
Doctoral Thesis in Computer Science

Breast cancer risk assessment and 
detection in mammograms with 
artificial intelligence 
YUE LIU

Stockholm, Sweden 2024

kth royal institute 
of technology



Breast cancer risk assessment and 
detection in mammograms with 
artificial intelligence 
YUE LIU

 
 
Doctoral Thesis in Computer Science
KTH Royal Institute of Technology
Stockholm, Sweden 2024

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology,  
is submitted for public defence for the Degree of Doctor of Philosophy on Thursday the 18 Janu-
ary 2024, at 2:00 p.m. in Air & Fire, Science for Life Laboratory, Tomtebodavägen 23, Solna.



© Yue Liu
© Karin Dembrower, Yue Liu, Hossein Azizpour, Martin Eklund, Kevin Smith, Peter Lindholm, Fredrik Strand (Paper A)
© Yue Liu, Hossein Azizpour, Fredrik Strand, Kevin Smith (Paper B)
© Moein Sorkhei, Yue Liu, Hossein Azizpour, Edward Azavedo, Karin Dembrower, Dimitra Ntoula, Athanasios Zouzos, 
Fredrik Strand, Kevin Smith (Paper C)
© Yue Liu, Christos Matsoukas, Fredrik Strand, Hossein Azizpour, Kevin Smith (Paper D) 
© Yue Liu, Moein Sorkhei, Karin Dembrower, Hossein Azizpour, Fredrik Strand, Kevin Smith (Paper E)

Cover page photo: DALL·E 3 
 
TRITA-EECS-AVL-2024:2 
ISBN 978-91-8040-783-0 
 
Printed by: Universitetsservice US-AB, Sweden 2024



i

Abstract

Breast cancer, the most common type of cancer among women worldwide,

necessitates reliable early detection methods. Although mammography serves

as a cost-e↵ective screening technique, its limitations in sensitivity emphasize

the need for more advanced detection approaches. Previous studies have relied

on breast density, extracted directly from the mammograms, as a primary

metric for cancer risk assessment, given its correlation with increased cancer

risk and the masking potential of cancer. However, such a singular metric

overlooks image details and spatial relationships critical for cancer diagnosis.

To address these limitations, this thesis integrates artificial intelligence (AI)

models into mammography, with the goal of enhancing both cancer detection

and risk estimation.

In this thesis, we aim to establish a new benchmark for breast cancer pre-

diction using neural networks. Utilizing the Cohort of Screen-Aged Women

(CSAW) dataset, which includes mammography images from 2008 to 2015

in Stockholm, Sweden, we develop three AI models to predict inherent risk,

cancer signs, and masking potential of cancer. Combined, these models can

e↵ectively identify women in need of supplemental screening, even after a

clean exam, paving the way for better early detection of cancer. Individually,

important progress has been made on each of these component tasks as well.

The risk prediction model, developed and tested on a large population-based

cohort, establishes a new state-of-the-art at identifying women at elevated

risk of developing breast cancer, outperforming traditional density measures.

The risk model is carefully designed to avoid conflating image patterns re-

lated to early cancers signs with those related to long-term risk. We also

propose a method that allows vision transformers to e�ciently be trained on

and make use of high-resolution images, an essential property for models an-

alyzing mammograms. We also develop an approach to predict the masking

potential in a mammogram – the likelihood that a cancer may be obscured by

neighboring tissue and consequently misdiagnosed. High masking potential

can complicate early detection and delay timely interventions. Along with

the model, we curate and release a new public dataset which can help speed

up progress on this important task.

Through our research, we demonstrate the transformative potential of

AI in mammographic analysis. By capturing subtle image cues, AI models

consistently exceed the traditional baselines. These advancements not only

highlight both the individual and combined advantages of the models, but

also signal a transition to an era of AI-enhanced personalized healthcare,

promising more e�cient resource allocation and better patient outcomes.

Keywords: Mammography, AI, Breast cancer risk, Breast cancer detection
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Sammanfattning

Bröstcancer, den vanligaste cancerformen bland kvinnor globalt, kräver

tillförlitliga metoder för tidig upptäckt. Även ommammografi fungerar som en

kostnadse↵ektiv screeningteknik, understryker dess begränsningar i känslighet

behovet av mer avancerade detektionsmetoder. Tidigare studier har förlitat

sig p̊a brösttäthet, utvunnen direkt fr̊an mammogram, som en primär indi-

kator för riskbedömning, givet dess samband med ökad cancerrisk och can-

cermaskeringspotential. Visserligen förbiser en s̊adan enskild indikator bildin-

formation och spatiala relationer vilka är kritiska för cancerdiagnos. För att

möta dessa begränsningar integrerar denna avhandling artificiell intelligens

(AI) modeller i mammografi, med m̊alet att förbättra b̊ade cancerdetektion

och riskbedömning.

I denna avhandling syftar vi till att fastställa en ny standard för bröstcancer

prediktion med hjälp av neurala nätverk. Genom att utnyttja datasetet Co-

hort of Screen-Aged Women (CSAW), som inkluderar mammografier fr̊an

2008 till 2015 i Stockholm, Sverige, utvecklar vi tre AI modeller för att

förutsäga inneboende risk, tecken p̊a cancer och cancermaskeringspotential.

Sammantaget kan dessa modeller e↵ektivt identifiera kvinnor som behöver

kompletterande screening, även efter en undersökning där patienten klassifi-

cerats som hälsosam, vilket banar väg för tidigare upptäckt av cancer. Indivi-

duellt har viktiga framsteg ocks̊a gjorts i vardera modell. Riskdetektionsmo-

dellen, utvecklad och testad p̊a en stor populationsbaserad kohort, etablerar

en ny state-of-the-art vid identifiering av kvinnor med ökad risk att utveckla

bröstcancer, och presterar bättre än traditionella täthetsmodeller. Riskmo-

dellen är noggrant utformad för att undvika att sammanblanda bildmönster

relaterade till tidiga tecken p̊a cancer med de som relaterar till l̊angsiktig

risk. Vi föresl̊ar ocks̊a en metod som gör det möjligt för vision transformers

att e↵ektivt tränas p̊a samt utnyttja högupplösta bilder, en väsentlig egen-

skap för modeller som berör mammogram. Vi utvecklar ocks̊a en metod för att

förutsäga maskeringspotentialen i mammogram - sannolikheten att en cancer

kan döljas av närliggande vävnad och följaktligen misstolkas. Hög maskerings-

potential kan komplicera tidig upptäckt och försena ingripanden. Tillsammans

med modellen sammanställer och släpper vi ett nytt o↵entligt dataset som kan

hjälpa till att p̊askynda framsteg inom detta viktiga omr̊ade.

Genom v̊ar forskning demonstrerar vi den transformativa potentialen med

AI i mammografianalys. Genom att f̊anga subtila bildledtr̊adar överträ↵ar

AI-modeller konsekvent de traditionella baslinjerna. Dessa framsteg belyser

inte bara de individuella och kombinerade fördelarna med modellerna, utan

signalerar ocks̊a ett paradigmskifte mot en era av AI-förstärkt personlig hälso-

och sjukv̊ard, med ett löfte om mer e↵ektiv resursallokering och förbättrade

patientresultat.
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friend: Thank you for always standing by my side, sharing every joy and struggle.
Knowing you has made me a better person and stronger than I ever thought I could
be.

Lastly, to my beloved family: my parents, grandparents and my Tingting sister.
I haven’t been with you as much as I would have wanted. Nevertheless, your
unconditional love and support have made me who I am today. It is you who
consistently provided me with immense strength to move forward. I love you all
forever.



List of Papers

A Comparison of a Deep Learning Risk Score and Standard Mammo-
graphic Density Score for Breast Cancer Risk Prediction
Karin Dembrower, Yue Liu, Hossein Azizpour, Martin Eklund, Kevin Smith,
Peter Lindholm, Fredrik Strand
Radiology, 2020, 294.2: 265-272.

B Decoupling Inherent Risk and Early Cancer Signs in Image-Based
Breast Cancer Risk Models
Yue Liu, Hossein Azizpour, Fredrik Strand, Kevin Smith
Medical Image Computing and Computer Assisted Intervention (MICCAI),
2020, Proceedings, Part VI 23, Springer International Publishing, p. 230-
240.

C CSAW-M: An Ordinal Classification Dataset for Benchmarking
Mammographic Masking of Cancer
Moein Sorkhei⇤, Yue Liu*, Hossein Azizpour, Edward Azavedo, Karin Dem-
brower, Dimitra Ntoula, Athanasios Zouzos, Fredrik Strand, Kevin Smith
Conference on Neural Information Processing Systems (NeurIPS) – Datasets
and Benchmarks Proceedings, 2021.

D PatchDropout: Economizing Vision Transformers Using Patch Dropout
Yue Liu, Christos Matsoukas, Fredrik Strand, Hossein Azizpour, Kevin Smith
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
2023, p. 3953-3962.

E Selecting Women for Supplemental Breast Imaging using AI Biomark-
ers of Cancer Signs, Masking, and Risk
Yue Liu, Moein Sorkhei, Karin Dembrower, Hossein Azizpour, Fredrik Strand,
Kevin Smith
Under review, 2023.

*
Equal contribution

v



vi LIST OF PAPERS

Other contributions by the author not included in the thesis.

F Adding Seemingly Uninformative Labels Helps in Low Data Regimes
Christos Matsoukas, Albert Bou Hernandez, Yue Liu, Karin Dembrower, Gisele
Miranda, Emir Konuk, Johan Fredin Haslum, Athanasios Zouzos, Peter Lind-
holm, Fredrik Strand, Kevin Smith
International Conference on Machine Learning (ICML), 2020, p. 6775-6784.

G E↵ect of Artificial Intelligence-Based Triaging of Breast Cancer
Screening Mammograms on Cancer Detection and Radiologist Work-
load: a Retrospective Simulation Study
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Chapter 1

Introduction

Breast cancer is the most common type of cancer for women worldwide. According
to the World Health Organization, there were 2.3 million women diagnosed with
breast cancer in 2020 alone, and 685,000 who succumbed to the disease [1]. In
approximately half of the cases, there are no discernible breast cancer risk factors
other than age and gender [2]. This fact is concerning, considering that early
detection is essential for improving prognosis, optimizing treatment approaches,
and reducing mortality rates [3].

Early detection is generally facilitated with the aid of screening, with magnetic
resonance imaging (MRI), ultrasound, and mammography being the most prevalent
modalities. The highest specificity and sensitivity can be achieved with MRI [4],
albeit at a higher cost than the other methods. Ultrasound, though comparable in
cost to mammography, tends to produce more false positives [5, 6].

Mammography is typically considered as the most economical screening method
among the three [7, 8]. This e�cacy has driven many countries to integrate mam-
mography into their population-wide screening programs [9]. Research demon-
strates that its implementation has led to an approximate 30% reduction in breast
cancer mortality [10]. However, the widespread application of mammography is
limited by a global shortage of radiologists [11, 12] – a challenge also observed in
Sweden, where the research for this thesis is conducted. Moreover, mammography
is challenged by its limited sensitivity, particularly in detecting cancer in dense
breasts [13].

In response to these challenges, this thesis aims to leverage the capabilities of
artificial intelligence (AI) in mammography screening, to enhance both the e�-
ciency and accuracy of breast cancer detection while providing valuable support to
radiologists.

