a deviation score
computed over TCP headers in a two-stage analysis process outperformed
SVM while requiring less features [28].

When it comes to BotClouds, cloud providers should try to actively detect
the anomalies caused by the MasterBot, identifying and responding to its
suspicious activity [19]. For instance, a cloud provider could identify the
traffic way between the MasterBot and its bots, which follows the equation
T = N × S with N referring to the number of bots and S being the average
size of messages [18]. As in non-cloud environments, entropy may also be
leveraged by looking at the randomness of the communications between the
MasterBot and its bots [29].
If the bots in the network are assumed to reply within the same timeframe,
botnet communication can be detected through “behaviour similarity”, as
leveraged by BotSniffer [30] without prior knowledge of the communication
pattern.
If the Command-and-Control input commands are frequent enough, the
computers in the network could be grouped together in small clusters, and the
variance could be checked for each server-group pairing, regardless of whether

22 | Background

the botnet communication is encrypted or not [31].

2.4.4 Countermeasures

Once the covert channels has been detected, a countermeasure is necessary
to prevent data leakage. However, such countermeasures are often subject to
trade-offs, based on their ultimate functional goal [32]:

• security vs. quality, as enforcing security could reduce the quality
perceived by the end-user;

• accuracy vs. performance, as the accuracy of the limitation (or
elimination) may impact the performance due to overheads and an
excessive amount of resources requested;

• complexity vs. cost, as complex mitigation methods may require
expensive software, hardware and maintenance costs;

• blockage vs. functionalities, as a required blocking of a protocol for a
network or host could reduce functionalities;

• security vs. risk, as in some cases it may not be possible to eliminate the
covert channel, but one could limit the bandwidth to prevent data leaks.

There is no single countermeasure that can be effective enough against
BotClouds, and cloud providers should come together to block them [18].

Methods | 23

Chapter 3

Methods

This chapter addresses the methodology and the environment in which the
project will be carried out. Additionally, this chapter defines the threat
scenario and all the involved actors throughout the project. Lastly, the data
collection is defined and how the data are evaluated against the below defined
properties.

3.1 Research Process

Previous work has been done on malware exploiting covert channels with high
bandwidth in cloud applications. An example of it is the Dropbox case study,
where the channel was built on the “Renaming of the File” or on the “Alteration
of the File” methods [16]. However, it is possible to carry out such attacks also
with a lower bandwidth, as in the case study on Skype [33], where the covert
channel is established on top of the Skype call’s inter-packet delays.

This research wants to follow the same path as above. In both
aforementioned papers, the starting point consists of a security assessment of
the target application. Thus, it is important to define the platform’s behaviour
and every interaction it has with the servers. After evaluating and identifying
the weaknesses of the architecture, a concept for the malware can be developed
to exploit these findings; a good amount of time needs to be spent on this
analysis in order to achieve a good outcome at the end of the project.

The malware in this project leverages covert channels, or channels used in
an originally unintended way, to communicate with the malicious server. In
this case, these channels are meant to be valid Teams communication channels,

24 | Methods

but they are used by the malware to exchange information and elude the system
in place to exfiltrate data.

3.2 Research Paradigm

The research follows mainly an empirical approach, trying to experiment with
possible ways to extract data from a cloud platform such as MS Teams. The
research for weaknesses is performed in a black-box manner. This initial phase
consists in proving the existence of a vulnerability. According to Dijkstra’s
ACM Turing Lecture in 1972 [34], program testing can effectively show the
presence of vulnerabilities, but it cannot prove their absence, unless a proof
of correctness is provided. It then follows that it could be possible to find a
security vulnerability in the system or infrastructure, as no convincing proof
of correctness is provided.

Most companies do not publish the source code of their applications,
and Microsoft is inclined to this philosophy, although there are open-source
projects from Microsoft like VS Code (the code is open source, although
the Microsoft build includes additional proprietary code). Their reason can
span from intellectual property to competitive advantage or security concerns.
Avoiding publishing the source code makes finding security vulnerabilities
more challenging, as the latter can be used by hackers to manipulate the
behaviour of the software and steal data.

3.3 Research Strategy

This research primarily focuses on the communication between client and
server throughout each application phase. The core application requests
should be identified, and a trial-and-error approach can be carried out on
the request parameters by changing them and observing how the application
reacts. It might be interesting to modify the order of the requests, as well
as block logically connected requests and forward only a subset of them. This
approach can then be used to research unexpected behaviour of the application
or induce unpredictable states in the application.

Given the complexity of the system and application, it is crucial to narrow
down and define the research scope. In modern web applications, there are

Methods | 25

a hundred REST requests passing through the client and the server, often for
minor resources like images, motions, and graphical effects. Filtering these
requests via a proxy, such as Burp suite, or other similar tools is necessary to
limit the traffic analysis.
Alternatively, a more efficient strategy involves rebuilding a minimal
Microsoft Teams application with the company-provided SDK to efficiently
analyse the client’s traffic. This ensures that graphical content and JavaScript
requests are excluded from the traffic, thus separating the functional requests
from the not functional requests.

Both of these strategies are pursued in this work to obtain as many insights
as possible and to achieve a better coverage of the application.

3.4 Threat modelling

The selected threat scenario assumes an adversary, who aims to exfiltrate
information from a company network, and an already compromised machine
in the network, that can be infected with the malware in different methods
(i.e., phishing or social engineering). The victim is part of a company and has
access to internal network resources with his compromised machine (Red area
in Figure 3.1), while the adversary might be outside the network and not be
related to the company in any way (Green Area in Figure 3.1). The victim has
a Windows computer and with a standard configuration setup, no additional
software is needed in order to achieve this goal. There are no requirements on
the client (victim’s computer) side apart from the Teams client installed.

In the first part of the threat scenario, when the adversary-to-victim
communication takes place using a covert channel, the adversary instructs and
executes commands on the victim’s machine. In this situation, the attacker
wants to establish a connection from outside to inside the network. We assume
that the firewall blocks all inbound connections and incoming packets can
go through the firewall only if they belong to an existing connection. In the
second part of the scenario instead, the victim-to-adversary communication
takes place with a covert channel allowing the forwarding of the query
results. This threat scenario then follows a command and control architecture
(Section 2.2.3).

Both of these channels must be stealthy to avoid and escape the security
system of the victim’s company. The company’s security system in this
scenario is configured with an NGFW (Section 2.1.1) with an inline IPS

26 | Methods

(Section 2.1.3) represented as “Company firewall” in Figure 3.1. These last
two components control and block signatures against malware or evasion
methods. Furthermore, in this case, the IPS is set to anomaly detection in
order to prevent data leakage of the network, according to the state-of-the-art
methods as described in section 2.4.3. Thus, any kind of data anomalies will
be detected by security systems.
To avoid data exfiltration on the system, there is a TLS proxy that sits in the
middle between each connection (Section 2.1.2). It will apply a TLS splitting
method to decrypt all the incoming connections from the client and encrypt
again the connection until the destination server. The TLS proxy would help
the IPS due to the fact that the IPS will work on plain text data and not on the
encrypted ones.

Concerning the OS, this threat scenario consists of only Windows
client machines in the compromised network, with the red area in
Figure 3.1 and Windows Defender active in these machines. The
tenant, configured by a system administrator in the network, provides
authentication and authorisation, and the client machines are also equipped
with intercommunication and management tools. Among these, Microsoft
Teams is installed for internal communication. For Microsoft Teams, all the
users are enforced to use the electron JavaScript application version rather than
the browser version, due to security concerns with the browser.
Electron JavaScript is an open-source framework for building desktop
applications using web technologies such as HTML, CSS, and JavaScript.

Finally, a few IPs need to be whitelisted in order to keep a video call smooth
and avoid packet loss during audio and video sharing for Microsoft Teams
communication [35]. This communication is established between the red and
the blue area in Figure 3.1. The purple area in Figure 3.1 consists of a cloud
provider offering a server to the attacker, the attacker needs to set up this server
to be reachable from the outside (The attacker’s computer is not reachable from
the outside due to the NAT and the Firewall).

3.5 Data collection

After proving the existence of covert channels, the network traffic will be
collected to compare and evaluate them. As mentioned in section 1.5, the
goal is to design a command-and-control malware using the infrastructure of
Microsoft Teams.

Methods | 27

Figure 3.1: Threat scenario

There are two channels in the command-and-control architecture: the
instruction and the extraction channel as mentioned in the section 2.2.3. The
first channel consists in measuring the time, capacity, and bandwidth to send
over the instruction from the attacker’s machine to the victim’s machine.
Later, an evaluation of the robustness of the channel can be performed, taking
into consideration the entities and the external factors that can change the
behaviour of the channel. The second channel, from the victim’s machine
to the attacker’s, requires the same assessment. Further details about the
evaluation can be found in section 3.6.
The channels rely on the underlying infrastructure as mentioned in sec-
tion 3.5.1 and all the measurement depends on the status of it. Re-
evaluating the channels after weeks/months could lead to different results and
different outcomes. The time to execute the instruction is excluded from the
measurement; otherwise, the latency time would be highly coupled with the
execution time of the command.

28 | Methods

3.5.1 Targets and actors

It’s important to consider that in the evaluation not only the attacker’s and
victim’s machine are involved, but also the latency of Microsoft servers, the
carrier network and the network devices like Firewalls and proxies.

3.5.2 Assessing reliability and validity of the data
collected

The collected data is gathered in Zürich, Switzerland during the winter/spring
semester of 2023. Since most of the data taken relies upon the network
bandwidth and connections between the machines and the central Microsoft
server, the evaluation might or might not be reproofed in the future. Therefore,
the evaluation depends on three factors: machine specifics, network, and
Microsoft server. The last element in particular will be keener to improve over
time and it will speed up the whole system. In order to achieve better accuracy,
the evaluation and the data will be collected on multiple non-adjacent days to
avoid unsuspected failure, latency, or packet drop on the Microsoft side.

3.5.3 Data analysis technique

Quantitative data analysis will be performed for the evaluation. The collected
data will result from malware performance analysis at the end of the
experiment, and statistical techniques will be applied to profile the malware
according to the evaluation framework 3.6.

3.6 Evaluation framework

There exist multiple evaluation systems to identify and track the characteristics
of covert channels.
The one proposed by Torkashvan and Haghighi [18] evaluates stealthiness,
effectiveness, efficiency, and robustness: stealthiness refers to the impossibil-
ity to detect the ongoing communication between the bot and the botmaster;
effectiveness refers to the destructive power of a botnet (highly coupled with
the dimension of the botnet); efficiency represents the latency between the
client and the server; robustness indicates the reliability and stability of the
botnet architecture. Another evaluation framework refers to the bandwidth as
one of the major aspects of covert channel evaluation, and it was proposed by
Gligor in his book titled “A guide to understanding covert channel analysis of

Methods | 29

trusted system” [36]. Gligor suggests that “the maximum attainable bandwidth
of any channel must discount both noise and delays, and must assume that only
the senders and receivers are present in the system”, and so this evaluation
framework takes into account also the external factors affecting the bandwidth.