Detecting breast cancer in its early stages is crucial, as it increases the likelihood
of successful treatment and a potential cure. Not all cancers, however, are caught
during screening due to the sensitivity limitation of mammography. Therefore,
predicting inherent risk of breast cancer would be beneficial as a complement. If

3
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From a healthy woman From a woman who Without cancer With cancer Low masking potential High masking potential
developed cancer of cancer of cancer

Figure 1.1: Three pairs of mammograms illustrate classifications related to the
prediction of inherent risk, cancer signs, and masking of cancer. The left pair of
images showcases two cancer-free mammograms, with the left image from a
healthy person, and the right from a woman who later developed cancer. The
middle pair displays examples of negative and positive classes for the task of
cancer detection, with one image being cancer-free and the other containing
cancer. An expert cancer annotation is depicted as a red region on the image with
cancer. In the right pair of mammograms, although there is no sign of cancer in
either of the two mammograms, the likelihood of the potential cancer being
discovered on the left mammogram is higher due to its lower masking potential.

one could reliably predict risk, it would allow hospitals to o↵er more personalized
care to high-risk women using enhanced screening or other preventative measures.
The interpretability of mammograms is yet another important factor to take into
account, as when the cancer is obscured by masking, the estimation of inherent risk
and cancer signs become less viable.

Given these considerations, we focus on three breast cancer tasks: the prediction
of inherent risk, cancer signs, and masking of cancer. Inherent risk measures the
possibility that a woman will develop cancer in the future; while on the other
hand, if there are cancer or signs thereof in the mammography at present, the
subject’s status is referred to as displaying cancer signs. The term masking
of cancer , moreover, refers to the phenomenon where the cancer is obscured by
its surrounding breast tissues, making it di�cult or even impossible to detect the
cancer with a standard mammogram.

Figure 1.1 depicts three pairs of mammograms. The leftmost pair includes
two cancer-free images: the left one is from a healthy individual while the right
one belongs to a woman who later developed cancer. The mammograms in the
middle, one of which is cancer-free and the other has cancer, are examples of the
negative and positive classes for the task of cancer detection. In the two rightmost
mammograms, there is no evidence of cancer; yet, the likelihood that the cancer will
be masked by its surrounding breast tissue is lower in the left mammogram than
the right one. This categorization process is termed as risk, cancer, and masking
classification.

Recognizing the importance of these three tasks, we established a collaboration
with Karolinska Institutet (KI) and Karolinska University Hospital (KS). Apart
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from expert-level domain knowledge within the field of radiology, the KI and KS re-
search team provided access to a large population-based dataset, Cohort of Screen-
Aged Women (CSAW) [14]. The CSAW dataset includes millions of mammography
images from various views, of over 500,000 women. The images were collected from
women of age 40-74 every 18-24 months between 2008 and 2015, in Stockholm,
Sweden. Clinical outcome data regarding cancer status were obtained from regional
cancer center registers.

Utilizing the data obtained, we aim to explore whether leveraging the vary-
ing strengths of predicting inherent risk, cancer signs, and masking of cancer can
enhance mammography screening performance. We hypothesize that while these
methods can aid radiologists when applied individually, they also o↵er combined
benefits when used collectively. For instance, a good cancer signs detector can assist
the radiologist in analyzing mammograms during screening, as a computer-aided
detection (CAD) model. In addition, the medical system could potentially expend
fewer resources towards women who exhibited low inherent risk and low masking
potential, while prioritizing women with high inherent risk and/or high masking of
cancer by allocating more resources to them.

To evaluate this hypothesis, we developed three types of mammography-based
AI models that are predictive of inherent risk, cancer signs, and masking of cancer.
These models were substantially integrated into a simulated clinical workflow, with
the goal of examining their potential to maximise patient outcome.

The five studies that this thesis is based on are listed below, along with a brief
summary highlighting their contributions.

• Study A compares the e�cacy of AI image-based models to traditional breast
density methods, highlighting their enhanced capability in predicting breast
cancer risk.

• Study B investigates the potential dangers of conflating long-term risk and
early cancer signs. By proposing a data selection strategy that excludes im-
ages exhibiting cancer signs from the training set, the study achieves refined
risk estimation.

• Study C centers on the notion of masking potential. By experimenting with
the introduced CSAW-M dataset, which benchmarks cancer masking in mam-
mography, the study demonstrates the proficiency of AI models in understand-
ing masking potential.

• Study D improves the risk prediction by leveraging high-resolution images
through vision transformers (ViTs), without compromising computational
e�ciency.

• Study E concentrates on integrating models. It demonstrates that a combined
approach, factoring in inherent risk, masking potential, and cancer signs, sur-
passes baseline models based solely on age and density in identifying women
who would benefit from supplemental breast imaging.



6 CHAPTER 1. INTRODUCTION

The thesis is structured as follows. Chapter 2 lays the groundwork for this thesis,
by providing essential background information. It explores current knowledge and
research progress within the fields of breast cancer risk assessments, detection, and
AI applications. Chapters 3-7 provide in-depth examination of five studies forming
the core of the thesis, discussing their respective methodology and results. The
thesis concludes in Chapter 8, which summarises the key findings from the earlier
chapters and reflects on their broader implications for the field of study.



Chapter 2

Background

2.1 Breast Cancer

Breast cancer is the most commonly diagnosed form of cancer in the world amongst
women. However, there are great disparities in the survival rate worldwide, for
which there are several explaining factors, such as early detection strategies as well
as accessibility of e↵ective treatment [15]. In 2020, the incidence rate of breast
cancer adjusted for age was 0.18% with a mortality rate of 0.03% in Sweden where
this research is conducted [16].

Risk Factors

There are multiple factors that contribute to the likelihood of developing breast
cancer. Above all others is sex, with about 99.0-99.5% of breast cancer cases occur-
ring in females [2]. Age has also been shown to correlate positively with incidence of
breast cancer [17]. Family history has, furthermore, proved to be a strong predictor
of breast cancer development [18] – there are instances where it has been possible
to establish a link between specific genetic mutations with breast cancer incidence
risk [19].

Several models for predicting the risk of developing breast cancer have been
developed in recent decades. An example of this is the Gail model [20] which takes
questionnaire answers from subject respondents as input in order to estimate the
risk of invasive breast cancer over a five-year period as well as during the lifetime
of the subject. The estimate score is based on known risk factors, such as age,
age at first childbirth, and family history. Another frequently used model for risk
prediction is Tyrer–Cuzick model [21]. It distinguishes itself from the Gail model by
considering family history at a more granular level. However, research by Glynn et
al. evaluated models based on questionnaires, and found their practical performance
to be limited [22].

Breast density, which is a measure of whether a breast contains more fatty
or fibroglandular tissue, is one of the most important factors when determining

7
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Figure 2.1: A comparison of breast density, from non-dense to dense. Breast
density quantifies the amount of fatty or fibroglandular tissue present in a breast.
It is positively associated with the risk of developing breast cancer. Additionally,
dense breasts are often more di�cult to interpret, as dense tissue, appearing as
white areas on a mammogram, may conceal abnormal breast changes.

the risk of developing breast cancer [23]. Figure 2.1 compares breast densities
from least dense to most dense, as observed through mammograms. A consistent
finding across studies is the positive correlation between increased breast density
and elevated breast cancer risk [24]. The denser tissue also introduces challenges
in mammogram interpretation. Specifically, denser breasts can obscure or mask
cancers, leading to decreased sensitivity in detecting breast cancer compared to
mammograms of fattier breasts [25, 26].

The density can be obtained from mammographic screens, and should not to
be confused with the clinical component of firmness during a physical examination
[27]. Mammographic density can be collected either through radiologist assessments
[28] via the BI-RADS density standard (ACR) [29, 30] or an automated tool [31].
Despite their prevalence, these density estimation techniques have their drawbacks.
They often lack consistency across assessments and tend to oversimplify the rich
information present in mammographic images [32].

To address these limitations, various methods have been developed to improve
the accuracy and consistency of breast density measurement. One such tool is LI-
BRA, a learning-based software that is publicly available [33]. The mammographic
density calculated by LIBRA, particularly breast dense area and percent density,
provide a baseline measure for assessing the likelihood of developing breast cancer,
which is discussed further in Chapters 3, 4, 5, and 7.

Screening Methods

Detecting breast cancer at an early stage not only reduces the costs associated with
treatment, but also increases the survival rate substantially. In order to aid in early
detection, screening has emerged as a popular method.

The three most frequently used screening methods are MRI, ultrasound, and
mammography. However, among these three, there is no clear winner in lowering
the likelihood of breast cancer universally.
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For the detection of breast cancer, breast MRI is the most accurate method.
It detects breast cancer more accurately than ultrasound and mammography es-
pecially in high-risk cases [4], however, it has the highest false-negative rate [34].
Furthermore, MRI is significantly more expensive and time-consuming to conduct
than the other two. In comparing ultrasound with mammography, it has been
shown that ultrasound better identifies patients with smaller cancer. The downside
of ultrasound relative to mammography, however, is that it incorrectly identifies
cases as positive more often [6]. Mammography is the most commonly used modal-
ity for breast imaging with a sensitivity score ranging from 65.2% to 78.7% [5]. It
is more accurate than ultrasound for women of higher age [35], albeit less so for
women with dense breasts [36]. Mammography is often considered as the most
cost-e↵ective choice, leading to its widespread use in population-scale screening
programs.

Despite the fact that screening techniques have been shown to aid in early
detection, there has been considerable debate over the risks of screening. E↵ects
often considered unfavorable include the financial expense and medical workload of
unnecessary follow-ups and biopsies, as well as the psychological stress they may
cause.

Mammography Screening Program in Sweden

According to European Union guidelines, women between the age of 40 to 75 are
advised to partake in regular mammography screening programs, which typically
means every second or third year depending on age group [37]. This type of regimen
has been proven e↵ective in the early detection of breast cancer.

In Sweden, the practise of large-scale screening began in 1986 for some regions,
and it was later expanded to the entire population by 1997 [38]. Today it calls
women for screening every 18-24 months for those aged 40 to 74. For this age group,
mammographic screening has reduced mortality by approximately 30%, shown in
various studies [10]. According to a Swedish study from 2019, the risk of dying
was significantly reduced for those included in organized breast cancer screening
programs, with a 60% reduction in risk within 10 years of the onset of diagnosis
and a 47% reduction within 20 years, in comparison to non-participants [39].

Figure 2.2 summarizes the current screening workflow in Sweden. Four-view
mammograms are performed: Left-MLO, Right-MLO, Left-CC, Right-CC, where
MLO stands for Mediolateral Oblique, and CC stands for Cranial Caudal. While the
CC view is taken from above the breast, the MLO view is obtained from the middle
of the breast outward. Each mammography exam consisting of mammogram images
from these four views are independently assessed by two radiologists. If either of
them detects suspicious signs, there will be a consensus discussion wherein two or
more breast radiologists conduct a mutual assessment of whether the participant
is considered healthy or should be put through further examination. The latter
occurs if they cannot agree on the health status of the women or if the person has
reported breast cancer symptoms at the onset of screening. If referred for further
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Figure 2.2: Currently in Sweden, two radiologists independently evaluate each
mammogram exam. In the event that one of them notices worrisome signs, there
will be a consensus discussion in which they will evaluate whether the individual
is considered healthy or needs further examination.

examination, the woman receives a personalised follow-up, which often includes an
extended mammographic examination in addition to other imaging methods like
ultrasound or MRI.

A Swedish study showed that among women with breast cancer, 17-30% of them
developed it in the interval between two screening rounds after a negative exam,
a phenomenon referred to as interval cancer [40], with the remainder being found
through screening, referred to as screen-detected cancer. In order to determine a
screening program’s e�cacy, the rate of interval cancer is an important indicator
since its prognosis is less favourable compared with screen-detected cancers, and
in addition, there is an increased likelihood of a higher grade and stage associated
with interval cancer [41].

Despite numerous methods for finding breast cancer in more women and at
an earlier stage, there is an acute shortage of radiologists and other resources in-
volved in conducting population-wide screening. This pressing need underscores
our motivation to make AI-aided screening the center piece of this research.

2.2 Neural Networks

Neural network (NN) is a key component in modern machine learning. In compar-
ison with traditional models, neural networks have superior learning capabilities.
The most common types of models are convolutional neural networks (CNNs), re-
current neural networks (RNNs), and transformers. This thesis covers two types
of architectures: CNNs that are utilised in Chapters 3, 4, 5, and 7, and vision
transformers (ViTs) in Chapter 6.

Convolutional Neural Networks (CNNs)

The use of CNN methods is common for tasks that involve analysis of images. The
first CNN was applied on handwritten digits in 1989 by LeCun et al [42], and they
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are therefore often given credit for building the foundation for the field of deep
learning.

Convolutional filtering plays a crucial role in many image processing algorithms,
including edge detection. In the context of neural networks, convolution is a fil-
tering operation that aids in identifying patterns in data. It enables weight shar-
ing – meaning that the same weights are used repeatedly in order to make the
network more e�cient. With sliding windows, it produces feature maps that are
translation-equivariant. This introduces good inductive bias – when sliding along
input features, each pixel should take its immediate neighbour into account. This
process is analogous to the way in which the human eye perceives images: by first
integrating over small regions separately and subsequently connecting them into a
coherent piece.

Although there are various types of CNN designs, they typically consist of sev-
eral convolutional layers wherein each layer is followed by an activation function
such as rectified linear unit (ReLU), pooling layers as well as fully-connected layers.

Our research studies included in this thesis are comprised of three neural net-
work types that are widely used in the application of computer vision: inception,
residual neural network (ResNet), and EfficientNet.

inception, is a 22-layer neural network introduced in 2014 by Szegedy et
al [43] and won the ImageNet Challenge that year. It is sometimes referred to
as GoogLeNet due to the origins of its development. The mechanisms of the visual
systems of humans – processing information on several scales prior to aggregating
it locally – inspired the creation of inception. Convolutions are used with sev-
eral di↵erent kernel dimensions (5⇥5, 3⇥3, and 1⇥1) allowing for the collection of
features at di↵erent scales. Subsequent to this process, each component of the out-
put is concatenated in order to achieve the local aggregation. inception-v2 [44]
and inception-v3 [45] were introduced in 2015 by the same group of researchers
with a series of improvements. inception-v2 utilises batch normalization while
replacing 5⇥5 convolutions with a two 3⇥3 setup in order to achieve parameter
reduction even as the receptive field’s size is maintained. The main contribution
of inception-v3 was the introduction of 7⇥7 factorized convolution which builds
the basis for inception-v4 later introduced [46]. The fourth version is similar to
its predecessor, however, it uses more inception modules and the architecture is
designed in a more simplistic manner. It is the best performing inception model
compared with the three prior iterations.

ResNet, developed by He et al [47], won the ImageNet Challenge in 2015,
one year after inception. A regular CNN serves as the basis for ResNet but
it utilizes skip connections with which the output of each layer is passed forward
to the second or third subsequent one. Between each of the layers, ReLU and
batch normalization take place. Compared with a plain CNN, ResNet generally
is deeper, with 152 layers being the maximum. Normally in CNNs, this number
of layers may cause issues with regards to training accuracy degradation, as well
as vanishing or explosion of the gradients. However, the utilization of shortcut
connections in ResNet mitigates against these types of issues.
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inception and ResNet were subsequently combined into a hybrid inception
module consisting of residual layers, known as inception-ResNet [46]. It has two
variants, inception-resnet-v1 and inception-resnet-v2, and they are equiv-
alent in terms of computational cost to inception-v3 and inception-v4 respec-
tively.

There are numerous ways in which CNNs can be scaled up, although, most
attempts lead to carefully hand-designed architectures. Four years after the origi-
nal ResNet, in 2019, the EfficientNet was introduced [48]. It was built on an
architecture that systematically scaled up the depth, width, and resolution accord-
ing to clearly defined principles. The authors of the EfficientNet publication
illustrated that there was in fact no independent relationship among the various
scaling dimensions. In particular, increases in depth led to better results medi-
ated by elevating the input resolution as well. Furthermore, it was shown that a
larger image required a larger number of layers in the network in order to broaden
the receptive field. More pixels also necessitated additional channels in order to
capture detailed and complex patterns. EfficientNet is based on the concept
of compound scaling wherein scaling dimensions (meaning the depth, width, and
resolution) are balanced, by maintaining a constant ratio. Depending on the scaling
factors, di↵erent variations of EfficientNet are accomplished, EfficientNet-
B1 to EfficientNet-B7 to be precise. EfficientNet-B1, when compared with
ResNet set to the maximum number of layers (152), achieves an impressive 5.7
times higher speed while being only approximately 13.16% of its size. Despite that,
the accuracy is greater than that of ResNet-152. Specifically, on ImageNet,
EfficientNet-B1 achieves a top-1 accuracy of 79.1%, compared toResNet-152’s
top-1 accuracy of 77.8%.

In this thesis, inception-resnet-v2 is used in Chapter 3, ResNet-50 in Chap-
ter 4, ResNet-34 in Chapters 5 and 7, and EfficientNet-B3 in Chapter 7.

Vision Transformers (ViTs)

The transformer architecture was initially introduced for sequence-to-sequence learn-
ing for machine translation [49] in 2017, and in the subsequent years it became the
standard for numerous applications of Natural Language Processing (NLP) [50,51].

In order to understand the relationship between words in a text, transformers
utilize attention, a component which was first used in Long Short-Term Memory
(LSTM) [52]. Transformers take a set of words as input, convert them into repre-
sentative tokens and calculate the attention. This process is enabled by multi-head
self-attention and feed-forward layers. The use of transformers is often computa-
tionally heavy since attention necessitates calculating the inner product between
each pair of tokens. This quadratic operation rapidly imposes a heavy load as the
number of tokens increases. Despite having computational and memory constraints,
this technique yields good results in the application of NLP.

While many practitioners within the field of computer vision adopted attention
mechanism similar to how it is commonly used for NLP-related tasks, CNNs pre-
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vailed as the preferred approach for some time. When the attention component
was present, it was utilized in conjunction with convolutions before the emergence
of Vision Transformers (ViTs) in 2020.

Transformers had generally been considered to be much more computationally
demanding for computer vision problems compared to applications in NLP. The
reason for this is that if each pixel is considered as a token, it would require a
substantially higher amount of calculations of the pairwise inner products, resulting
in a massive strain on memory and computation. ImageNet is a dataset containing
images of size 256⇥256 pixels [53] – small for the human eye but considered large
for computer vision related model training. The attention block of the transformer
would require (256⇥ 256)2 operations if each pixel is considered a token on such
images, a demand that is clearly limiting.

The first instance of computer vision adapted Transformers occurred in 2020,
named Vision Transformers (ViTs), wherein images are decomposed into a sequence
of patches [54]. Each patch is generally 16⇥16 pixels in size and are processed the
same way that words are in the standard transformer encoder [49]. The [CLS]
token, a learnable embedding (same as in BERT [50]) is utilized as a special input
token that is not associated with any single patch. The output of the [CLS]
token is finally processed by a standard classifier in the last layer. In contrast to
transformers used in an NLP setting, where the aim is to capture the relationships
between words, ViTs examine the interactions between image patches.

The originalViT architecture fully disregards convolutions. Compared to CNNs,
it has the advantage of allowing attention operations on distant components, even
in lower layers. CNNs have some inductive bias that is often beneficial in a regime
when there is not a lot of data and compute. In recent years, the growing avail-
ability of these resources has reduced the need for such inductive biases, therefore
paving the way for Transformer architectures.

Experiments conducted in [54] illustrate that ViTs o↵er superior performance
compared to traditional CNNs in various scenarios. However, it is important to
address that these models are often data-hungry, necessitating extremely large
datasets for optimal performance. The JFT-300M dataset, a proprietary dataset
belonging to Google, plays a vital role in the advancement of ViTs, with its vast
compilation of 300 million non-public images [55]. In 2021, Facebook (now known
as Meta) introduced DeiT which was successfully trained with only around 1.2
million images on ImageNet and still achieved comparable results to the origi-
nal ViT [56]. DeiT takes advantage of the same architecture as ViT, and the
transformer layers handle patch vectors in the same manner for both approaches.
However, in contrast with the original ViT, DeiT utilizes a distillation token that is
learnt concurrently with the spatial tokens, to match the output of a CNN teacher
model. The motivation behind this is that CNNs contain more prior assumptions
regarding images and need less training data when compared with transformers.
Moreover, data augmentation is applied and cross-validation is utilized in order
to conduct hyperparameter search targeted at identifying an optimal optimizer,
learning rate, and weight decay.
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ViTs typically operate on 16⇥16 patches, however, some tasks could require
detailed information down to the pixel level. For instance, semantic segmenta-
tion will typically benefit from converting every single pixel into a token, rather
than taking advantage of patches. Yet computational limitations – specifically the
quadratic complexity w.r.t. the number of tokens – make the use of ViTs or DeiTs
ine↵ective. To tackle this, SWIN was proposed in 2021 [57].

SWIN is based on ViTs but processes images using a hierarchical methodology
with shifted windows. Instead of choosing one patch size and sticking with it as in
ViT and DeiT, SWIN initiates the process with small patches in the first layer —
with 4⇥4 pixel patches — and subsequently merges them into larger ones in deeper
layers. Shifted window-based self-attention is at its core. It limits the attention
span, ensuring that instead of patches communicating with every other, they reply
on their neighbors, leading to linear complexity, as opposed to quadratic. The
merging layer then merges the outputs and applies linear projection. The attention
window is shifted in various layers where the process is repeated but allows di↵erent
patches to communicate at certain layers, creating a chain of connection between
all of them. It was shown that SWIN outperforms ViTs and DeiTs in many tasks
including image classification, object detection as well as semantic segmentation.

In this thesis, DeiTs and SWINs are used in Chapter 6.

2.3 AI in Mammography Analysis

In recent years, AI has made tremendous achievements for complicated tasks such
as automated speech recognition, machine translation, and object detection on real-
world data. As a result of their success, AI has received a lot of interest in the field
of medical imaging, including but not limited to mammography analysis.

Cancer Detection

Most research related to mammography has revolved around computer-aided di-
agnosis (CAD). According to several studies, CAD systems perform satisfactorily,
either matching or exceeding the radiologists in terms of diagnostic accuracy [58,59].
Furthermore, research has demonstrated that radiologists who utilize CAD systems
as a supplementary tool for cancer detection outperform those who do not use such
CAD assistance [60, 61].