The evaluation framework defined in this thesis follows the guidelines of
Torkashvan and Haghighi as they assess some general criteria of the covert
channel. An analysis of the bandwidth is then added to it, based on Gligor’s
study. Additionally, robustness is redefined to evaluate the stability of the
channel rather than of the botnet architecture. Therefore, the work in this paper
is evaluated according to the following criteria:

• Bandwidth: The amount of data that can be sent per second using a
covert channel. To eliminate the elapsed time of process switching in
the same system, the bandwidth needs to be evaluated with the least
number of processes running on the machine; the measurements are
repeated several times, and the minimum value is then selected [36].
A higher bandwidth means a higher transfer rate and a more effective
covert channel.

• Efficiency: The amount of time it takes to transfer one data unit using a
covert channel.

• Robustness: The ability of a covert channel to maintain its functionality
throughout its lifespan. A more robust covert channel is less likely to
lose or not deliver packets to the receiver.

It is important to note that evaluating the performance of a covert channel
attack requires a thorough understanding of the target systems and networks,
as well as the methods and techniques used by attackers. The results of the
evaluation can be used to identify areas for improvement and to inform the
implementation of security measures to defend against covert channel attacks.

3.7 Software Tools

The following are the used software to perform the security assessment of
Microsoft Teams and to design the malware:

• VMWare: to manage and use virtual machines. In the testbed, two
virtual machines are used to perform the security analysis and the
evaluation.

30 | Methods

• Burp suite: to explore, brute-force, and analyse the API. This tool can
be useful in case a full analysis of the outgoing and incoming requests
needs to be performed. The intruder functionality allows multiple brute
force techniques to test user-given values and variables passed from the
client to the server.

• Python3 and lib: to develop a proof of concept of the malware, to analyse
the traffic, and to perform the evaluation. Additionally, python is needed
to create customized scripts to run against the Microsoft infrastructure.
This programming language is chosen for its versatility, even though
other program languages can be used as well.

• Wireshark: to analyse the traffic between client and server. As the tool
Burp, Wireshark can be used to fully filter all the content leaving the
client to the server. Contrary to Burp, wireshark analyses the packets in
the network later and not the communication in the application layer.

Malware design | 31

Chapter 4

Malware design

In this chapter, we analyse the client-server communications, before moving
onto the client application’s behaviour. Analysing the packet flows and the
requests can simplify the research and lead to a better understanding. Among
the various requests, we can see what information the MS Teams client
application needs to know once it is started up and what information need
to be pulled from the Microsoft server. If the application client stores data, it
is necessary to verify what is stored and what would happen if the file system
changes. If the application client has to request some information from the
server, it is essential to catalogue the API and its services, how to communicate
with them, and if something is hidden inside the traffic.

The client side of the Microsoft Teams application is an electron JavaScript
app or its browser version. After analysing and comparing the server
interactions carried out by both of these versions, their similarities in the
exchange with the server would help in reverse engineering the application.
This chapter gathers and summarises all the findings throughout this work.
Apart from testbed at Section 4.1, where it is described the setting used
to reproduce the threat scenario, the rest of this chapter provides detailed
descriptions of the MS Teams assessment, weaknesses, and covert channels
discovered during the thesis.

4.1 Testbed

As a testbed, we utilize two virtual machines, one running Ubuntu OS for
the attacker and the other running Windows OS for the victim. Additionally,
we use a virtual machine in Azure to create a web server available from the

32 | Malware design

internet. It is important to note that the malware is designed specifically
for Windows OS and may not be compatible with a Linux OS, as discussed
in the preceding Chapter 1.7. It involves indirectly other services in the
testbed, including the Microsoft Azure services and the Teams server, which
are needed relatively for Authentication and information exchange.
To access the Microsoft services, the two clients have access to the Internet,
but with a firewall sitting in the middle to block all the connections between
the two. The testbed uses two separate Azure tenants, which allow businesses
to configure a single sign-on system for their employees and manage users
with different roles and scopes within their business domain. By using the
admin webpage of the admin tenant, it is possible to configure Microsoft
services (i.e., MS Teams, Outlook, SharePoint) for the domain. The next
step involved creating test users in two different tenants and applying the same
default configuration for both of them. However, it is necessary to grant access
to MS Teams for the users in the domain, as it is not included by default.

The firewall is set up on the Windows side such that it blocks all
inbound communication between the two virtual machines, and no incoming
connections are possible to be established if a request is not made by the
network client beforehand. This security measure is essential to maintain
integrity and safeguard against potential security threats. An extra server
is needed to accomplish one of the covert channels attacks, and so we will
utilise an Azure Virtual Machine in order to set up a listener later on in the
experiment.

4.2 MS Teams analysis

This section will discuss the analysis and observations made throughout the
thesis on the Microsoft Teams systems. We outline the unique behaviours
of the system, and it provides insights for the final design. The first pattern
involves analysing network patterns by profiling the traffic generated by MS
Teams. In the second part, we will discuss the undocumented behaviours of
the MS Teams application and specific message exchanges between the client
and the server.

4.2.1 Traffic analysis

In the initial analysis of the MS Teams client, uploaded bytes, from the client to
the Microsoft server, were captured over a specific time frame in three usage

Malware design | 33

scenarios: the standby phase (Figures 4.1 and 4.2), where the user does not
interact with the client; the messaging phase (Figure 4.4), where the user
interacts with another user through chat; and the call phase (Figure 4.3), which
involves establishing a call between two users. The data sent from the client to
the Microsoft server is captured during real situations, thus none of the traffic
is crafted or artificially created.

The data are taken using a profiling program for measuring the amount of
data in upload and download per application in the system. The application is
called GlassWire endpoint security, a project driven by Jon Hundley.

In Figure 4.1 the upload bytes are displayed over a time interval of 400
seconds. It is evident that only a few bytes are transmitted, following a
repetitive pattern during the timeframe. This pattern is due to the WebSocket
activities, which involve sending ping/pong messages to ensure that the other
side is active. In a WebSocket connection, ping/pong messages are used to
keep the connection alive and ensure that both the client and server are still
available and responsive.

In the middle of the plots, we can see a huge spike of 2 KB sent, which is
a REST request for pulling the configuration updates.

Figure 4.1: Standby phase without background activities. Bytes sent over 400
seconds with one second sample size

34 | Malware design

Figure 4.2 emphasises on some of the background activities executed by
the Teams client. These activities include REST requests, that are unlikely to
occur, as they may come from a complete or partial refresh of data fetched from
the server. The activities observed in this scenario are considerably higher
compared to the previous one, with peaks reaching up to 40 KB, 60 KB, and
124 KB per second.

Figure 4.2: Standby phase during background activities. Bytes sent over 600
seconds with one second sample size

Figure 4.3 illustrates the upload data of a call within a minute. The
peak upload speed reaches approximately 900KB, and stabilises at 800KB per
second. By leveraging this pattern, we can optimize the traffic pattern for data
extraction. If we know the characteristics of a Teams call traffic, we can shape
the data extraction to match the same pattern.

The final scenario involves uploading a file into the system, and the file
transfer time can vary depending on the data size. Figure 4.4 displays the
amount of traffic sent per second during a brief period of time. The file
took approximately 6 minutes to upload into the system, with an upload
speed reaching up to 9 MB. This can significantly impact bandwidth for data
extraction, but it is not sustainable for more than a few minutes to conform
with the traffic pattern.

Malware design | 35

Figure 4.3: Call traffic between two users. Bytes sent over 750 seconds with
one second sample size

Figure 4.4: File sharing using the MS Teams chat. Bytes sent over 750 seconds
with one second sample size

36 | Malware design

4.2.2 Peculiar functionality

MS Teams tries to keep up with the trend, so its functionality quickly expands
with every update. As a modern chat software, there is the possibility to attach
a webhook to a group-chats. A webhook triggers actions based on a specific
event that occurs in another system or application, allowing for real-time
communication and automation between the two. For instance, a webhook
can be used to send event invitations or broadcast messages in general.
A peculiarity of this software concerns the upload process of a file into the
chat. In fact, the system does not allow a direct upload onto the MS Teams
system, but instead, it uploads the file first onto OneDrive, and its download
link is later shared in the chat. OneDrive is a cloud-based file hosting and
service developed by Microsoft, it allows users to store and share files with
others globally.

When it comes to user calls, Microsoft Teams offers a functional advantage
over other chat softwares. If a peer-to-peer communication cannot be
established between two entities, MS Teams can fall back to a client-server
call system using TURN as mentioned in Section 2.3. In addition to the
architectural layer, MS Teams attempts to establish a UDP channel first, and
defaults to TCP channel.
Suppose Entity A wants to communicate with Entity B without a peer-to-peer
connection. In that case, the call can go through the TURN server, which will
attempt to establish a UDP connection with Entity A. If this fails, Entity A
will request a TCP connection. Entity B can then establish a communication
channel with the TURN server. This channel can be a UDP one, even though
Entity A initiated a TCP channel with the TURN. MS Teams thus allows for
mismatched protocol call communication channels between two entities.

4.2.3 MS Teams user IDs

In MS Teams, each user has a UUID version 4 assigned to them. A UUID
version 4 is a type of Universally Unique Identifier, that is randomly generated.
It is a 128-bit number represented by 32 hexadecimal digits, typically displayed
in the format of eight hyphen-separated groups of hexadecimal digits, such as
“xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxxxxx”. The “4” in the third group of
digits indicates that it is a version 4 UUID. It is commonly used in computer
systems and applications to identify unique entities, such as objects, users,
or transactions. Whenever a user wants to communicate with another one,
the system combines the two UUIDs. Using this technique, it inherits all the

Malware design | 37

properties from the UUIDs: each chat will have a unique ID, no chat will have
a double and it can easily decompose to retrieve the single users in the chat.

4.2.4 WebSockets connection

WebSockets play a crucial role in MS Teams, serving three main functions
as revealed by the analysis: 1) verifying the client’s status with ping
pong messages, 2) receiving messages from other users, and 3) receiving
notifications of incoming calls. With regard to the ping pong function,
messages are continuously exchanged between the client and server throughout
the day to ensure that the connection is not lost. The messages are plain text
sent through the channel, as well as some call information. In MS Teams, there
are two different WebSocket, one serving the notification for the incoming
calls, while the second one serving the notification for messages.

4.2.5 Message flows

This section illustrates the major flows of chat messages between users. A
chat message consists of an exchange of information performed using REST
requests as shown in weakness 2.2.2 and consequentially fetched through
Websocket. There are three main types of chat message flows: create, replace,
and delete. In order to perform any of these actions through the API https:
//amer.ng.msg.teams.microsoft.com/, the skypetoken_asm
token is needed. The method used to retrieve such token from the computer
will be described later in Section 8.

Create a message

Sending a POST request to the endpoint https://endpoint/v1/us
ers/ME/conversations/<chat_id>/messages with the body
template in Listing 4.1 allows a user to send a message to the MS server. The
message will then be downloaded by the receiver’s WebSocket, as discussed
in Section 2.3.

Listing 4.1: JSON for message creation
{

"content": "<text␣message >",
"contenttype": "text",
"messagetype": "text",
"clientmessageid":<clientmessageID >,

https://amer.ng.msg.teams.microsoft.com/
https://amer.ng.msg.teams.microsoft.com/
https://endpoint/v1/users/ME/conversations/<chat_id>/messages
https://endpoint/v1/users/ME/conversations/<chat_id>/messages

38 | Malware design

"imdisplayname":"",
"properties":{

"importance":"",
"subject":""

}
}

A combination of the sender’s and receiver’s IDs (Section 4.2.3) is placed
instead of “chat_id” in the API to define the message’s receiving side. Before
sending out the POST request, define a “clientmessageID” and store it to allow
modification later.
The Server needs to reply with a 201 HTTP code [37] and the response body
would contain an ID used in the message replacing. A result code beginning
with 5xx likely indicates poor formatting of the body, whereas a code starting
with 4xx suggests an incorrect URL.