Traditionally, the data-driven cancer diagnosis process consists of a pipeline
with two stages: first a candidate detector with the purpose of extracting regions of
interest and subsequent classification in order to determine if the lesion is malignant
or benign. There are studies where neural networks have been integrated within one
of the stages. In previous studies, mass regions were detected using neural networks
exclusively [62] or a cascades of neural networks as well as traditional machine
learning classifiers [63]. CNNs have been utilized to categorize pre-segmented breast
masses as benign or malignant [64, 65].
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In recent years, an abundance of research has been conducted using a single
end-to-end neural network to replace the multi-stage method. This approach solves
the classification problem by analyzing entire images or a set of multiple-views. In
some cases, Region of Interest (ROI) annotations were excluded from the diagnostic
process [66–68], while yet other approaches included ROI annotations in conjunction
with image-level cancer status in order to improve the accuracy. For instance, one
study proposed a CAD system based on YOLO [69] to detect and classify breast
cancer masses [70].

In Chapter 7, our cancer signs detector follows a similar procedure as in [71]
requiring ROI annotations. We initially trained a patch classifier aided by ROIs
extracted from multiple datasets. The weight parameters of the patch classifier
were subsequently used to initialize the cancer detector, which accepts a whole
image as input.

Risk Estimation

Predicting breast cancer risk using neural networks has only been attempted by
a small number of studies. These studies frequently face limitations in terms of
scale and timeframe, as they often rely on small datasets and make predictions
over a relatively short time horizon. For instance, studies [72, 73] examined nega-
tive screening samples, where the number of cases was in the hundreds, with the
intention of predicting occurrence of positive status in the subsequent screening.

Using a similar number of subject participants, Li et al. compared neural net-
works and conventional texture analysis for classifying the risk of patients when
equipped with hand-selected ROI [74]. The patients of high risk were women with
prevalence of a certain genetic mutation or unilateral breast cancer. Women with
low risk were selected on the basis of showing a lower than 10 % lifetime risk when
scored by the Gail model [20]. The neural networks performed similarly to the
conventional texture analysis and the performance improved when both methods
were used in conjunction.

In order to investigate the notion of localized breast cancer risk prediction, Neb-
bia et al. implemented two neural networks with identical settings [75]. The first
model was trained on the upper half of the mammography images while the second
used the lower half for training. It was possible to establish a correlation between
the location of a sub-region and its predictive performance for risk assessment [75].

Another study from He et al. attempted to determine which patients with
abnormal mammograms should be evaluated in biopsy [76]. It considered mam-
mography screenings, images from ultrasounds, the demographics of the patients
as well as the clinical report with a multi-modal approach.

Paving a new era in risk estimation, recent research has demonstrated the ef-
ficacy of AI models in analyzing large population-level cohorts [77]. For risk pre-
diction within a five year period, neural networks trained on mammograms and
logistic regression models trained on questionnaires outperformed the established
Tyrer-Cuzick model [21].
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Our research to develop a neural network for risk estimation was also evaluated
over a large cohort. The work described in Chapter 3, which was developed con-
currently with [77], illustrates how risk prediction with CNNs outperforms density-
based scores over a five-year period. Chapter 4 attempts to raise awareness of
the downsides of conflating long-term risk with cancer signs in risk models. The
risk predictor in Chapter 7 improves prediction accuracy by incorporating various
techniques, such as ensembling and test-time augmentation [78].

At present, Chapter 6 is the only published research that addresses mammogra-
phy risk estimation using vision transformers. By randomly discarding input image
patches in the training stage, a five-fold decrease in computation and memory con-
sumption is achieved, while simultaneously elevating performance.

Masking Prediction

Apart from cancer detection and risk estimation, this thesis discusses a third key
aspect of mammographic analysis – masking estimation. This task aims to predict
the likelihood that a cancer is obscured by surrounding tissue.

Breast image density has previously been measured as a proxy. Our work ex-
plained in Chapter 5 was the first in estimating masking of breast cancer with
AI models. We introduced a dataset with masking potential annotated by five
experts. Furthermore, our AI model trained to approximate the masking of can-
cer outperforms its breast density counterparts in identifying screened participants
with interval as well as large invasive cancer, despite not being trained explicitly
for this task. In Chapter 7, we show that AI-based masking model adds value in
identifying women who would potentially benefit from additional screening.



Chapter 3

Predicting Breast Cancer Risk

with AI

3.1 Introduction

Everyone has the risk to get breast cancer. While the risk is relatively low for
some, it can never be ruled out for anyone. The implementation of mammographic
screening has proved e↵ective in lowering the mortality of breast cancer [10]. Unfor-
tunately, though, there are still a number of cases of cancer that go undetected due
to the imperfect sensitivity of mammography and the presence of interval cancer –
cancer that occurred after screening.

Accurate identification of individuals at high risk of breast cancer allows hos-
pitals to allocate resources more e↵ectively. This enables the implementation of
elevated personal care, such as enhanced screening protocols.

The aim of breast cancer risk estimation is to predict the probability that some-
one will develop cancer, typically taking into account various factors, including age,
medical history, and family background. Gail [20], Tyrer-Cuzick [21], and other
questionnaire-based models that date back further in time calculate a risk estimate
on the basis of such information. However, their viability have been questioned
and criticism has been cast regarding miscalibrations [22]. In fact, these meth-
ods have tended to overestimate the probability of cancer for groups with high
risk while underestimating it for the groups with low risk. In Sweden, where this
research is conducted, these questionnaire-based models are not applicable. The
main reason is that Swedish healthcare infrastructure does not routinely gather key
personal information such as family history, which is essential for breast cancer risk
estimation.

Breast density can be estimated from mammographic images and can serve as a
proxy to measure the risk of developing breast cancer [23,24]. This is because dense
breasts have been shown to correlate with an increased risk of developing breast
cancer. Additionally, higher breast density may mask tumors in mammograms,
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making early detection more challenging.
According to some studies, the e↵ectiveness of questionnaire-based models can

be improved, when density is used to complement other self-reported risk fac-
tors [79]. However, the practice of summarizing a mammogram with a single density
value has its limitations, as it disregards minute details and local spatial relation-
ships that are often crucial [32].

Neural networks can capture mammographic density and other important cues
that are correlated with long-term risk. Motivated by this, we set out to train AI
models on mammography images in order to estimate breast cancer risk.

In developing models for predicting inherent risk, most research assumes (a)
inherent risk exists in mammograms from women diagnosed with cancer while (b)
mammograms taken from healthy women do not carry it. Following these assump-
tions, we can simplify the task to one of binary classification, where each mam-
mographic image is assigned a class label of either one or zero, to signify whether
this mammogram exhibits inherent risk or not. However, this does not fully cap-
ture the reality that the risk of developing breast cancer can never be ruled out
regardless of health status, lifestyle, and genetic factors. Furthermore, the limited
sensitivity of mammography screening can result in the risk factors present in prior
images of cancer patients being undetectable. Despite these limitations, the use of
this simplified binary classification approach allows us a practical path to develop
a potentially powerful AI risk predictor, which would otherwise be impossible.

In Study A, we study the feasibility of using AI models for inherent risk predic-
tion by comparing a neural network approach with a conventional breast density
model. This chapter begins with an explanation of our research approach in Section
3.2, and subsequent to that, we present our findings in Section 3.3.

3.2 Study Design

We train two types of machine learning models aimed at discerning women at-
risk versus those who are not: (a) an image-based neural network which takes a
combination of mammograms and image acquisition variables as input, and (b) an
age-adjusted logistic regression (LR) model that takes age as an input along with
either the neural network’s output risk score or breast density measures.

For ImageNet classification problems, the performance of inception-resnet-
v2 was superior compared with all others when this work was conducted. As
such, it was selected as the backbone model. inception-resnet-v2 adds residual
connections on top of the inception module. It considers di↵erent kernel sizes
for convolutional layers, and the skip connections were introduced for improved
optimization of the model, as well as preventing the vanishing gradient problem.

The model inputs are constructed through an unique process. We generate
three crops centred on the breasts of di↵erent scales, forming the inputs for the
image-based model. This configuration setup is motivated by the potential value
of both local and global patterns in risk prediction. Examples of extracted image
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Figure 3.1: Examples of image crops used as the network’s input in Study A that
captures both the subtle local patterns in the breast’s center and the global
information, such as the density and shape of the breast. The native resolution is
shown by the green square, which has a size of 299⇥299 pixels. The bigger yellow
square has 598⇥598 pixels, which is double that size along both dimensions. The
red rectangle varies in size so that regardless of the size of the breast, it always
covers it completely. These three crops are each reduced to the same 299⇥299
dimension and then concatenated to create three channels as network input.

crops are depicted in Figure 3.1. The green square, represented by 299⇥299 pixels,
portrays the native resolution. Twice the size of that, at 598⇥598 pixels, can be
observed in the larger yellow square. In the region at the centre of the breast, both
of these scales capture subtle local patterns. The red rectangle always covers the
entire breast regardless of its size, and therefore varies in size. Shape and density
of the breast, among other factors, can be extracted through the red rectangle
to determine global patterns. All three crops are resized to the same 299⇥299
dimension and subsequent to that, concatenated forming three input channels.

Apart from mammography images, various acquisition variables that were gath-
ered at the time of mammography and stored in DICOM images are introduced at
the input level of our models as well. These included variables are compressed breast
thickness, compression force, exposure, and current. They were chosen based on
the hypothesis that they are highly correlated with image appearance which may
enhance reasoning regarding image information and consequently paving the way
for a further optimized model performance.

Studies have shown that the incidence of breast cancer exhibits a positive cor-
relation with a woman’s age [17]. The age-adjusted LR model therefore specifically
adds age as input. In order to predict cancer risk, age is taken as input in the LR
model in conjunction with the neural network’s output risk score as an additional
input. This is to compare against a baseline where age-adjusted breast density is
used, by incorporating both age and breast density scores into the LR model.

Our model’s performance is evaluated using two metrics: the area under the
ROC curve (AUC) and the odds ratio (OR). The AUC is a widely-accepted met-
ric for measuring classification performance. The OR is often utilized in clinical
research to assess the strength of association between two events. Essentially, it is
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Table 3.1: The AUCs and ORs in estimating the risk of breast cancer.

AUC (95% CI) OR (95% CI)

Without age adjustment
Neural network risk score 0.65 (0.63, 0.66) 1.55 (1.48, 1.63)
Dense area 0.58 (0.57, 0.60) 1.27 (1.20, 1.33)
Percent density 0.54 (0.52, 0.56) 1.13 (1.06, 1.19)

With age adjustment
Neural network risk score 0.65 (0.63, 0.66) 1.56 (1.48, 1.64)
Dense area 0.60 (0.58, 0.61) 1.31 (1.24, 1.38)
Percent density 0.57 (0.55, 0.58) 1.18 (1.11, 1.25)

calculated as the ratio of the odds of an event occurring to those of it not occurring.
For instance, this could represent the likelihood that a treatment will cause certain
outcomes in the treated group compared to a placebo group. In the context of our
study, the OR assesses the odds of a woman developing breast cancer in the future
compared to those not developing it. The groups for this comparison are divided
based on the model predictions. A risk estimator with good predictive power will
show a strong OR.

The risk score of the neural network is benchmarked against two measures of
density, the size of the dense area as well as the percentage of density in the breast.
These two measures are calculated with an open source software LIBRA which
calculates the density through a learning-based approach [33]. For each of these
measures, two types of models are evaluated: with age adjustment present as well
as absent. By taking either the neural network output risk score or density score
as well as the age of the woman at the point of mammography as input in a LR
model, the model achieves the adjustment for age.