Replace a message

To replace a message, use the body template in Listing 4.1 and append at
the end of the API the server ID, acquired from the response of the creation
message flow. The final URL then follows the template https://endpoi
nt/v1/users/ME/conversations/<chat_id>/messages/<id
_server>. The id given by the server is intended to act as a timestamp [38],
which is necessary for identifying a unique object within a group, such as a
message within a conversation. Maintaining the same “clientMessageID” is
essential to achieve the desired behaviour. Failure to do so could result in the
system either creating a new message or returning an error. Finally, the REST
request is a PUT [11], and not a POST as in the previous case, and the API
requires the same skypetoken_asm token to authenticate the client.

Delete a message

Deleting a message is done by sending a DELETE request [11] to the endpoint
of the replace message. In the Microsoft Teams client, by default, there is an
additional parameter in the URL called behavior = “softDelete”. This can
be omitted since the server will not check the presence of this variable

Fetching old messages

While not a primary component of the message flows, the ability to
retrieve previous messages can be beneficial in the event that the WebSocket

https://endpoint/v1/users/ME/conversations/<chat_id>/messages/<id_server>
https://endpoint/v1/users/ME/conversations/<chat_id>/messages/<id_server>
https://endpoint/v1/users/ME/conversations/<chat_id>/messages/<id_server>

Malware design | 39

connection is lost or if there is no connection between the client and server.
The previous messages can be fetched through the same endpoint as before,
but through a GET request with two parameters: the number of elements called
“pageSize” and from which point in time called “startTime”.
The full GET request should look like https://endpoint/v1/users/
ME/conversations/<chat_id>/messages?pageSize=200&s
tartTime=1682512340

4.2.6 Preflight requests

Preflight requests are a part of the Cross-Origin Resource Sharing (CORS) [39]
mechanism used by web browsers to guarantee that requests sent from one
domain to another are secure and accepted by the server. These requests are
sent before each message and call request. The system does not check if the
preflight request is made before the proper request, and thus it can be excluded
and not forwarded to the server [40].

4.2.7 Primary and secondary APIs

As per Microsoft’s documentation [41], in order to use the MS Teams
infrastructure, it is necessary to use the “Microsoft Graph API”. This API
can be found at “https://graph.microsoft.com/” endpoint and it can be used to
retrieve any information in the Azure domain, which may be tokens, resources,
manage authentication and messages. Analysing carefully the REST requests
passing through the client and the server, we can notice that the request made
by the client, once the user wants to exchange a message, use a different
endpoint such as https://amer.ng.msg.teams.microsoft.
com/. Notice that the 5th (“amer” is the 5th level subdomain in the previous
URL) level domain might change according to the geographical area. Any
of them would work regardless of the user’s geographical location, but with
different latencies according to the distance.
The two APIs have a significant difference: the graph API needs several tokens
to carry out a REST request, whereas the client application’s API only requires
the skypetoken_asm token. The additional assumption consists of use the
second API because it might be less secure since Microsoft advertises the
use of the first one, which is the only documented API. However, reverse
engineering the API is necessary to comprehend and contextualise each
endpoint tree’s conceivable parameters.

https://endpoint/v1/users/ME/conversations/<chat_id>/messages?pageSize=200&startTime=1682512340
https://endpoint/v1/users/ME/conversations/<chat_id>/messages?pageSize=200&startTime=1682512340
https://endpoint/v1/users/ME/conversations/<chat_id>/messages?pageSize=200&startTime=1682512340
https://amer.ng.msg.teams.microsoft.com/
https://amer.ng.msg.teams.microsoft.com/

40 | Malware design

4.3 Weaknesses in MS Teams

These are the weaknesses found and used throughout the study to create the
covert channels. Analysing each of them individually can result in low-rating
findings [42], but as a whole they can be used to exploit a system (as is
explained in Section 4.4.6). Additionally, the findings are mapped to the CWE
framework (CWE) [42], which stands for Common Weakness Enumeration. It
is a community-driven catalogue of software and hardware weaknesses that
allows for categorising malicious software and hardware behaviours into a
standardised catalogue, helping to rate and compare weaknesses.

1. By default, external communication with users from other tenants
(Microsoft Domains) is enabled in Microsoft Teams, allowing messages
and calls to be exchanged between domains. This default configuration
can be changed by the admin through the dedicated portal.

This weakness is categorised under the CWE-453: Insecure Default
Variable Initialisation. This weakness can be addressed by limiting the
MS Teams communication with ONLY users in your tenant by default.

2. In Microsoft Teams, all client activities, such as call status and messages,
are logged in a file. This file does not have specific permissions and can
be read by any user. The file is located at HOME/AppData/Roami
ng/Microsoft/Teams/IndexedDB/https_teams.micro
soft.com_0.indexeddb.leveldb, where HOME is the user
directory. The file at this path is periodically replaced by MS Teams: it
is moved within the same folder with an “OLD” keyword prepended to
its filename, and a new file is created from scratch. The names of such
log files are incremented by a decimal value.

This weakness is categorised under the CWE-552: Files or Directories
Accessible to External Parties. The weakness can be addressed by
correctly applying an ACL (Access Control List) to the file. For instance,
only admins or the application can access the file and not any users in
the system.

3. The system does not validate part of the input during the POST request
for sending chat messages to the endpoint:
https://amer.ng.msg.teams.microsoft.com/v1/use
rs/ME/conversations/<chat_id>/messages.

HOME/AppData/Roaming/Microsoft/Teams/IndexedDB/https_teams.microsoft.com_0.indexeddb.leveldb
HOME/AppData/Roaming/Microsoft/Teams/IndexedDB/https_teams.microsoft.com_0.indexeddb.leveldb
HOME/AppData/Roaming/Microsoft/Teams/IndexedDB/https_teams.microsoft.com_0.indexeddb.leveldb
HOME
https://amer.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<chat_id>/messages
https://amer.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<chat_id>/messages

Malware design | 41

The request must define the body as the JSON shown in Listing 4.2,
where the relevant parts are the “content” and the “message type” keys.

Listing 4.2: JSON for message structure
{

"content": "<p␣
↪→ value='secretMessage '>message </p>",

"contenttype": "text",
"messagetype": "RichText/Html",
"clientmessageid":clientmessageID,
"imdisplayname":"",
"properties":{

"importance":"",
"subject":""

}
}

Sending HTML instead of plain text is possible in MS Teams, and
the attribute value can be set within the <p> tag without any response
from the client GUI. However, the entire message, along with the
clientmessageID, will be logged in the WebSocket and the log file. It
is important to note that the clientmessageID must be unique for all
messages, and it is necessary in order to modify or replace a message.
Most of the tags are validated and there is a whitelisting for the input tag
and especially for some key attributes to inject JavaScript. The script
tag, the onError tag and other keywords cannot be injected. There is the
possibility to send images as well with the same JSON structure, but the
image URL must be within the Microsoft domain.

This weakness is categorised under the CWE-790: Improper
Filtering of Special Elements. The weakness can be addressed by
parsing correctly the sent JSON and whitelisting the essentials tags and
attributes.

4. A chat message, or part of it, can be changed in the delivery side without
further notification on the receiving side. In any case, the new message
will be added in the log file and in the WebSocket .

5. Anyone can send a message to the endpoint of a webhook without
any sort of authentication . The webhook is structured as https:
//xxxxx.webhook.office.com/xxxxxxxxx, and it can be
used via POST request by anyone without the need of cookies/tokens,

https://xxxxx.webhook.office.com/xxxxxxxxx
https://xxxxx.webhook.office.com/xxxxxxxxx

42 | Malware design

as opposed to other scenarios. The xs are letters generated by Microsoft
during the creation of the webhook.

This weakness is categorised under the CWE-306: Missing Authentica-
tion for Critical Function. This weakness can be addressed by enforcing
an authentication on the webhook requests and applying a limit for
requests per user.

6. By default, client settings and updates are regularly pulled from the
server with an interval of roughly one second. The client takes a
perceivable time to update itself and to display the information on the
screen if an action is performed by another device.

7. Everyone can subscribe to the WebSockets using the tokens, as there
is no authentication of the client application . Unofficial applications
can use the WebSocket service without a preregistration. There are two
WebSockets: one for the messages and another one for the incoming
calls. Both of them require a Ping/Pong request to keep the channel
alive.

This weakness is categorised under the CWE-287: Improper Authenti-
cation. This weakness can be addressed by authenticating the sender,
thus only registered and verified applications can request content.

8. The authentication cookies are securely stored in an encrypted format
on the machine’s file system. However, any user can access these
cookies without requiring permission. To decrypt the cookies, it is
necessary to retrieve the symmetric key used for encryption from C:
/Users/username/AppData/Roaming/Microsoft/
Teams/LocalState. This symmetric key is encrypted using
the TPM, which stands for Trusted Platform Module, and employs the
DPAPI encryption scheme. Before decrypting the cookies, the TPM-
encrypted symmetric key must be decrypted. The TPM is a specialised
hardware component that enhances the security of a computer system
by providing a secure storage area for cryptographic keys and a secure
environment for executing cryptographic operations. It helps protect
against unauthorised access to sensitive data and prevents tampering
with the system’s configuration.
The DPAPI, which stands for Data Protection API, is a component
of the Windows operating system that offers data protection services.

C:/Users/username/AppData/Roaming/Microsoft/Teams/LocalState
C:/Users/username/AppData/Roaming/Microsoft/Teams/LocalState
C:/Users/username/AppData/Roaming/Microsoft/Teams/LocalState

Malware design | 43

It is used to encrypt and decrypt sensitive data, such as passwords
or cryptographic keys, using either the user’s login credentials or the
computer’s credentials as the basis for the encryption key. This ensures
that sensitive data remains protected while at rest on the system’s disk.

Since the master key is exclusively stored within the TPM, decrypting
the symmetric key involves submitting it to the TPM using a system
call. The TPM, in turn, utilizes the DPAPI to decrypt the symmetric
key. Once decrypted, this key is used in combination with AES in GCM
mode to decrypt the cookies file stored at C:/Users/username/Ap
pData/Roaming/Microsoft/Teams/cookies. The cookies
file contains all the cookies used by MS Teams and is encrypted using the
same method. Within these cookies, there are the skypeotoken_asm
and the bearer tokens The cookie file is a database file, which needs
to be opened through an appropriate library, such as SQLite, or similar
tools. The cookies’ values can be then fetched using SQL.
This entire cookie decryption process is summarised in Figure 4.5.

Figure 4.5: Cookie decryption schema to retrieve the skypetoken_asm and the
bearer tokens

This weakness is categorised under the CWE-693: Protection Mech-
anism Failure. The weakness can be addressed by having a shared
secret between the client and the server or bounding the cookie with
the browser fingerprinting.

9. Incoming packets from the client are not validated by the TURN server,
and this allows crafting and sending of additional packets to the server.
If there is a UDP channel established between the client and the server,

C:/Users/username/AppData/Roaming/Microsoft/Teams/cookies
C:/Users/username/AppData/Roaming/Microsoft/Teams/cookies

44 | Malware design

as shown in Figure 4.6, it is also possible to inject packets into the
channel, and the TURN server will relay those packets to their intended
destination. The packets require to be extracted from the flow by the
receiving side to separate the proper call traffic from the injected ones.
The additional packets do not influence the Teams client.

Figure 4.6: Packet injection into a MS Teams call

This weakness is categorised under the CWE-345: Insufficient
Verification of Data Authenticity. The weakness can be addressed by
validate the incoming data with content filtering or applying a sequence
number inside the stream.

10. There is no CSRF token in the credential requests for the WebRTC
token/relay server token. It can be requested many times with a
successful response.

This weakness is categorised under the CWE-352: Cross-Site Request
Forgery. The weakness can be addressed by adding a CSRF token for
each request.

4.4 Covert channels and malware design

The weaknesses in Section 4.3 lay the foundations for four covert channels,
namely the message, the call, and the webhook, which will be explored in
the Section. As mentioned in Section 1.1, these covert channels enable
communication between the attacker and the victim without establishing direct

Malware design | 45

connections. Figure 4.7 then illustrates the schema of the malware design,
leveraging the aforementioned covert channels to extract information from
the victim’s computer, and exploiting a message covert channel to issue
instructions to the victim’s computer. In the following subsections, this thesis
will detail the process of establishing the covert channels, referring to the
extraction channels as outgoing ones and the instruction channel as incoming
ones.

Figure 4.7: Schema of malware design

4.4.1 Incoming channel

The incoming channel needs to instruct the victim machine to execute a
specific command. This channel needs to be robust since it will be the control
channel, and losing it would break the attack chain and leave the attacker
without any attacker-victim connection.

After the victim has initialised the connection with the attacker (see
Section 4.4.6 for more details), the attacker has an opened MS Teams chat
with the victim. Once the receiving side accepts the first incoming message
from the sender, the chat becomes open. It means that no further notification
will appear for the new sender. In order to send out the commands, the
attacker exploits weaknesses 1 and 3: the input validation weakness allows
the forwarding of the attacker’s chat message to the victim machine, given
that all communication with external users is enabled by default.
Weakness 3 may also be useful in case our attack is discovered by the end-
user or by a system admin: the sent message is displayed in the application
as a simple “Hello” chat message, but it carries the extra layer of information

46 | Malware design

in the “value” attribute of the <p> tag in the HTML. This value is not shown
by any Microsoft application, but it can be read in the WebSocket or in the
logfile, as described in weaknesses 7 and 2. The notification of the incoming
message is not even displayed to the end user, as described in more detail in
Section 4.4.6.

Once the first attacker’s chat message is sent, we want to keep instructing
the victim’s computer to perform actions for us. Using weakness 4, we can
then modify that first message to contain additional instructions. This step
requires parsing the response ID given by the API in the previous step and
recalling the clientMessageID from the message before.

Figure 4.8: Schema of incoming channel. Instructions are sent using a chat
message affected by input validation

This incoming channel works for the following reason: The message is not
sent directly to the other user, but instead it is sent to the server and then, the
WebSocket will fetch the message from it. The TLS proxy does not control
for WebSocket traffic, and the firewall cannot block an already established
connection. In order to prevent such a communication, the TLS proxy has to
parse the WebSocket communication and distinguish or detect keywords in the
messages.

It is important to note that in the WebSocket flows different system
commands or properties, since the server may need to communicate some
actions to the client. Trying to detect the malicious message and leave the
valid ones can be challenging with the risk of limiting the functionality of

Malware design | 47

the application itself. Additionally, we can assume that the data written in
the WebSocket is legit and already sanitised since it comes from a known
source. There is still the chance that a Firewall can block the establishment
of the duplex channel of the WebSocket, but this would limit and block the
functionality of many applications.

4.4.2 Outgoing channel - webhook

This first outgoing channel explored uses the webhook as a carrier of
information. One of the options to move the data from the victim to the attacker
is through the webhook.

This channel is created on the attacker’s side; as a user, you can create as
many webhooks as you wish and then attach them to any MS Teams channel.
Any user can then forward a message using the webhook URL, even though it
is not his own webhook or it belongs to the same domain. Only the knowledge
of the webhook URL is sufficient to forward messages, as mentioned in
weakness 5. Sending the message to the webhook is only the first part of
the covert channel; the second part consists in a properly crafted message that
allows the attacker to render a Microsoft Teams card [43]. Using this Teams
card, a user can specify a title, a paragraph, an author and an image. The image
does not need to be an internal Microsoft resource, as it can be fetched by the
Microsoft server from anywhere on the Internet.

This covert channel is then created by sending to the webhook a Teams
card with an image URL that points to the attacker’s webserver. The image is
actually the response to the attacker’s query in an encoded or/and encrypted
form. The result of the attacker’s query could be then seen by the requested
endpoint, as shown in Figure 4.9.

4.4.3 Outgoing channel - message

The second type of malware design uses messages as a means of transferring
data between the victim and the attacker. This covert channel mainly takes
advantage of weakness 8 to impersonate the user, and weakness 6 to ensure a
user does not perceive the ongoing attack. Once the attacker has the session
cookies, he is able to impersonate, access the user’s service, or read sensitive
data. With cookies obtained through weakness 8, the malware can then send
MS Teams messages acting as the victim.

48 | Malware design

Figure 4.9: Webhook outgoing channel with MS Teams card rendering process

In MS Teams there is also the possibility to mute and hide a chat. This
results in avoiding pop-up notifications if a message is received in a specific
chat, and not displaying it in the list of Teams chats. The only way to undo this
setting is to actively search for the desired sender, right-click on it and select
the unmute option. This is unlikely to happen since the victim user needs to
know the username or user id of the attacker, and in this scenario, the victim
is not aware of the ongoing attack.

4.4.4 Outgoing channel - call

The third malware design method uses calls as a carrier of information. In this
particular scenario, we assume that the victim’s company blocked all peer-to-
peer connections. Peer-to-peer communication played historically a critical
role in modern network [44], being a blind spot for system administrators.
The major issue comes from the impossibility to correlate traffic through a
“stable” entity, such as a server, thus leaving room for data extraction from
bad actors. Due to the fact that peer-to-peer communication is not available
for MS Teams calls, Microsoft’s fallback moves all the calls in a client-server
architecture, using a TURN server (see Section 2.3). Additionally, a company
can either choose to block all the UDP connections, and use TCP ones instead,
or take advantage of the UDP properties for a faster connection [45].

Assuming that a company would use the UDP protocol to establish a

Malware design | 49

connection with the TURN server and it is possible to read the WebSocket (see
weakness 7), the attack starts with the malware listening on the WebSocket for
incoming call notifications and later creates a ghost call to transfer the data.
The Listing 4.3 shows an example of the call notification, the most relevant
fields are displayed, while the less meaningful were deleted for readability.

Listing 4.3: JSON received by the Teams server
{

"id":106757833,
"method":"POST",
"url":"/v4/f/RKyQnklY9ku8DB_NyzSxOg/",
"headers":
{

"Trouter -Timeout":"19298",
...
"Host":"xxxxx -. trouter.teams.microsoft.com :22004",
...
"trouter -request":
{

"id":"182c457b -xxxxxxxx",
"src":"trouter2 -azsc -euno -0-b",
"port":31012

}
},
"body":{
"evt":107,

↪→ "cp":"H4sIAAAAAAAACs1VTY/bNhD9Lzr00t ...",
...
}

}

It is important to identify this specific call among all the WebSocket messages,
with particular emphasis on the “cp” field in the body section. Although it
may look like random bytes, it contains the endpoints to accept and start the
call process. To retrieve the plain text of the “cp” field, it is necessary to
decode from base64 to bytes and then decompress the result. The plain text
would result in something like the following strings (the xs represent random
characters generated by Microsoft on run-time):

• attach: api.flightproxy.teams.microsoft.com/api/v2/ep/x.cc.skype.com
/cc/v1/forked/5fa8xx-xx-803b-xxxx/27/i1/941/attach?i=10-60-1-21

50 | Malware design

• progress: api.flightproxy.teams.microsoft.com/api/v2/ep/x.cc.skype.com
/cc/v1/forked/5fa8xx-xx-803b-xxxx/27/i1/941/progress?i=10-60-1-21

• reject: api.flightproxy.teams.microsoft.com/api/v2/ep/x.cc.skype.com
/cc/v1/forked/5fa8xx-xx-803b-xxxx/27/i1/941/reject?i=10-60-1-21

• accept: api.flightproxy.teams.microsoft.com/api/v2/ep/x.cc.skype.com
/cc/v1/forked/5fa8xx-xx-803b-xxxx/27/i1/941/accept?i=10-60-1-21

• answer: api.flightproxy.teams.microsoft.com/api/v2/ep/x.cc.skype.com
/cc/v1/forked/5fa8xx-xx-803b-xxxx/27/i1/941/answer?i=10-60-1-21

At this point, the real application client would need an estimated one second
to create the pop-up for the incoming call for the user, but this can be avoided
if the malware accepts the call right away. Based on the decompressed “cp”,
the following steps should be carried out to accept a call:

1. a POST request to attach;

2. a POST request to progress (optional);

3. a POST request to accept (to avoid the display of the notification to other
clients);

4. a POST request to answer.

The response to the attach POST request (step 1) can be interesting since it
may contain the API endpoints to send chat messages, to mute/unmute, and
the possibility to redirect the channel. After the response to answer POST
request (step 4) has been received, the Microsoft infrastructure would wait for
an incoming connection in order to establish a bridge between the two users.
This is done in two steps: first the negotiation with the webserver of the ICE
and then the request for relay server credentials.

The ICE protocol is needed to negotiate with the server which protocols
should be used in the channel, as the client is not aware of the policy enforced
by the firewall, and thus it needs to verify if the UDP or TCP connection can
be established. The ICE protocol also negotiates where to connect (to which
relay server, which would then carry the webRTC datagram) and lets the client
be aware of the NAT setting of its own network. To establish a connection with
the relay server, a GET request to https://teams.microsoft.com/
trap/tokens needs to be performed with the skypetoken_asm cookie. The
server would respond with a pair of credentials that can be used to authenticate

https://teams.microsoft.com/trap/tokens
https://teams.microsoft.com/trap/tokens

Malware design | 51

the client to the relay server. After the authentication with the client succeeds,
the client should be able to forward traffic to the server using UDP.

4.4.5 Malware horizontal spreading

Horizontal spreading, or so-called lateral movement, allows spreading the
malware across the network in an easier way, without passing through the
firewall or other network security devices [46].

The proposed malware does not have any features that allow for a direct
spreading of itself, but it can be nevertheless used in phishing attacks across
the company. Phishing is a type of attack where an attacker pretends to be a
trustworthy entity in order to trick the victim.
Usually phishing attacks come from emails/messages where the sender looks
like a real one, but it is not. An example could be a misspelled word in the
email that seems like the original one or an email with similarities to the real
one.

Using this design, the attacker can impersonate the victims into another
(not infected) user to trick other users into opening a file or performing some
action. Through the outbound covert channel, we could extract the tokens from
the systems and send them over the channel. The implant installation can be
done through various malware propagation methods such as through macro,
pdf or links.