During training, the images within one exam are taken as input independent
of each other for the model. The model is trained to provide a score representing
the risk of cancer for each image. However, the average score from all four views
within a exam – Left-MLO, Right-MLO, Left-CC and Right-CC – are analysed in
order to produce a more comprehensive overall assessment.

3.3 Findings

Table 3.1 depicts the AUCs. Adjusting for age is generally demonstrated to either
improve or maintain the performance of predictors. This is perhaps unsurprising
given the significant correlation between age and breast cancer incidence according
to a plethora of research. Moreover, the dense area exhibits a predictive capacity
superior to that of percent density regardless of age adjustment.

Including the neural network’s output risk score is furthermore shown to con-
tribute, in most cases, to greater gains in performance than inclusion of density
based models. For instance, the AUC of neural network risk score adjusted for
age is 0.65, whereas the AUC of the dense area produces scores at 0.60 whilst age-
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adjusted. In accordance with these findings, the OR-based evaluation shows a score
of 1.56 for neural network risk score while the dense area only reaches 1.31.

An AUC of 0.65 might seem modest to those familiar with typical machine
learning benchmarks. However, when placed in the realm of breast cancer risk pre-
diction, especially over an eight-year period from the time of mammography, this
is a significant achievement. Predicting risk in this field is particularly challenging
due to the complex and often subtle factors involved. For context, a study by [77]
reported a 95% CI of (0.64, 0.73) for their model that predicts risk within five years.
As touched upon earlier, the conventional assumption that only mammograms from
diagnosed women signify risk, while those from healthy women do not, is limiting.
This notion does not fully account for the complex reality that the risk of develop-
ing breast cancer can never be completely ruled out, and certain risk factors can go
undetected due to mammography’s sensitivity constraints. Nevertheless, our find-
ings emphasize the potential of AI-based models in breast cancer risk prediction,
particularly when compared with traditional density-based approaches.





Chapter 4

Avoiding Risk Conflation

4.1 Introduction

In the previous chapter, we discussed the AI models’ superior performance over
traditional density measures for predicting inherent risk. Building on these findings,
this chapter aims to provide insights into the clinical understanding of such AI
models and their potential contributions to breast cancer risk prediction.

Properly defining the purpose of the network is crucial before setting out to
interpret its results. Misunderstanding its purpose can lead to misleading and
potentially harmful interpretations. For instance, failing to make a distinction be-
tween cases where there are indications of cancer, or lack thereof, can be dangerous
– such misinterpretations may endanger individuals who are not yet diagnosed, by
mistaking them for exhibiting long-term risk when there are cancer signs already.

Although AI practitioners are generally aware of the importance of carefully
defining a network’s purpose, it can sometimes be overlooked or inadequately ad-
dressed in practice. This is the focus of Study B, where we discuss the importance
of such considerations during model deployment for clinical applications. In this
chapter, we showcase our study design in Section 4.2 and present the results in
Section 4.3.

4.2 Study Design

Inherent risk measures the probability that a woman might develop cancer in the
future unrelated to observable symptoms. Prior studies that focused on estimat-
ing breast cancer risk using mammograms have consistently regarded all cancer
patients’ images prior to diagnosis as risk-positive. However, such an approach
carries the downside of training models that may conflate long-term risk patterns
with cancer signs. This is primarily because the images collected in close temporal
proximity to the date of cancer diagnosis will be included in the positive set – at
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Figure 4.1: The histogram of ipsilateral images (the breast that developed cancer)
and contralateral images (the breast that was often found to be cancer-free), in
relation to the time interval before diagnosis in the CSAW dataset [14]. To
decouple inherent risk (orange) from cancer signs (red), we partitioned positive
training data. For ipsilateral images (top), a one-year cuto↵ from diagnosis
(dashed line) separates images with long-term inherent risk (orange) from those
potentially include cancer signs (red). Contralateral images (bottom), having
similar exposure to environmental and genetic risk factors as the ipsilateral ones,
contribute to the inherent risk model. The inherent risk model includes
orange-marked positives, while the cancer signs model is trained exclusively with
red-marked positive examples. The conflated risk model is trained on all images.

which point they generally exhibit signs of cancer already, as opposed to long-term
inherent risk.

The histogram in Figure 4.1 illustrates the distribution of historic breast exams
from the CSAW dataset [14], including the ipsilateral breast (the side of the breast
that developed cancer) as well as the contralateral breast (the other side of the
breast, often proven to be cancer-free). They are plotted in relation to the time-to-
diagnosis. Within this histogram, a clear pattern emerges: a substantial proportion
of the data are concentrated around the period close to the diagnosis date. This
concentration suggests that a large portion of these images likely contain signs of
cancer.

In relation to this issue, it is important to recognize the relationship between
the convergence of neural networks and simplicity of patterns they tend to learn.
Previous studies have largely established that neural networks tend to begin by
learning patterns that are easier to recognize first and, and gradually move towards
more complicated patterns as they are exposed to more data and longer training
times [80,81]. As such, we hypothesise that a conflated training approach, which we
use to describe training the model on a mixture of images containing both cancer
signs and inherent risk, may introduce an undesirable bias into the model. The
tendency of the network to take the easiest path to minimize loss – to prioritize
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Figure 4.2: The exam-level AUC for conflated and decoupled models, as well as
their related density baselines. As a point of reference, the number of positive
exams in the test data is displayed with a range of times till diagnosis at the
bottom of the figure. The cancer signs model is the best at estimating short-term
risk, closely followed by the conflated model. The inherent-risk model performs
the best estimates of long-term risk. The conflated model is sub-optimal in both
the long- and short-term.

recognition of obvious cancers signs – may lead to a bias against accurately predict-
ing long-term inherent risk. Avoiding this shortcut, training a model exclusively
on images of patients that have yet to exhibit cancer signs, can likely be expected
to perform better in risk prediction. This is because to minimize the loss it has no
choice but to learn the subtle long-term patterns associated with inherent risk.

Taking these considerations into account, we trained networks using three crite-
ria for positive data selection (i.e. images from patients that will develop cancer):
an inherent risk model trained on images with no visible signs of cancer, a cancer
signs model trained on images containing cancer or early signs of cancer, and a
conflated model trained on all images from patients with a cancer diagnosis.

For illustrative purposes, let’s revisit the positive cases in the histogram of Fig-
ure 4.1. The positive training images without visible signs of cancer (in orange) are
separated from those that in fact do contain cancer signs (in red). The dashed line
denotes a one-year period prior to the diagnosis. This selection of one-year is linked
with both the mammographic screening interval and the average progression rate
of breast cancer. Typically, women aged 40-74 undergo mammographic screening
every 18-24 months as part of the standard screening program. Therefore, images
from two years or more prior to cancer diagnosis likely do not show any visible signs
of cancer. Essentially, the one-year cuto↵ serves as a strategic midpoint, potentially
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Figure 4.3: Gradient-Weighted Class Activation Maps (Grad-CAMs) of the
inherent risk and cancer signs models evolving with time. Each image is
annotated with its time-to-diagnosis (t.t.d., in years) and risk prediction score ŷ.
In the top panel, we display images of a breast as it develops cancer over a span of
four years. An expert cancer annotation is depicted as a red region in the most
recent image, while the location where cancer develops is marked with a red dot
in the prior images. In the bottom panel, Grad-CAM visualisations reveal that
the inherent risk model predicts broad activations at the center region of the
breast, whereas the cancer signs model shows sharp activations near the tumor.

allowing adequate time for cancer signs to emerge.
For the ipsilateral breast, the side where the cancer was identified, this one-

year interval aids in separating the cancer sign cases from those with inherent
risk. The contralateral breast, typically cancer-free, presents images of inherent risk
without revealing any cancer signs, given the shared environmental and genetic risk
factors from both breasts. Therefore, we exclusively incorporated images from the
contralateral breast into the inherent risk model, but not the cancer signs model.

In this study, we use the ResNet-50 backbone, not with the three-crop setup
as in Chapter 3, but instead apply a standard training setting. After extracting
the correct positive training data for each of the models – inherent risk, cancer
signs, and conflated models – the network is fed with single images downscaled to
632⇥512 pixels in preparation for binary classification.

The primary objective of this study is to analyze the performance of decoupled
models in comparison to the conflated model over time, with a specific emphasis
on isolating the inherent risk. To evaluate this, we trained our models using three
distinct strategies: one focused on inherent risk, another on cancer signs, and the
conflated approach combining both. Post-training, the exam-level AUC is attained
by extracting the highest possible risk score per breast, while the breast scores
are inferred from both views (MLO and CC) by calculating their mean value. To
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assess the model’s performance in relation to the time prior to diagnosis, we apply
a sliding window with fluctuating width, which ensures that 20% of positive cases
are included while also incorporating all negative samples.

4.3 Findings

In Figure 4.2, the di↵erence in performance between the models is evident. Despite
having the benefit of more training data, the conflated model underperforms the
decoupled inherent risk and cancer signs models in both long- and short-term risk
predictions. The cancer signs model, designed with a training approach similar to a
cancer detector, excels in short-term risk prediction. On the other hand, the AUC
of the inherent risk model remains stable regardless of proximity to diagnosis. More
importantly, the model achieves the best estimations for long-term risk prediction.
This is an indicator of a favorable outcome – the inherent risk model neglects
early cancer signs and rather emphasises long-term risk-related cues that should
remain constant over time. Reiterating a conclusion from our previous chapter, it
is worth noting that all our neural networks consistently outperform the traditional
mammographic density-based baselines.

Figure 4.3 furthermore depicts how the inherent risk and cancer signs model’s
Gradient-Weighted Class Activation Maps (Grad-CAMs) [82] evolve over a four
year span. Grad-CAM is a visualization technique for neural networks, assisting
in pinpointing which regions of an image the model focuses on during its decision-
making process. Qualitatively, we can see that the cancer signs model pronounces
activations close to the tumor, whereas the inherent risk model has broad activations
at the central part of the breast. These observations suggest that the cancer signs
model focuses on tumor-like tissues, while the inherent risk model considers a more
comprehensive set of image features to determine risk.





Chapter 5

Masking Breast Cancer

5.1 Introduction

Neural networks, applied to mammograms, have historically been used for cancer
detection [62–64] and, to a lesser degree, risk assessment [72,73,77]. However, there
are other important tasks they can be used for.

The phenomenon of masking, wherein dense breast tissue obscures cancer le-
sions, is a critical factor that can compromise the e�cacy of cancer signs and
inherent risk models. Masking can lead to undetected cancers, underscoring the
need for a way to estimate it.

Cancer cases that are detected clinically between two screening rounds despite
a previous negative screening are referred to as interval cancers. In the majority
of these cases, the detection occurs because the woman noticed symptoms and
reported them. On average, interval cancer constitutes 17-30% of breast cancer
cases among screening participants [83], and they often have a worse prognosis
than when breast cancer is detected through screening [41,84].

Interval cancer can be categorised into two main types: true interval cancer and
missed interval cancer, as shown in Figure 5.1. The term “true interval cancer” is
used when the cancer growth has followed a pattern of rapid development despite
having been healthy during the last screening. When the screened participant is
falsely presumed to be healthy at the time of mammography (having false-negative
assessments), the cancer found afterwards is referred to as “missed interval cancer”.
Breast tissue that obscures or masks the lesion is the most common source of such
errors.

Masking does not only lead to missed interval cancers; it has also been shown
to potentially result in the development of large invasive cancer. This is due to the
di�culty in spotting small cancers which, when overlooked, might progress without
intervention and become more aggressive over time.