4.4.6 Malware flow

The malware design for the threat scenario described above in Section 3.4,
using a cloud infrastructure, has the following requirements:

• The TLS proxy needs to be avoided, otherwise it would analyse all
requests passing through and trigger the alarms. If it is not possible,
the application layer encryption needs to be performed.

• The HTTP REST requests by the malware should be done using reliable
IPs such as Microsoft, Google, or Amazon. This would prevent
triggering conditions in the firewall since it expects many requests with
these IPs for internal services such as Microsoft Word or Google Single
Sign-On.

52 | Malware design

• The user of the infected computer should not have interactions with the
system in place, or the flow would be compromised otherwise.

• The incoming channel should not be blocked by the firewall.

We will now go through the whole command-and-control malware flow
from the beginning.
Once the malware is installed in a company’s computer, the first step is to
inform the attacker about the status of the implant. The implant has the
knowledge of a webhook URL, a session key for symmetric encryption, and
the Teams ID of the attacker. Before starting the initial contact, the implant
has to fetch the cookies from the machine, as described in the Weakness 8.
The cookies, private and public IPs, Teams User ID, and tenant ID are then
encrypted and sent over through the webhook using an MS Teams card format.
The Teams user ID and the tenant ID can be requested at https://team
s.microsoft.com/api/mt/emea/beta/users/aggregatedN
otification using the cookies. The attacker needs to automatically fetch
the information from the public webserver, where the request was made, and
decrypt the result. Section 5.3 explains in detail the advantages and drawbacks
of this solution, and a further investigation is described in Chapter 5.1. One of
the main drawbacks of this outgoing channel is the unreliability of multiple
requests, and therefore cannot be used for the command and control (see
Section 2.2.3) communication.

Once the first interaction with the attacker is performed, a chat between the
victim and the user is to be created. This second outgoing channel is meant to
be a reliable and secure way to exchange information between the attacker and
the client, so the webhook will not be further used. The cookies sent in the
first webhook allow restoring the connection, have a fallback plan, and spread
horizontally the malware as described in Section 4.4.5. The peer-to-peer chat
can be initialised by combing the IDs of both users together as follows: the
request has to be delivered to the endpoint https://emea.ng.msg.te
ams.microsoft.com/v1/threads with the JSON in the Listing 4.4.
The listing contains the MS Teams chat configuration in JSON format.

Listing 4.4: JSON body to create Teams chats
{

"members": [
{

"id": "8:orgid:cac502b0 -xxx -xxx",

https://teams.microsoft.com/api/mt/emea/beta/users/aggregatedNotification
https://teams.microsoft.com/api/mt/emea/beta/users/aggregatedNotification
https://teams.microsoft.com/api/mt/emea/beta/users/aggregatedNotification
https://emea.ng.msg.teams.microsoft.com/v1/threads
https://emea.ng.msg.teams.microsoft.com/v1/threads

Malware design | 53

"role": "Admin"
},
{

"id": "8:orgid:e49a1c77 -xxx -xxx...",
"role": "Admin"

}
],
"properties": {

"threadType": "chat",
"chatFilesIndexId": "2",
"uniquerosterthread": "true",
"fixedRoster": "true"

}
}

The IDs need to be changed according to the sender and receiver. The
other fields should remain as above, although we have not fully tested this
functionally, unpredictable behaviour might occur by changing the other field,
such as the role admin. The resulting chat would have the first ID concatenated
with the second one, and both would be appended as follows: https:
//teams.microsoft.com/conversations/19:<id1>-<id
2>@unq.gbl.spaces After the creation of the chat, the malware needs
to mute, unpin, and hide the chat, hiding any incoming message from the
user. This can be accomplished with three GET-request to the following
URLs: https://emea.ng.msg.teams.microsoft.com/v1
/users/ME/conversations/<id>@unq.gbl.spaces/pro
perties?name=alerts, to avoid notification for incoming message,
https://emea.ng.msg.teams.microsoft.com/v1/users/M
E/conversations/<id>@unq.gbl.spaces/properties?name
=unpinnedTime and https://emea.ng.msg.teams.microsof
t.com/v1/users/ME/conversations/<id>@unq.gbl.spac
es/properties?name=historyHiddenTime, to set in background
the notification. The unpin and the hide GET-requests have the JSON body
as unpinnedT ime : 168442xxxx and historyHiddenT ime : 168442xxxx,
respectively. The key values of both bodies are epoch timestamps of 10 digits
long. The timestamp needs to be always updated for request, or setting it to
a future epoch would work as well. All these three requests are PUT REST
requests, contrary to the other REST requests.

At this point, the attacker can instruct the victim’s computer by sending
a message through the incoming channel, as described in Section 4.4.1.

https://teams.microsoft.com/conversations/19:<id1>-<id2>@unq.gbl.spaces
https://teams.microsoft.com/conversations/19:<id1>-<id2>@unq.gbl.spaces
https://teams.microsoft.com/conversations/19:<id1>-<id2>@unq.gbl.spaces
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=alerts
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=alerts
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=alerts
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=unpinnedTime
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=unpinnedTime
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=unpinnedTime
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=historyHiddenTime
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=historyHiddenTime
https://emea.ng.msg.teams.microsoft.com/v1/users/ME/conversations/<id>@unq.gbl.spaces/properties?name=historyHiddenTime

54 | Malware design

The receiving side can use the WebSocket or the log file as highlighted in
weaknesses 7 and 2. Both options work, but using a log file to transfer
information is stealthier since there will be no additional connection from the
client to the MS Teams web server.

The malware can read the instruction and send over the result through the
message channel. In this case, the hide, mute, and unpin sequence needs to be
performed again. These multiple requests would not be perceived by the user
due to the amount of time that the client takes to fetch the new information
about the chat status from the server.

The attacker can then instruct the malware to open up a call between
them if a bigger chunk of information needs to be exchanged, as defined in
Section 4.4.4. For instance, if a database file needs to be transferred, then a
call covert channel would perfectly fit this use case. Even in this case though,
we should consider the duration and traffic limitation described in Section 5.3:
a call can be detected if it lasts for an unrealistic amount of time (a call hardly
lasts more than 1-2 hours) or if too many bytes are consistently uploaded.

The flow described in this section is summarised in Figure 4.10 with the
three actors attacker, victim and Microsoft server. Although there is an arrow
between the victim and the attacker, the connection always goes through the
Microsoft service as described in Sections 4.4.1, 4.4.3, 4.4.2 and 4.4.4.

4.5 Summary and key points

Initially, the analysis provided an overview of certain traffic patterns that arise
from the usage of Microsoft Teams. Given the extensive capabilities and
numerous features of MS Teams, it becomes possible to transmit data through
hidden channels using multiple different patterns. The main focus of the
chapter revolves around investigating the behaviour of the undocumented API
and its distinct characteristics. Within the Teams application, a total of 10
weaknesses have been uncovered, each accompanied by their corresponding
CWE (Common Weakness Enumeration) references. Lastly, building upon the
identified weaknesses, we defined four covert channels within the application
and propose a design for a malware that exploits them.

Malware design | 55

Fi
gu

re
4.

10
:M

al
w

ar
e

de
sig

n
flo

w

56 | Malware design

Results and Analysis | 57

Chapter 5

Results and Analysis

In this chapter, we present the evaluation of the discovered covert channels.
For each channel the bandwidth, the efficiency, and the robustness are tracked.
The focus of the evaluation concerns the reasoning behind the chosen outgoing
channels in the malware design, discussed in Section 4.4.6. Therefore, this
evaluation does not prove which channel is better, but instead, highlights its
characteristics and its properties.

The incoming channel, the channel from the attacker to the victim, is
not explicitly evaluated since it follows the same properties as the message
outgoing covert channel, the channel from the victim to the attacker. Lastly,
we discuss the reliability of the analysis and its reproducibility as well as the
detection methods to identify the discovered covert channels.
The outlined behaviours are not reported and documented by Microsoft and
the information about the limits of the request per second/minute did not reflect
the analysis.

5.1 Evaluation

The following plots depict the characteristics of the identified covert channels
against the evaluation framework described in Section 3.6.
To conduct the measurements, two virtual machines (one emulating the
attacker and another one emulating the victim) and also an external server in
the webhook case were employed, as described in Section 4.1. Python served
as a tool to estimate the bandwidth, proof robustness and measure the time
for the efficiency. To maintain consistency in efficiency measurements, the
system clocks of the machines were synchronised. It is worth acknowledging

58 | Results and Analysis

that the choice of Python as a programming language may result in increased
latency due to its interpreted nature, which generally makes it slower compared
to other programming languages [47]. Nevertheless, all measurements were
taken under identical settings and using the same internet connection.

5.1.1 Bandwidth

The bandwidth, as defined in Section 3.6, is “The amount of data that
can be sent per second using a covert channel. To eliminate the elapsed
time of process switching in the same system, the bandwidth needs to be
evaluated with the least number of processes running on the machine; the
measurements are repeated several times, and the minimum value is then
selected [36]. A higher bandwidth means a higher transfer rate and a more
effective covert channel. The values are calculated by measuring the number
of bytes sent to the server within a one-second interval. In the bandwidth
plots (Figures 5.1a, 5.1b and 5.1c), the blue line represents the trend observed
during the evaluation, while the red dotted line is determined by the minimum
observed bandwidth value and defines the available bandwidth of the channel.
The vertical axis corresponds to the measurement of bytes per second,
whereas the horizontal axis represents the sample number. Each sample is
an experiment of either 10, 20 or 30 seconds. During each experiment, the
malware attempted to send as many requests as it could within the given time
frame. The total number of requests transmitted was then divided by 10, 20,
and 30 seconds, respectively. Finally, the resulting values were multiplied by
the maximum amount of data that a covert channel data unit (i.e., chat message,
image path and UDP payload) can transfer.

Figure 5.1a shows the bandwidth of the call covert channel. It presents
a nearly linear graph, with the minimum one closely reflecting the overall
trend, indicating a bandwidth of 34,300 Bytes per second. In this specific
scenario, the channel’s throughput aligns with its bandwidth due to its
lossless behaviour, as highlighted in the robustness Section 5.1.2. Despite
the relatively small size of the UDP packets used to encapsulate the covert
channel data, the observed bandwidth of this channel is almost five times larger
than the webhook case. This high throughput is achieved because UDP, being
a stateless underlay protocol, does not necessitate ACK (Acknowledgement)
from the receiving side, ensuring a fast and responsive channel.

Figure 5.1b shows the bandwidth of the message covert channel, this plot

Results and Analysis | 59

refers to the outgoing message channel as well as the incoming message
channel. Unlike the previous case, the values depicted in the plot demonstrate
a fluctuating pattern in the channel. While two experiments achieved a rate
of 200 KB per second, the majority of the experiments exhibited bandwidths
ranging from 100 to 150 KB per second. Additionally, the average value
of the series, denoted by the green dotted line, stands at 133,579 bytes per
second, contrasting with the minimum value and bandwidth of 91,800 bytes
per second.

The last analysed bandwidth corresponds to the webhook, as depicted in
Figure 5.1c. The plot illustrates a less spiky graph compared to the previous
one, characterised by the relatively small difference between the red dotted
line (representing the minimum) and the green dotted line (representing the
average). The channel’s minimum value and bandwidth amount to 6,567
bytes per second, while the average hovers around 7,500 bytes per second.
The bandwidth of this covert channel falls in the last position, being 15 times
less effective than the message channel and 5 times less effective than the call
channel.

60 | Results and Analysis

(a) Bandwidth measured during call: 34,300 bytes per second

(b) Bandwidth measured using the chat message: 91,800 bytes per second

(c) Bandwidth measured using the webhook: 6,567 bytes per second

Figure 5.1: Evaluation channel bandwidth over multiple samples. The blue
line marks the samples, and the red dotted line outlines the minimum value.

Results and Analysis | 61

5.1.2 Robustness

It is crucial for the whole command-and-control system to be robust, in order
to reduce the likelihood of packet loss in the communication process. In some
cases, a highly robust channel may outweigh the bandwidth. For instance, a
channel with a 30% delivery rate and 10 bytes per second may be less efficient
compared to a channel with a 100% delivery rate with 5 bytes per second. In
the case of the 30 % delivered channel, the additional overhead comes from re-
transmitting the lost packets on the way or employing error correction, which
can increase the overall amount of time to transfer a file through the channel.

The robustness plots in Figure 5.2 present the percentage delivered ratio
on the y-axis, while the number of consecutive requests is shown on the x-axis.
If not indicated, the time interval between two adjacent requests is assumed to
be 0.

Figure 5.2a displays the robustness of the Teams messages with various
interval times between requests. The experiment includes over 175 requests
per scenario and indicates the accumulated percentage of delivered messages
at nth made requests. For instance, the yellow line, which represents a 1-
second interval, has a 75% successful request ratio after 75 requests made.
This implies that 56 messages were received and 19 were lost in transit.
This plot reveals the difference and importance of the interval time between
consecutive requests for this channel. Running the system with no time
between requests leads to a low delivery rate of around 30%. Already with an
interval of 0.5 seconds, the delivery ratio raises to 50%, which can be already
considered a reliable covert channel. The 2 seconds interval is the lower bound
interval for achieving a 100% successful delivery rate. It is important to notice
that in any system the initial requests always succeed and the decay starts after
n requests according to its interval time. As shown in Figure 5.2a, the first
drop happens after the 30th request with a 0-second interval and after the 55th
request with a 1-second interval. This happens due to the DoS (Denied of
service) protection [48]. Once a server receives many requests (or in this case
many messages) from a client, the DoS protection system takes over the load
and blocks some requests to allow the server to have enough time to process
the already received requests.

Figure 5.2b represents the robustness of the webhook with multiple
samples, where the experiment is conducted multiple times to obtain a more

62 | Results and Analysis

precise result. The dotted line is the average value of the collected samples,
while the individual lines correspond to different experiments.

Based on the plots, the webhook exhibits a normal behaviour that allows
for multiple consecutive requests, typically up to approximately 165 requests.
Beyond this threshold, the webhook ceases to function. Although this
information is not explicitly shown in the plot, it is worth noting that the
webhook resumes operation after approximately an estimated day. Based on
the experiments, it looks like a counter being reset after a certain amount
of time. While this channel demonstrates high reliability and enables the
transmission of multiple requests without any loss, it is not suitable for request-
expensive operations.

In the process of assessing the robustness of the call covert channel, the
same methodology was employed. Across the channel, all packets were
effectively transmitted to the receiving end without any loss, amounting to
zero packet loss out of five thousand packets. The experiment was repeated
several times within the same day and on different days throughout the
week, consistently yielding the same outcome. Despite the UDP protocol
underpinning the channel, the success rate of packet delivery remained at
100%.

Results and Analysis | 63

(a) First packet lost after 30 - 37 - 55 - 117 - 175+ requests in their interval

(b) Webhook dropping on average after 145 consecutive requests, maximum
after 165 consecutive requests.

Figure 5.2: Evaluation robustness over different samples.

64 | Results and Analysis

5.1.3 Efficiency

Efficiency, as defined in this study in Section 3.6, refers to the latency time
between the sender and the receiving side of the covert channel. To assess the
efficiency criterion, two timestamps are recorded for each measurement: one
before sending out the data and one after having received it. The latency is
calculated by subtracting the two timestamps, providing a measure of the time
it takes for data to traverse the covert channel. To ensure accuracy, the system
clock time was synchronised before conducting the evaluation, minimising
potential errors.

The call channel stands out as the fastest solution proposed, as shown in
Figure 5.3a. The blue line marks the consistent trend of the data sent through
the channel. When data is sent, it is directed to the STUN server, which then
forwards it to the intended receiver. The transmission of data occurs within
the channel using the UDP protocol. These characteristics contribute to the
channel’s snappy nature, resulting in lower latency compared to other covert
channels in Figures 5.3b and 5.3c.

The plot illustrates the latency values within a range of 0.02 to 0.04
seconds. It is noteworthy that across the 175 measurements, no outliers were
observed, indicating a consistently stable channel in terms of efficiency.

Figure 5.3b illustrates the efficiency of the message channel. The blue line
represents the latency time, ranging from 1.4 seconds to 2.2 seconds. However,
there are a few outliers in the evaluation, with some reaching 4.5 and 6 seconds.
Despite these outliers, the overall trend of the line remains consistent over time,
with an estimated efficiency of 1.7 seconds to reach the receiver. In this data
transmission method, the data is sent using a POST request to the server and
then pushed to the client through an open WebSocket connection.

The efficiency of the webhook covert channel is examined in Figure 5.3c.
In this channel, the data is transmitted through the webhook, triggering the
Microsoft server to render the Microsoft Teams card with its associated image.
The rendering process initiates the delivery of the data to our malicious server.
This process introduces a notable latency.

Based on the analysis of the experiment, the webhook covert channel
takes an average latency of approximately 1.8 seconds for delivering the

Results and Analysis | 65

message to the receiving side. This latency is relatively high compared to the
other proposed channels, making it one of the slower covert communication
methods. The latency remains consistent over time, as shown by the trend
observed in the chart. However, a few data points occasionally surpass the
threshold of two seconds.

66 | Results and Analysis

(a) Efficiency call channel on average 0.025 seconds.

(b) Efficiency chat message channel on average 1.75 seconds.

(c) Efficiency webhook channel on average 1.6 seconds.

Figure 5.3: Evaluation efficiency channels. Seconds taken from sender to
receiver.

Results and Analysis | 67

5.2 Threats to validity

The measurements were collected in the Zurich (Switzerland) region during
March and April 2023. If the same data was to be collected in a different
geographical area or at a different time, the result would possibly vary. If
the channels were measured in one, two or more years, the characteristics of
the communication channels might change significantly, or they could even be
blocked by Microsoft.

This results can be hardly applied into other setup such as Google Meets or
Zoom, although the same functionally can be presented in this collaborative
application. The message covert channel can result in completely different
result by applying a more strict filter for how many messages per seconds
can be sent. The webhook covert channel might be peculiar to the MS
Teams application due to the Teams Card and the possibility to request images
outside the Microsoft domain. Lastly, the call covert channel can be applied
in different scenario, and the expecting properties might reflect the once
identified in this work.

In April, a major update was released for Microsoft Teams, which
reportedly affected the client. However, it may have also impacted the back-
end servers. To obtain a more accurate measurement, alternative tools should
be used instead of Python. Particularly, when considering efficiency, the
values are relatively small, and a more precise analysis could be achieved by
directly retrieving the data from the network interface card, instead of fetching
the data from the OS through Python.

5.3 Detection

To bypass state-of-the-art detection systems, it is essential to avoid syn-
chronous communication among the bots in the network [30, 29]. Network
correlation and “behaviour similarity” among peers in the network represent
a non-trivial problem for botnets not targeted.
For covert channel detection, machine learning is not an out-of-the-box
solution. Currently, the training datasets for this problem do not exist, making
it impossible to apply supervised machine learning techniques such as SVM
and decision trees [25]. On the other hand, unsupervised algorithms might
be able to detect anomalies among REST requests or traffic distributions.

68 | Results and Analysis

Small and medium (or even large) companies cannot afford to train machine
learning algorithms based on their traffic distribution, especially when it
comes to keeping track of every application-based baseline and updating it
periodically [26]. Even if they could, the required data for such a solution can
be an overhead for many realities and it may create a high amount of false
positives with low accuracy [26].

One of the most advanced techniques to detect covert channel attacks
is traffic normalisation [20], enforcing a fixed packet size across all the
applications. This should be theoretically applied to the Teams calls as well.
In fact, having such a strict policy would increase the jitters of the call, making
unusable such applications.

5.3.1 Webhook channel

A Microsoft webhook URL follows the template https://xxxxx.webh
ook.office.com/yyyyyyy: the xs stands for the tenant name, where the
webhook has been created, and ys stands for the randomly generated id. This
domain is mapped to an IP in the Microsoft domain, which can be difficult
to detect. Additionally, the secret data is stored in the URL of the image in a
base64/encrypted format, which cannot be decrypted by the TLS proxy, since
the data is encrypted in the application layer and not in the transport layer. The
peculiar behaviour of this channel consists of multiple requests to the same
endpoint, which might attract some attention from the security system [49].
The IPS in combination with the TLS proxy might in fact detect it by looking at
the request’s entropy [23]. On the other hand, a firewall would not be helpful
in this case due to the reliability of the IP (The IP belongs to a well-known
service of Microsoft [50] and Microsoft advise whitelisting them).

The webhook technique consists of a POST request discussed in
Section 4.4.2, thus the connection would be split by the TLS proxy. The body
of the request is then analysed using the IPS policies, such as entropy requests.
Although the data is encapsulated using encryption and base64, the entropy of
the body is slightly different compared to the entropy of an image path [51],
and thus liable to detection. Assuming that the IPS would track only the image
field in the request body, the detection system might trigger an alert based on
the entropy difference between encrypted data (the case of the covert channel)
and plain text (the case of a normal Teams card) [52].

https://xxxxx.webhook.office.com/yyyyyyy
https://xxxxx.webhook.office.com/yyyyyyy

Results and Analysis | 69

5.3.2 Message channel

Any message sent between peers in a company environment reaches the MS
Teams server and then goes back to the company’s network. It implies that
any message for any domain needs to go through the server and use the same
IP as the destination, i.e., the “closest” Microsoft server.
The utopian defence scenario would be to decrypt on the fly all the
communication to analyse them, but this rarely happens in the real world.
Instead, the most common solution involves logging all the messages of the
users and using them in case of an investigation [53].

The message covert channel might be useful to transfer chunks of data at
once, being extremely reliable and versatile. Nevertheless, it is essential to not
overcome the threshold tracked in Figure 4.4, as this would help avoid being
detected through the Kolmogorov-Smirnov Test [23] or other traffic anomaly
tests.

5.3.3 Call channel

The call consists of one of the fastest and most advanced covert channels
among the ones identified, but with many unreliable aspects. The assumption
based on the threat scenario (see Section 3.4) is that the call uses the
STUN protocol over UDP to exchange data between users as described in
Section 2.3. In the STUN protocol, the first two bytes of the UDP packets
are the channel ID, while the next two are the payload length, followed by the
payload [54]. The firewall, in this case, does not prevent data extraction due to
the unorderedness of UDP flow. The TLS proxy is instructed to not intervene
in this process, leaving the IPS the last line of defence. The IPS could detect it
by using the Kolmogorov-Smirnov Test [23], comparing the traffic distribution
between two different calls. Nevertheless, the traffic anomaly detection can
be easily avoided by limiting the traffic generated by the implant to 800 KB
per second, trying to mimic the traffic sample in Figure 4.3, which shows the
uploads byte during a MS Teams call sample. This channel comes with quite
a stealthy footprint with a unique way to establish a covert channel, carrying
one drawback: limited transmission time, as a call would last between 30-60
minutes, with rare cases above 120 minutes.