While MRI and other screening methods exhibit superior diagnostic perfor-
mance compared to mammography, they are often less accessible due to their high
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True interval cancer with rapid tumor growth Missed interval cancer with masking potential
when the lesion was likely obscured

Prior (healthy) Current diagnostic Prior (healthy) Current diagnostic
screening exam screening exam screening exam screening exam

Figure 5.1: An illustration of true and missed interval cancer.

Table 5.1: Summary of the CSAW-M dataset.

# images Resolution # interval / large # composite # # masking Masking Metadata Publicly
invasive / total cancers endpoints controls annotations levels available?

Public train 9,523 632⇥512 148 / 279 / 629 347 8,894 1 / image 1-8 Density, acquisition Yes
Public test 497 632⇥512 11 / 13 / 31 19 466 5 / image 1-8 Density, acquisition Yes

Private test 475 632⇥512 81 / 111 / 272 158 203 5 / image 1-475 Density, acquisition No

costs. This limitation emphasises the need to accurately identify those women for
whom mammography might not provide a clear diagnosis, thereby ensuring the
use of more advanced, yet limited, resources, such as MRI. On the other hand,
for women with fatty breasts, tumors tend to be more discernible, reducing the
likelihood of masking. By recognizing these situations, medical facilities can strate-
gically deploy their radiological expertise and resources to where they are most
needed.

In order to make estimates for the potential of masking, mammographic density
has frequently served as a proxy, as there is a high likelihood of missed cancer during
screening of subjects with dense breasts [85–87]. However, density alone does not
account for all factors contributing to the masking e↵ect. Radiologists also consider
aspects such as tissue distribution and patterns when assessing masking, implying
that density and the potential for missed cancers are not perfectly correlated [88].

The estimation of masking potential, the likelihood that cancers may be di�cult
or even impossible to discern with regular mammography, is what we primarily
study in this chapter. The contents are based on the research presented in Study C.
In Section 5.2, we introduce the study design, which includes the introduction of the
CSAW-M dataset annotated with masking potential, and the training techniques
for ordinal classification of masking potential. Furthermore we present an empirical
analysis to explore the ability of AI models in addressing masking estimation, and
the findings are presented in Section 5.3.
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Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

Figure 5.2: Various levels of masking in mammograms on CSAW-M, from the
lowest to the highest.

5.2 Study Design

To evaluate the capability of AI models in addressing cancer masking, we introduce
the CSAW-M dataset, which comprises expert assessments for masking potential.
CSAW-M is a subset of the CSAW dataset [14] containing 10,2020 mammography
screenings for which five radiologists have conducted 8-level assessments of masking.
Figure 5.2 portrays various levels of masking in mammograms, from the lowest to
the highest.

Table 5.1 is a description of the CSAW-M dataset. The dataset contains 9,523
images intended for training, 497 in the public test set and 475 in the private set.
Every training example has been annotated once with masking level. The images
in the private as well as the public test sets are annotated by five radiologists each.
We chose the median annotation as the ground-truth for the test set, because it
is robust to potential outliers, and it simplifies the process of discretizing masking
levels.

To assess the dataset’s applicability in real-world scenarios, we have also col-
lected data related to several objective clinical endpoints. Specifically, we have
included information regarding the presence of interval cancer, large invasive can-
cer, as well as cancer overall for each woman. In addition, we have computed and
recorded the percent density and the dense area calculated by LIBRA [33] – referred
to as density measures. These density measures are benchmarked against our AI
models which will be discussed later in this chapter.

From the CSAW-M, we train two neural network baseline models to estimate
the masking potential, as illustrated in Figure 5.3. The backbone of these models
is a pre-trained ResNet-34. The first model employs a categorical classification
approach, and is denoted as “one-hot” model. In this configuration, every class
in the model is treated independent of one another, similar to how categories are
constructed in one-hot encoding. The “multi-hot” model, named due to its reliance
on multi-hot encoding used during its training [89], can be seen as a multi-label
classification approach. Instead of classifying each mammogram into just one cate-
gory, it allows for the possibility of overlapping classes. Classifying each case into a
K number of ordinal classes is equivalent to a K-1 independent binary classification
problem where the previous class is always the subset of the current one. ResNet-
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Figure 5.3: The one-hot standard model treats each masking level as a distinct
category. It ensures each masking level is considered independently of the others.
In contrast, the multi-hot model employs a multi-label classification approach.
Rather than placing a mammogram into a single category, the multi-hot model
assesses whether the mammogram surpasses given masking levels. Colored digits,
denoted by the number “1”, within a column indicate the masking levels that the
mammogram exceeds.

34 one-hot is trained as a single classifier with standard softmax cross-entropy loss,
while ResNet-34 multi-hot essentially operates as seven separate classifiers, each
utilizing cross-entropy loss to estimate whether a mammogram exceeds a certain
masking level.

Images with a resolution of 632⇥512 pixels are used to train the models, aiming
to identify the median masking level within the range of 1 to 8. Ordinal classification
deals with predicting categories with hierarchy, and the order matters – it is not
just predicting independent classes. For example, in the context of this study, a
masking level of 5 is inherently higher than a masking level of 3.

The classification performance of masking potential is evaluated using two met-
rics: Average Mean Absolute Error (AMAE) and Kendall’s ⌧b. AMAE quanti-
fies the average distance between the predicted classes and the true classes. The
strength and direction of the association between two ranked orders is tracked using
Kendall’s ⌧b. It uses the amount of concordant as well as discordant pairs as a basis
for the ranking. Perfect inverse correlation marks the beginning of the range, at -1,
and a perfect correlation scores at 1 while a complete lack of correlation is 0.
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Table 5.2: Performance comparison between expert and model on ordinal
classification of masking potential.

Kendall’s ⌧b " AMAE # F1 on level 1-2 " F1 on level 7-8 "

Experts

Expert 1 0.7232 0.6762 0.7940 0.6154
Expert 2 0.7279 0.7167 0.7465 0.6316

Expert 3 0.5450 1.0037 0.7363 0.5200
Expert 4 0.5554 1.0390 0.5430 0.6242
Expert 5 0.6342 1.0321 0.6885 0.5225

Models
One-hot 0.7126 ± 0.0083 0.8108 ± 0.0145 0.7855 ± 0.0136 0.5950 ± 0.0243
Multi-hot 0.7625 ± 0.0030 0.7086 ± 0.0142 0.8064 ± 0.0188 0.5571 ± 0.0320

Table 5.3: AUC on combined public and private test sets for downstream clinical
tasks.

AUC
Interval cancer Large invasive cancer CEP

Percent density 0.5947 0.5254 0.5678
Dense area 0.5901 0.5505 0.5839
One-hot 0.6321 ± 0.0031 0.5801 ± 0.0013 0.6100 ± 0.0013
Multi-hot 0.6331 ± 0.0031 0.5802 ± 0.0019 0.6117 ± 0.0028

Given the clinical significance of both the lowest and highest levels of masking,
we use the F1-score, a commonly-used metric in information retrieval, to assess the
model’s e�cacy in distinguishing these extremes from all other levels. Specifically,
we are interested in the model’s F1 score in identifying instances with low masking
(level 1-2) from all others (masking levels 3-8). Similarly, but on the opposite
spectrum, we compute the F1 score for the high-masking, to measure how our model
performs in separating high-masking levels (level 7-8) from the rest (masking levels
1-6).

Apart from the immediate goal of predicting masking levels, we also investigate
the model’s capability to provide insights into downstream clinical tasks. As dis-
cussed previously, masking is linked to not only missed interval cancers but also
the potential development of large invasive cancer. With this linkage in mind, we
set out to investigate whether our model, even without being explicitly trained on
these specific clinical tasks, can provide indication regarding a woman’s probability
of developing interval or large invasive cancers. For both individual cancer types as
well as composite endpoint (CEP) which contains both types, the AUC is reported.

The LIBRA software [33] is used to calculate the density percentage as well as
the dense area of the breast, serving as a benchmark for the masking score output
of our models. This comparison is based on the established understanding that
there exists a correlation between density and these clinical endpoints included.
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5.3 Findings

Table 5.2 describes the ordinal classification performance of ResNet-34 one-hot
as well as multi-hot alongside individual expert assessments. The multi-hot model
produces a higher score than the one-hot standard model in Kendall’s ⌧b as well as
AMAE. This indicates a superior e↵ectiveness of multi-hot encoding for approaching
this ordinal classification task. The multi-hot model also performs better than
the radiologists and the one-hot model as indicated by the score in low-masking
F1, while, the performance is inferior for high-masking prediction. However, one
should take note that neither model and none of the experts do particularly well
on predicting high-masking levels. This suggests that high-masking potential is
typically more challenging to identify compared to low-masking potential.

With regard to using masking to predict interval cancer, large invasive can-
cer, and CEP – the multi-hot and one-hot versions of ResNet-34 achieve similar
outcomes, as showcased in Table 5.3. Our models exhibit a predictive power that
significantly exceeds that of their density counterparts, even without being trained
for these specific downstream tasks. This highlights the compelling advantages of
leveraging explicit masking assessment over conventional density measures. Such
insights have the potential to significantly improve clinical applications and patient
outcomes.



Chapter 6

Optimizing Vision Transformers

for E�cient Risk Prediction

6.1 Introduction

High-resolution images are crucial in medical imaging, enabling professionals to
discern minute details that are essential for accurate diagnosis. This is particularly
evident in mammography, where vital signals often lie in subtle details, typically
only visible in certain regions of the full mammogram. Training AI models on
these detailed images promises more precise diagnostic outcomes. However, com-
putational constraints can make it challenging to e↵ectively train on high-resolution
data.

Previous research, in order to reduce the computational costs, has typically ex-
perimented with image size reduction – often starting from a very high resolution
– through either cropping or downscaling. In the studies mentioned in Chapters
3, 4, and 5, images are extracted as crops and/or downscaled from the original
4,096⇥3,328 pixels to either 299⇥299 or 632⇥512. However, it is important to note
that any attempts in reducing image sizes, whether through cropping or downscal-
ing, carries the risk of impairing the model performance.

Recently, ViTs have emerged as a viable alternative to CNNs. Although their
usage o↵ers various advantages such as the ability to capture long-range depen-
dencies in images through self-attention mechanisms, they come with their own
sets of challenges. One of these limitations pertains to their inherent architectural
complexity. Specifically, the attention block in ViTs exhibits quadratic computa-
tional complexity in the number of input patches. This means that as the number
of image patches increases, the computational demand for processing them grows
exponentially. This results in a substantial computational overhead during the
training phase, especially when dealing with large images. Such demand confines
the optimal utilization of ViTs to a limited number of institutions. Many organisa-
tions, especially those with limited access to high-performance computing resources,
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Figure 6.1: PatchDropout is a technique developed to enhance the e�ciency of
training ViTs without compromising model accuracy. During training, a token
subset is randomly sampled at the input level, and then sent to transformer
blocks (left). All patches are retained at inference time (right).

might find it challenging to adopt ViTs.
In this chapter, we aim to improve breast cancer risk prediction by utilizing

high-resolution images and optimizing AI models with a training strategy tailored
for ViT applications. While our immediate focus is on assessing the e↵ectiveness of
the proposed approach in breast cancer risk prediction, it is essential to highlight
that our technique is not confined to this domain alone. At its core, the method
we present is a general-purpose improvement, designed with the flexibility to be
applied across a diverse range of image tasks. This includes, but is not limited to,
various mammography analyses that involve high-resolution images. This chapter
is based on the research presented in Study D. The research study design is outlined
in Section 6.2 and the results are presented in Section 6.3.

6.2 Study Design

Our core idea is founded on the notion that images inherently possess spatial re-
dundancy. Recognizing this, we hypothesise that if some parts of the image are
less informative, excluding them during training could potentially lower resource
consumption without significant performance drop.

Our approach, PatchDropout, randomly drops a portion of image patches,
rather than presenting every single one to the model. Concretely, a token sub-
set is randomly sampled without replacement at the input level during training
and subsequently sent to transformer blocks (see Figure 6.1). To ensure that our
model still understands the spatial context of these tokens, we insert positional em-
beddings – a set of vectors that encode each token’s position – prior to this random
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Figure 6.2: Improved risk prediction with higher resolution inputs on CSAW. By
utilizing image inputs at a resolution of 896⇥896 pixels compared to the
conventional 224⇥224 pixels, we observe significant enhancements in the
exam-level AUC for inherent risk prediction. When employing a 896⇥896 input
size with a keep rate of 0.05, as contrasted with a 224⇥224 input size where all
patches are retained, we achieve reduced computational costs and enhanced
performance. As the keep rate increases, further improvements are made, albeit at
the expense of computation. Furthermore, by reducing the number of input
patches by 75% – which translates to a reduction in compute and memory by
more than five times – we see improved model accuracy for high resolution
896⇥896 images.

sampling. The transformer blocks receive and process the token sequence in the
standard manner. At inference time, all patches are kept.

Given the inherent modular design of ViTs, integrating PatchDropout into o↵-
the-shelf models is very straightforward, without requiring extensive adjustments.
For our primary experiments, we use DeiTs, specifically, the DeiT-B model, con-
figured with a 224⇥224 input size and 16⇥16 patches. In addition, we have also
incorporated PatchDropout into the SWIN architecture. Here, instead of random
sampling, a more structured sampling is applied wherein row and column indices are
sampled randomly in every window with the aim of obtaining intersection tokens.
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CSAW ImageNet

CIFAR100 Places365

Figure 6.3: With a keep rate of up to 50%, PatchDropout maintains consistent
performance, using the DeiT architecture. This setup doubles the e�ciency of
compute and memory across CSAW risk prediction, ImageNet, CIFAR100, and
Places365.

CSAW ImageNet

Figure 6.4: With a keep rate of 0.5 or above, SWINs can use PatchDropout
without a↵ecting performance.

Corresponding relative positional biases are then sampled to match this structured
approach.

Our primary objective is to explore the trade-o↵ between performance and com-
putational e�ciency in ViTs when randomly omitting patches during training. To
this end, we conduct experiments where di↵erent proportions of the input tokens
are presented to the model in its training phase. For the task of risk prediction
on CSAW, we report the exam-level AUC, wherein an average prediction score is
generated for each mammogram within a given exam.

Moreover, to explore the broader applicability of PatchDropout, we have con-
ducted experiments on three datasets typically used in computer vision: Ima-
geNet [53], a large-scale dataset for object classification across thousands of cate-
gories; CIFAR100 [90] for object classification in smaller images across 100 classes;
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Table 6.1: Using PatchDropout across several datasets, the e↵ect of modifying the
image size and patch size is assessed in terms of computation and performance.

Input Patch Keep rate GFLOPs CSAW ImageNet CIFAR100

64 16 1 1.46 - 66.78% 87.27%
64 8 0.25 1.46 - 70.57% 89.77%
128 16 0.25 1.49 - 76.25% 91.30%

112 16 1 4.33 63.07% 77.65% 91.98%
112 8 0.25 4.33 60.08% 79.11% 92.38%
224 16 0.25 4.41 64.87% 81.02% 92.50%

224 16 1 17.58 64.71% 83.17% 93.33%

224 8 0.25 17.58 64.28% 83.43% 92.71%
448 16 0.25 17.93 65.59% 83.26% 92.20%

448 16 1 78.57 66.31% - -
448 8 0.25 78.57 66.13% - -
896 16 0.25 79.96 66.63% - -

and Places365 [91], a scene recognition dataset with 365 diverse environmental
classes. We monitored the top-1 accuracy across these varied tasks to emphasize
the wide-ranging utility of PatchDropout.

6.3 Findings

Figure 6.2 illustrates the performance di↵erence between using image inputs of res-
olution 896⇥896 to those of 224⇥224 pixels for inherent risk prediction. By using
images that are 16 times larger in size, but with 95% fewer patches, we achieve both
computational savings and improved performance. As the keep rate rises, there are
further performance enhancements, but they come with increased computational
demands. For the high-resolution 896⇥896 images, the model’s accuracy was main-
tained even when the number of input patches was reduced by 75%. This strategy
o↵ers computational benefits, reducing the computations by 5.6 times and memory
usage by 5.9 times. Interestingly, models trained using the full set of tokens are
outperformed by those trained with only 25-50% of the tokens. This is not only
an indication that some patches might not be essential for maximizing the perfor-
mance on CSAW; it can suggest a regularisation e↵ect of PatchDropout, given the
improvements to model AUC in absence of some patches.

In Figure 6.3, we underscore the e�ciency of PatchDropout across a range of
data domains. Specifically, our method showcases a two-fold improvement in both
compute and memory e�ciency across all evaluated data domains: ImageNet,
CIFAR100, Places365, and CSAW. These datasets were chosen to represent a
wide spectrum of image tasks, each with its distinct challenges. Our intention was
to emphasize the broad applicability and scalability of PatchDropout. On CSAW,
at resolution 224⇥224, keeping around half of the input patches increases AUC by
0.25–0.60% for inherent risk prediction, compared to scenarios where all tokens are
kept.
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Table 6.2: E↵ect of training larger ViT variants with PatchDropout.

Model
Keep

rate

Memory

(GB)
GFLOPS CSAW ImageNet CIFAR100

DeiT-T 1 5.06 1.26 63.45% 75.22% 86.94%
DeiT-S 0.25 2.46 1.15 63.76% 78.09% 90.30%

DeiT-S 1 10.20 4.61 64.62% 80.69% 91.08%
DeiT-B 0.25 5.46 4.41 64.87% 81.02% 92.50%

DeiT-B 1 20.96 17.58 64.71% 83.17% 93.33%
DeiT-L 0.25 15.34 15.39 65.31% 83.81% 93.97%

Through our experiments, we also demonstrate that by leveraging the computa-
tional and memory savings PatchDropout o↵ers, we can adjust and optimize image
and patch size for more accurate predictions. In Table 6.1, we show that using
higher resolution in combination with PatchDropout is beneficial for risk predic-
tion on CSAW and the same finding can be found on ImageNet and CIFAR100.
Increasing the model capacity is another way to attain better predictions. In Table
6.2, we show that when comparing models of equal cost, larger models employ-
ing PatchDropout are consistently better than smaller variations using all tokens,
resulting in a 2.1⇥ better memory e�ciency.

To further emphasize the general utility of PatchDropout, we extend our exper-
iments to one other architecture SWIN. In Figure 6.4, the results of PatchDropout
using SWIN applied to CSAW as well as ImageNet are depicted. The trend
discerned is similar as shown in Figure 6.3. On CSAW, using keeping rates above
50% results in modest gains in performance of risk prediction. There is only a 1%
performance loss on ImageNet when PatchDropout is used with a 50% keep rate.
Nevertheless, PatchDropout remains applicable, even for SWIN architecture that
is designed to minimise the computational cost.



Chapter 7

A Combined Approach for

Enhanced Breast Cancer Detection

7.1 Introduction

In previous chapters, we have explored three fundamental tasks related to breast
cancer: predicting inherent risk, cancer signs, and masking potential of breast
cancer. We demonstrated the promising capabilities of AI models in risk prediction
(Section 3), highlighted the challenge of distinguishing between cancer and risk to
address risk conflation issues (Section 4), and explored ways to optimize the memory
and computational e�ciency for improved performance (Section 6). Additionally,
we introduced a benchmark dataset to assess the mammographic masking of cancer
and trained models on it (in Section 5).

Our work has shown that performing these tasks independently is feasible. How-
ever, the benefit potentially derived from their simultaneous deployment remains
unclear.

Although there is no universally established method for identifying women for
supplementary screening after negative mammography, the emerging standard in
the field is mammographic density. Density has been shown to correlate with both
an increased risk [23,24] and masking potential of breast cancer [25,26]. We hypoth-
esis that developing separate learning models – one dedicated to addressing risk of
breast cancer and other focusing on predicting the breast cancer masking e↵ect –
might better capture image cues necessary for identifying women for supplemen-
tary screening. Furthermore, it is crucial to factor in potential overlooked cancers,
especially those with minimal signs, considering that these constitute 17.2% of all
interval cancers [92].

The primary focus of this chapter is a retrospective analysis from Study E,
where we designed a summary score, AISmartDensity, that combines predictions
from inherent risk, cancer signs, and masking potential models. Our goal is to de-
termine the most e↵ective strategy to identify women who are at a higher likelihood
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Figure 7.1: Retrospective study flow. After applying exclusion criteria such as
eliminating screen-detected exams, the remaining data is processed through three
distinct models: inherent risk, cancer signs, and masking potential.
AISmartDensity, the average predictions from these models are then categorized
into four groups: “very low” (below 8th percentile), “low” (8th to 50th percentile),
“high” (50th to 92nd percentile), and “very high” (above 92nd percentile).

of having an undetected cancer after negative mammography. Alongside this ret-
rospective emphasis, we also discuss an ongoing prospective clinical trial, providing
insights into how AISmartDensity might fit into real-world clinical scenarios. We
outline the study design in Section 7.2 and the corresponding results are detailed
in Section 7.3.

7.2 Study Design

In this retrospective study, we implement a specific workflow to categorize the com-
bined scores derived from multiple models. As illustrated in Figure 7.1, we start
by applying certain exclusion criteria. This involves the exclusion of images taken
within 2 months of diagnosis – as these cancers are considered screen-detected –
and those taken more than 3 years prior to diagnosis. The remaining exams are
then evaluated using three key models we developed, with each one dedicated to
predicting one of the following outcomes: inherent risk, cancer signs, and masking
potential of breast cancer. After determining AISmartDensity, representing the
mean scores of our models, we categorize the predictions into four categories, mir-
roring the BI-RADS density standard: “very low” (below 8th percentile), “low”
(8th to 50th percentile), “high” (50th to 92nd percentile), and “very high” (above
92nd percentile). These categories are configured to reflect the prevalence of the
four BI-RADS density categories: fatty, scattered fibroglandular density, heteroge-
neously dense, and extremely dense.

With this high-level view established, let’s explore the specific details of each
model.

The inherent risk model is trained exclusively on mammograms with no signs
of cancer. The model is designed to di↵erentiate between women who who later
developed cancer and those who remained cancer-free. The model is trained in a
similar manner as the one described in Chapter 4, with extra emphasis on data
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selection to ensure that inherent risk is not conflated with cancer signs. A cut-o↵
period of 60 days is selected to incorporate as many images into the positive set as
possible. The EfficientNet-B3model, initialized with noisy-student weights [93],
is chosen as the backbone and trained on 1,024⇥832 pixel images from CSAW,
aiming to classify women at risk. Similar to the approach in Chapter 3, age is
included at the input level. More specially, we concatenate age with the output of
the global average pooling layer before the final fully-connected layer that performs
the classification task.