70 | Results and Analysis

5.4 Summary

We analysed the properties of the covert channel based on the defined
evaluation framework — bandwidth, robustness and efficiency. The result
highlighted the characteristics of the discovered covert channel such as the
stealthiest channel being the call covert channel and the webhook covert
channel being unreliable. The message covert channel is then described as
robust and reliable, lacking stealthiness in some cases; it has been selected for
the control messages in the command-and-control system for these reasons.
According to the measurement bandwidth, the message covert channel takes
the first position, followed by the call and the webhook channel. Despite the
message channel being the most performant, it can be detected if carrying
too much information for a long time. The call covert channel takes over this
scenario, where the data transfer is large enough and a continuous byte transfer,
as a call would behave, is needed.

Conclusions and Future work | 71

Chapter 6

Conclusions and Future work

In the conclusions section, we analyse the stated objectives and propose
a potential solution to address cloud command-and-control using covert
channels. The limitations section outlines the constraints of this work and
emphasises the need for modifications in the design before its implementation.
The future work section identifies areas where the thesis can be further
enhanced. Lastly, the reflections section discusses ethical concerns related
to covert channels and the design of this malware.

6.1 Conclusions

The rise in remote and hybrid working [55] has led to a higher demand for a
different and greater variety of software to be installed on office workstations.
As a result, the businesses’ attack surface has expanded, creating new
opportunities for potential security breaches. Although there have been initial
efforts made to address the topic, a comprehensive analysis of covert channels
in business communication platforms has been lacking, making state-of-the-
art detection systems obsolete and inadequate for their complexities. For this
reason, this research paper inspected MS Teams, a business communication
platform at the core of many companies’ workflows, to uncover its covert
channels. A command-and-control malware that leveraged them was also
developed to further analyse and compare their peculiarities.

The traffic analysis of the undocumented MS Teams API was performed,
with traffic patterns for chat messages, calls, and standby phases being
recorded, and their upload behaviour being tracked. A security assessment
on the same API was carried out, uncovering the 10 weakness explored

72 | Conclusions and Future work

in Section 4.3. These weaknesses implied the existence of storage covert
channels to leak and transmit information between the internal and external
networks using MS Teams as a carrier. To prove that messages, calls and
webhooks can be leveraged as three different covert channels, a command-and-
control malware was then designed to defy the detection security measures of
the threat scenario in Section 3.4. Thanks to their traffic generation being
indiscernible from a normal usage of the platform, and by interacting with
Microsoft services rather than to the MasterBot directly, all three covert
channels are able to pass through firewalls, IPSs and TLS proxy completely
undetected.

Relying solely on traditional methods is insufficient for detecting
modern covert channel attacks that utilise cloud-based command-and-control
infrastructures, as we saw throughout this work. According to the paper [19],
we want to advise cloud providers and application owners to step forward and
to react proactively on this issue. As exemplified by the Dropbox case [16]
and discussed in this thesis, application providers possess a comprehensive
overview of the ongoing situation and should intervene when anomalous
requests are detected among the incoming traffic.

Throughout this thesis, we have demonstrated the existence of covert
channels in three different models. Based on the conducted security analysis, a
command-and-control system was proposed utilising incoming and outgoing
covert channels for the communication between the master (the attacker’s side
responsible for sending instructions and receiving query results) and the slave
(the compromised computer executing the instructions given by the master).

The last goal of this work was to evaluate all the covert channels and
establish their distinct properties through a comparative analysis. Different
channels possess unique characteristics and they can be used for different
use cases. The evaluation section (referring to Section 5.1) emphasised the
suitability of specific covert channels for routine information exchange or their
effectiveness in transferring large files between parties.

6.2 Limitations

The security assessment of Teams was conducted between February and
March 2023. During this period, the findings were utilised and reported to
establish a final malware design and define the covert channels. Subsequently,

Conclusions and Future work | 73

during the evaluation and the final adjustment, the covert channels were again
tested and proved to ensure the smooth functioning of the entire system.
However, a few updates were made between March and April 2023 that
introduced minor changes to the user interface as well as some modifications
to the back-end.

Regarding this project, two changes in MS Teams software affect the
reliability of the malware. Firstly, the call notification no longer arrived in
.gzip compressed format encoded in base64, but rather solely encoded in
base4. The content of this incoming notification was needed to accept, answer,
or reject a call. Secondly, there was a change in the location of the cookie file,
that is required to authenticate to the Microsoft API. Teams created a folder
called “Network” and the file is now placed inside. While these modifications
may seem minor, they could disrupt the flow of the channel and impact its
functionality.

It is worth noting that Microsoft implements changes within a span of less
than six months, and it is highly likely that new changes will be introduced
in the near future. Therefore, the malware system requires constant updates
to maintain its functionality, and some of the covert channels may not work
effectively in a few years’ time.

6.3 Future work

Despite the extensive work and security analysis conducted throughout
the project, there remains one aspect that has not been fully addressed.
Specifically, in the call covert channel discussed in Section 4.4.4. The
malware successfully accepts the call, authenticates, and receives credentials
from the signalling server. It then proceeds to authenticate with the relay
server. However, no traffic is transmitted from the receiver user. The
Microsoft architecture allows for multiple requests for relay credentials, but
the association of these credentials with the incoming call was not fully
comprehended.

However, once a connection is established between two users, it opens up
the opportunity to create the call covert channel and transmit data through
it. As a result, there is a slight remaining gap in this project. Due to
the project’s time constraints, it was not possible to fully comprehend the
underlying architecture.

74 | Conclusions and Future work

6.4 Reflections

The weaknesses found and described in Chapter 4.3 are reported to Microsoft
on the 16th of June 2023. The product owner is informed about the possibility
to create covert channels within the MS Teams application.

It is essential to emphasise that the purpose of this research and the
exploration of covert channels is not to enable the creation of malicious
malware or facilitate the extraction of data from systems. Instead, the
main objective is to raise awareness about the potential security implications
associated with such applications. This study aims to shed light on the
vulnerabilities and risks that may arise within these communication platforms.

While the findings of this thesis demonstrate the feasibility of covert
channels in the context of Microsoft Teams, it is important to note that the
actual code and implementation details of these channels are not disclosed
within this thesis. This decision is made based on ethical considerations and to
prevent any potential misuse or harm that could arise from public availability
of such information.

Looking ahead, this research opens up possibilities for further exploration
and analysis. The techniques and concepts employed in this study can serve as
a foundation for identifying covert channels in other applications or systems.
By applying similar methodologies, it may be possible to discover covert
channels in various contexts, highlighting the need for stronger security
measures and improved threat mitigation strategies. However, it is crucial
to approach such endeavours responsibly and with full consideration of the
ethical implications involved. Any future work in this area should adhere to
ethical guidelines and adhere to legal boundaries to ensure that the findings
are utilised for legitimate and constructive purposes.

References | 75

References

[1] B. W. Lampson, “A note on the confinement problem,” Commun. ACM,
vol. 16, no. 10, p. 613–615, oct 1973. doi: 10.1145/362375.362389.
[Online]. Available: https://doi.org/10.1145/362375.362389 [Pages 2
and 12.]

[2] S. Samonas and D. Coss, “The CIA strikes back: Redefining
confidentiality, integrity and availability in security.” Journal of
Information System Security, vol. 10, no. 3, 2014. [Page 7.]

[3] R. 2979. (2000) RFC 2979. Accessed: 10/2/2023. [Online]. Available:
https://www.ietf.org/rfc/rfc2979.txt [Page 7.]

[4] NIST, “Guidelines on firewalls and firewall policy,” https://nvlpubs.nist
.gov/nistpubs/legacy/sp/nistspecialpublication800-41r1.pdf. [Page 8.]

[5] R. 3644. (2003) RFC 3644. Accessed: 3/2/2023. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3644 [Page 8.]

[6] R. 8446. (2018) RFC 8446. Accessed: 4/3/2023. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8446 [Pages 9 and 10.]

[7] R. 2246. (1999) RFC 3644. Accessed: 3/2/2023. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc2246 [Page 10.]

[8] NIST. glossary term. Accessed: 10/4/2023. [Online]. Available:
https://csrc.nist.gov/glossary/term/intrusion_prevention_system
[Page 11.]

[9] D. K. Michael G. Solomon, Fundamentals of Communications and
Networking. Jones & Bartlett Learning, 2021. [Page 12.]

[10] M. Masse, REST API. O’Reilly Media, Inc., 2001. [Page 13.]

https://doi.org/10.1145/362375.362389
https://www.ietf.org/rfc/rfc2979.txt
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-41r1.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-41r1.pdf
https://datatracker.ietf.org/doc/html/rfc3644
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc2246
https://csrc.nist.gov/glossary/term/intrusion_prevention_system

76 | References

[11] L. Gupta. REST architectural constraints. Access on 2/3/2023. [Online].
Available: https://restfulapi.net/rest-architectural-constraints [Pages 13
and 38.]

[12] NIST. C2 command and control. Accessed: 1/4/2023. [Online].
Available: https://csrc.nist.gov/glossary/term/command_and_control
[Page 14.]

[13] N. I. of Standards and Technology. Cloud definition. Accessed: 1/4/2023.
[Online]. Available: https://csrc.nist.gov/glossary/term/cloud_comput
ing [Page 15.]

[14] J. McFarland, “Covert channels: An overview,” 12 2017. doi:
10.13140/RG.2.2.34969.47202 [Page 19.]

[15] B. Aloraini, D. Johnson, B. Stackpole, and S. Mishra, “A new covert
channel over cellular voice channel in smartphones,” CoRR, vol.
abs/1504.05647, 2015. [Online]. Available: http://arxiv.org/abs/1504.0
5647 [Page 19.]

[16] L. Caviglione, M. Podolski, W. Mazurczyk, and M. Ianigro, “Covert
channels in personal cloud storage services: The case of Dropbox,” IEEE
Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1921–1931,
2017. doi: 10.1109/TII.2016.2627503 [Pages 19, 23, and 72.]

[17] G. Shah and M. Blaze, “Covert channels through external interference,”
2009. [Page 19.]

[18] M. Torkashvan and H. Haghighi, “CBC2: A cloud-based botnet
command and control,” Indian Journal of Science and Technology,
vol. 8, 09 2015. doi: 10.17485/ijst/2015/v8i22/59773 [Pages 20, 21, 22,
and 28.]

[19] K. Clark, M. Warnier, and F. Brazier, “Botclouds - the future of cloud-
based botnets?” 01 2011, pp. 597–603. [Pages 20, 21, and 72.]

[20] M. Byrenheid, M. Rossberg, G. Schaefer, and R. Dorn, “Covert-channel-
resistant congestion control for traffic normalization in uncontrolled
networks,” in 2017 IEEE International Conference on Communications
(ICC), 2017. doi: 10.1109/ICC.2017.7996936 pp. 1–7. [Pages 20
and 68.]

https://restfulapi.net/rest-architectural-constraints
https://csrc.nist.gov/glossary/term/command_and_control
https://csrc.nist.gov/glossary/term/cloud_computing
https://csrc.nist.gov/glossary/term/cloud_computing
http://arxiv.org/abs/1504.05647
http://arxiv.org/abs/1504.05647

References | 77

[21] D. Frolova, K. G. Kogos, and A. V. Epishkina, “Traffic normalization
for covert channel protecting,” 2021 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (ElConRus), pp.
2330–2333, 2021. [Page 20.]

[22] M. Zuppelli, L. Caviglione, and M. Repetto, “Detecting covert channels
through code augmentation,” in Italian Conference on CyberSecurity
(ITASEC’21), 08 2021, p. 12. [Page 20.]

[23] S. Zander, “Bro covert channel detection (BroCCaDe) framework: Scope
and background,” 2017. [Pages 20, 68, and 69.]

[24] M. A. Elsadig and Y. A. Fadlalla, “Network protocol covert channels:
Countermeasures techniques,” in 2017 9th IEEE-GCC Conference and
Exhibition (GCCCE), 2017. doi: 10.1109/IEEEGCC.2017.8447997 pp.
1–9. [Page 21.]

[25] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou,
and C. Wang, “Machine learning and deep learning methods for
cybersecurity,” IEEE Access, vol. 6, pp. 35 365–35 381, 2018. doi:
10.1109/ACCESS.2018.2836950 [Pages 21 and 67.]

[26] M. A. Elsadig and A. Gafar, “Covert channel detection: Machine
learning approaches,” IEEE Access, vol. 10, pp. 38 391–38 405, 2022.
doi: 10.1109/ACCESS.2022.3164392 [Pages 21 and 68.]

[27] M. A. Ayub, S. Smith, and A. Siraj, “A protocol independent approach
in network covert channel detection,” in 2019 IEEE International
Conference on Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous Computing
(EUC), 2019. doi: 10.1109/CSE/EUC.2019.00040 pp. 165–170.
[Page 21.]

[28] H. Nafea, K. Kifayat, Q. Shi, K. N. Qureshi, and B. Askwith, “Efficient
non-linear covert channel detection in TCP data streams,” IEEE Access,
vol. 8, pp. 1680–1690, 2020. doi: 10.1109/ACCESS.2019.2961609
[Page 21.]

[29] W. Lu, M. Miller, and L. Xue, “Detecting command and control channel
of botnets in cloud,” 10 2017, pp. 55–62. [Pages 21 and 67.]

[30] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting botnet command
and control channels in network traffic.” in BotSniffer: Detecting Botnet

78 | References

Command and Control Channels in Network Traffic., 01 2008. [Pages 21
and 67.]

[31] F.-H. Hsu, C.-W. Ou, Y.-L. Hwang, Y.-C. Chang, and P.-C. Lin,
“Detecting web-based botnets using bot communication traffic features,”
Security and Communication Networks, vol. 2017, pp. 1–11, 12 2017.
doi: 10.1155/2017/5960307 [Page 22.]

[32] L. Caviglione, “Trends and challenges in network covert channels
countermeasures.” Applied Sciences, vol. 11, no. 4, p. 1641, 2021. doi:
https://doi.org/10.3390/app11041641 [Page 22.]

[33] R. Archibald and D. Ghosal, “Design and analysis of a model-
based covert timing channel for Skype traffic,” in 2015 IEEE
Conference on Communications and Network Security (CNS), 2015. doi:
10.1109/CNS.2015.7346833 pp. 236–244. [Page 23.]

[34] E. W. Dijkstra, The Humble Programmer. New York, NY, USA:
Association for Computing Machinery, 2007, p. 1972. ISBN
9781450310499. [Online]. Available: https://doi.org/10.1145/1283
920.1283927 [Page 24.]

[35] Microsoft. Microsoft 365 and Office 365 URLs and IP address ranges.
Access on 25/1/2023. [Online]. Available: https://learn.microsoft.com/
en-us/microsoftteams/office-365-urls-ip-address-ranges [Page 26.]

[36] V. Gligor, A guide to understanding covert channel analysis of trusted
system. National computer security center, 1993. [Pages 29 and 58.]

[37] I. E. T. Force. HTTP status code. Access on 23/04/2023. [Online].
Available: https://datatracker.ietf.org/doc/html/rfc7231 [Page 38.]

[38] IETF. (2002) RFC 8446. Accessed: 23/4/2023. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc3339 [Page 38.]

[39] Mozilla. CORS cross-origin resource sharing. Access on 26/4/2023.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/H
TTP/CORS [Page 39.]

[40] MDN. CORS cross-origin resource sharing. Accessed: 25/4/2023.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Glossar
y/Preflight_request [Page 39.]

https://doi.org/10.1145/1283920.1283927
https://doi.org/10.1145/1283920.1283927
https://learn.microsoft.com/en-us/microsoftteams/office-365-urls-ip-address-ranges
https://learn.microsoft.com/en-us/microsoftteams/office-365-urls-ip-address-ranges
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/rfc/rfc3339
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request

References | 79

[41] Microsoft. Graph API Microsoft. Accessed: 9/5/2023. [Online].
Available: https://learn.microsoft.com/en-us/graph/api/resources/team
s-api-overview?view=graph-rest-1.0 [Page 39.]

[42] Mitre. CWE list scoring system for weaknesses. Access on 24/5/2023.
[Online]. Available: https://cwe.mitre.org/cwss/cwss_v1.0.1.html
[Page 40.]

[43] Microsoft. (2008) What is a card MS Teams card. Accessed: 7/5/2023.
[Online]. Available: https://learn.microsoft.com/en-us/microsoftteams
/platform/task-modules-and-cards/what-are-cards [Page 47.]

[44] D. Chopra, H. Schulzrinne, E. Marocco, and E. Ivov, “Peer-to-peer
overlays for real-time communication: security issues and solutions,”
IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 4–12,
2009. doi: 10.1109/SURV.2009.090102 [Page 48.]

[45] B. H. Tay and A. L. Ananda, “A survey of remote procedure calls,”
vol. 24, no. 3, p. 68–79, jul 1990. doi: 10.1145/382244.382832.
[Online]. Available: https://doi.org/10.1145/382244.382832 [Page 48.]

[46] Cloudfare. (2023) Glossary what is lateral movement. Accessed:
3/5/2023. [Online]. Available: https://www.cloudflare.com/it-it/learni
ng/security/glossary/what-is-lateral-movement/ [Page 51.]

[47] L. Prechelt, “An empirical comparison of C, C++, Java, Perl, Python,
Rexx, and Tcl for a search/string-processing program.” 04 2000.
[Page 58.]

[48] M. Jonker, A. Sperotto, R. Rijswijk-Deij, R. Sadre, and A. Pras,
“Measuring the adoption of DDoS protection services,” 11 2016. doi:
10.1145/2987443.2987487 pp. 279–285. [Page 61.]

[49] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel,
“Disclosure: Detecting botnet command and control servers through
large-scale NetFlow analysis,” in Proceedings of the 28th Annual
Computer Security Applications Conference, ser. ACSAC ’12. New
York, NY, USA: Association for Computing Machinery, 2012.
doi: 10.1145/2420950.2420969. ISBN 9781450313124 p. 129–138.
[Online]. Available: https://doi.org/10.1145/2420950.2420969
[Page 68.]

https://learn.microsoft.com/en-us/graph/api/resources/teams-api-overview?view=graph-rest-1.0
https://learn.microsoft.com/en-us/graph/api/resources/teams-api-overview?view=graph-rest-1.0
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://learn.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/what-are-cards
https://learn.microsoft.com/en-us/microsoftteams/platform/task-modules-and-cards/what-are-cards
https://doi.org/10.1145/382244.382832
https://www.cloudflare.com/it-it/learning/security/glossary/what-is-lateral-movement/
https://www.cloudflare.com/it-it/learning/security/glossary/what-is-lateral-movement/
https://doi.org/10.1145/2420950.2420969

80 | References

[50] Microsoft. (2022) Microsoft 365 and office 365 URLs and IP address
ranges. Accessed: 2/3/2023. [Online]. Available: https://learn.micr
osof t.com/en-us/microsof tteams/office-365-urls-ip-address-ranges
[Page 68.]

[51] A. ONeal. (2021) How many bits of entropy in Base64, Hex, etc.
Accessed: 30/5/2023. [Online]. Available: https://therootcompany.com
/blog/how-many-bits-of-entropy-per-character/ [Page 68.]

[52] N. Provos and P. Honeyman, “Hide and seek: an introduction to
steganography,” IEEE Security & Privacy, vol. 1, pp. 32–44, 2003. doi:
10.1109/MSECP.2003.1203220 [Page 68.]

[53] Microsoft. Report and analytics message logging. Access on 29/5/2023.
[Online]. Available: https://learn.microsoft.com/en-us/microsoftteams
/teams-analytics-and-reports/teams-reporting-reference [Page 69.]

[54] R. 5389. (2008) RFC 5389. Accessed: 3/5/2023. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5389 [Page 69.]

[55] allwork. Remote work has increased 159% in 12 years. Access on
30/5/2023. [Online]. Available: https://www.allworknow.com/remot
e-work-has-increased-159-in-12-years [Page 71.]

https://learn.microsoft.com/en-us/microsoftteams/office-365-urls-ip-address-ranges
https://learn.microsoft.com/en-us/microsoftteams/office-365-urls-ip-address-ranges
https://therootcompany.com/blog/how-many-bits-of-entropy-per-character/
https://therootcompany.com/blog/how-many-bits-of-entropy-per-character/
https://learn.microsoft.com/en-us/microsoftteams/teams-analytics-and-reports/teams-reporting-reference
https://learn.microsoft.com/en-us/microsoftteams/teams-analytics-and-reports/teams-reporting-reference
https://www.rfc-editor.org/rfc/rfc5389
https://www.allworknow.com/remote-work-has-increased-159-in-12-years
https://www.allworknow.com/remote-work-has-increased-159-in-12-years

TRITA-EECS-EX-2023:608

www.kth.se

	Introduction
	Background
	Problem
	Scientific and engineering issues
	Purpose
	Goals
	Research Methodology
	Delimitations
	Ethics and sustainability
	Structure of the thesis

	Background
	Network security
	Firewalls
	TLS and connection splitting
	Security protection tools

	Network communications
	Covert channels
	REST API
	Cloud Command and Control (C2)
	Cloud and applications

	MS Teams
	Related work
	Types of covert channels
	Cloud Command and Control
	Detection of covert channels
	Countermeasures

	Methods
	Research Process
	Research Paradigm
	Research Strategy
	Threat modelling
	Data collection
	Targets and actors
	Assessing reliability and validity of the data collected
	Data analysis technique

	Evaluation framework
	Software Tools

	Malware design
	Testbed
	MS Teams analysis
	Traffic analysis
	Peculiar functionality
	MS Teams user IDs
	WebSockets connection
	Message flows
	Preflight requests
	Primary and secondary APIs

	Weaknesses in MS Teams
	Covert channels and malware design
	Incoming channel
	Outgoing channel - webhook
	Outgoing channel - message
	Outgoing channel - call
	Malware horizontal spreading
	Malware flow

	Summary and key points

	Results and Analysis
	Evaluation
	Bandwidth
	Robustness
	Efficiency

	Threats to validity
	Detection
	Webhook channel
	Message channel
	Call channel

	Summary

	Conclusions and Future work
	Conclusions
	Limitations
	Future work
	Reflections

	References