The cancer signs model consists of two components: a commercial CAD model
and an in-house model, and the cancer signs model’s score is determined by averag-
ing the predictions from both these models. This is driven by the need to maximize
the unique strengths and mitigate the individual limitations of each model. The
commercial cancer signs model, from Insight MMG, Lunit Inc, South Korea, was
trained on external data. Given that it was built on extensive testing, this model
ensures a high level of robustness. On the other hand, the in-house cancer signs
model has been specifically tailored to the dataset CSAW. This model is trained
on images from the CSAW dataset, complemented by additional public data, i.e.,
CBIS-DDSM [94], INBreast [95], and Dream Pilot images (500). With a focus on
discerning mammograms that exhibit cancer signs and mammograms free of cancer
signs, the in-house cancer signs model adheres to the strategy discussed in Chapter
4. Specifically, a cut-o↵ time of 60 days is implemented to decouple cancer signs and
inherent risk. We follow a two-step training process, similar to [71]. Initially, we
employ EfficientNet-B3 to train a patch classifier that di↵erentiates between
lesion patches and healthy patches. This patch classifier, initialized with noisy-
student pre-trained weights on ImageNet, is trained on patches sized 276⇥224.
Subsequently, we extend the model with two randomly-initialised residual blocks to
work on a full mammogram of size 1,024⇥832, aiming to predict its cancer status.

The masking potential model, utilizing multi-hot encoding, is trained following
the procedure delineated in Chapter 5. We adopt ImageNet-pretrained ResNet-
34 as the backbone and train it on 316⇥256 pixel images intended for ordinal
classification.

The summary score, AISmartDensity, is computed as the mean of standardized
scores from the three aforementioned models. The cancer signs predictor generates
exam-level scores based on the highest predictive value within an exam, to capture
the most pronounced cancer sign present. The masking and risk models employ
average scores per exam, ensuring a comprehensive assessment by taking into ac-
count all images within an exam. To augment the robustness of our in-house cancer
signs and risk models, we utilize an ensemble of five models alongside test-time aug-
mentation [78] which involves computing the average score from both original and
flipped images. Each predictor’s exam-level scores are equally weighted to compute
the final summary score.

We compute the AUC to assess the overall classification performance, and an-
alyze the sensitivity and positive predictive value (PPV) for the top 8% scores
for each evaluated model, mirroring a similar proportion to BI-RADS “extremely
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Table 7.1: The number of cancers with di↵erent characteristics sorted into the
four AISmartDensity categories. Large invasive cancer denotes cancer where the
invasive elements exceed 15 mm in size. Advanced cancer is characterized by any
of the following: (1) Interval Cancer, (2) Cancer with invasive components larger
than 15 mm, or (3) Cancer that has metastasized to the lymph nodes.

AISmartDensity “Very low” “Low” “High” “Very high”
(0-8%) (8-50%) (50-92%) (92-100%)

Next-round screen-detected cancer 1 (1%) 30 (24%) 51 (40%) 46 (36%)
Interval cancer 0 (0%) 25 (19%) 64 (49%) 41 (32%)

Large invasive cancer 0 (0%) 19 (20%) 44 (47%) 31 (33%)
Cancer with lymph node metastasis 0 (0%) 12 (20%) 29 (46%) 21 (34%)

Advanced cancer 0 (0%) 33 (18%) 84 (47%) 63 (35%)

Total cancer 1 (0%) 55 (21%) 115 (45%) 87 (34%)

dense” category. Furthermore, we examine the number of positive cases for next-
round screen-detected cancer, interval cancer, cancer with invasive components
larger than 15 mm, and cancer with lymph node metastasis.

To factor in quality-of-life-years into AISmartDensity, we adjust the summary
AI score. This alteration, referred to as “AISmartDensity with age adjustment”
necessitates the AISmartDensity score to be multiplied by a ratio of (110�age)/70.
With this adjustment, individuals with a lower age are assigned a higher multiplier.

Each AI model is benchmarked against two mammographic density measures,
the size of the dense area and the percentage of dense area within the breast
(percent density). These measures were calculated with LIBRA [33], using the
same configuration as in Chapter 3-5. For further comparison, we introduce addi-
tional benchmarks for comparison: age-and-dense-area or age-and-percent-density,
trained using logistic regression.

Initiated on April 1, 2021, and still ongoing, our the prospective clinical trial is
being conducted in Karolinska University Hospital (KS). By December 31, 2022, we
have analyzed 52,310 examinations. Women identified with a “very high” AISmart-
Density following a negative mammography screening were invited to participate.
Once informed consent was obtained, participants were randomly assigned to ei-
ther undergo an MRI or not. All MRI scans were independently evaluated by two
radiologists. Our primary metric of interest is the PPV, to validate the real-world
e�cacy of AISmartDensity.

7.3 Findings

Table 7.1 showcases the categorization of future cancers into the four categories
defined by AISmartDensity. Out of 258 total cancers, a significant majority – 87
(34%) and 115 (45%) of the prior exams – fall under the “very high” and “high” cat-
egories, underscoring the e�cacy of AISmartDensity in flagging potentially prob-
lematic mammograms. Only one case, specifically a next-round screen-detected
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Table 7.2: AI single and combined predictors for detecting future cancers, relative
to age and mammographic density benchmarks. Sensitivity and PPV are
determined using the top 8% of scores that fall into the “very high”category.

AUC (95% CI) Sensitivity (95% CI) PPV (95% CI)

Age 56.83% (56.82%, 56.83%) 13.51% (13.42%, 13.61%) 0.68% (0.67%, 0.68%)
Dense area 55.41% (55.40%, 55.41%) 13.18% (13.18%, 13.18%) 0.66% (0.66%, 0.66%)

Percent density 54.66% (54.65%, 54.67%) 10.70% (10.69%, 10.72%) 0.54% (0.53%, 0.54%)

Age-and-dense-area 59.66% (59.66%, 59.67%) 12.42% (12.39%, 12.44%) 0.62% (0.62%, 0.62%)
Age-and-percent-density 59.85% (59.84%, 59.85%) 11.13% (11.12%, 11.14%) 0.56% (0.56%, 0.56%)

Cancer signs 71.78% (71.77%, 71.78%) 32.76% (32.75%, 32.77%) 1.64% (1.64%, 1.64%)
Masking 59.05% (59.04%, 59.06%) 12.57% (12.56%, 12.58%) 0.63% (0.63%, 0.63%)

Risk 67.81% (67.81%, 67.82%) 23.10% (23.07%, 23.12%) 1.16% (1.15%, 1.16%)

Cancer signs, masking 71.17% (71.16%, 71.18%) 30.62% (30.62%, 30.63%) 1.53% (1.53%, 1.53%)
Cancer signs, risk 73.02% (73.01%, 73.02%) 33.39% (33.37%, 33.40%) 1.67% (1.67%, 1.67%)

Masking, risk 66.38% (66.38%, 66.39%) 19.33% (19.32%, 19.35%) 0.97% (0.97%, 0.97%)

AISmartDensity 72.96% (72.95%, 72.96%) 33.67% (33.66%, 33.69%) 1.68% (1.68%, 1.69%)

cancer, is labeled as “very low”. This suggests that by excluding “very low” AIS-
martDensity exams from the selection, the risk of overlooking actual cancer case
would be nearly non-existent. The presence of 55 cases (21%) in the “low” cat-
egory underscores the complexity of predicting future cancers, a task that relies
on more than just inherent risk, cancer signs, and masking potential of cancer.
Furthermore, AISmartDensity shows a uniform performance across various cancer
types, classifying mammograms with a sensitivity of 32% to 36% in the “very high”
category.

Table 7.2 illustrates that AISmartDensity significantly outperforms benchmarks
set by age and density, with an AUC of 0.73, a sensitivity of 33.67%, and a PPV
of 1.68%. While the combined cancer signs and risk model achieve a similarly high
performance with an AUC of 0.73, the combination of all three models provide the
best sensitivity and PPV. The cancer signs model, standing alone, outperforms the
other single predictors, with an AUC of 0.72, a sensitivity of 32.76%, and a PPV of
1.64%. This suggests that the cancer signs model captures key diagnostic markers
crucial for early detection. Its e�cacy is enhanced when combined with the risk
model, resulting in an improved AUC of 0.73, a sensitivity of 33.39%, and a PPV
of 1.67%, a�rm the role of the risk model in contributing impactful features for a
refined prediction. The masking model achieves an AUC of 0.59, a sensitivity of
12.57%, and a PPV of 0.63%. Though it does not significantly surpass its age and
density models counterparts, its integration with other models o↵ers a beneficial
enhancement.

We also aim to optimize the number of life years saved for the participating
women by factoring patient age into our analysis. First, Table 7.3 shows that ex-
ams labeled with “very high” AISmartDensity have an average mammography age
of 59 years. This age is significantly higher than the average age of approximately 50
years when relying solely on density as an indicator. When we apply age adjustment
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Table 7.3: The summary score AISmartDensity is assessed against density and
age-and-density measures in detecting breast cancer. The comparison includes
analysis both before and after age adjustment. Additionally, we examine the age
at mammography for exams falling into the top 8% “very high” category.

Age AUC Sensitivity PPV

Density
- Dense area 51.54 55.41% 13.18% 0.66%

- Percent density 49.60 54.66% 10.70% 0.54%

Age-and-density
- Age-and-dense-area 66.22 (+14.68) 59.66% (+4.25%) 12.42% (-0.76%) 0.62% (-0.04%)

- Age-and-percent-density 66.45 (+16.85) 59.85% (+5.19%) 11.13% (+0.43%) 0.56% (+0.02%)

AISmartDensity without age adjustment 59.19 72.96% 33.67% 1.68%

AISmartDensity with age adjustment 55.06 (-4.13) 72.63% (-0.33%) 31.32% (-2.35%) 1.57% (-0.11%)

to AISmartDensity, the average age for these selected exams drop to 55 years. Al-
though this adjustment results in a slight decline in model performance, i.e., -0.33%
in AUC, -2.35% in sensitivity, and -0.11% in PPV, the age-adjusted AISmartDen-
sity still demonstrates significant improvement over the age-and-density measures.
This underscores the advantage in terms of quality life years added for patients
screened using AISmartDensity.

From the ongoing prospective study, we present interim results based on ex-
aminations conducted from April 1, 2021 to December 31, 2022. Final results will
appear in Paper I. During this period, out of the 3,245 women with “very high”
AISmartDensity with age adjustment, 1,180 (36%) accepted to participate. Of
those randomized to MRI, 481 proceeded with the MRI examination. Notably, 28
cancers were diagnosed, resulting in a PPV of 5.82%.

In conclusion, while each model possesses their strengths, the combination of
all three – cancer signs, masking, and risk – o↵ers the most robust predictive
power. This integrated approach sets a new standard, outperforming conventional
benchmarks in the retrospective study, e�ciently identifying women who would
most benefit from supplementary breast imaging. Most crucially, the prospective
study’s findings further validate the life-saving potential of AISmartDensity as a
diagnostic tool when applied in real-world clinical scenarios.



Chapter 8

Discussion and Conclusion

The significant impact of breast cancer on global health underscores the press-
ing need for better early detection techniques. At the same time, a shortage of
radiologists compounds this challenge, posing a critical obstacle in breast cancer
screening.

Mammmographic density, the current standard for estimating breast cancer
risk and masking potential through mammograms, has its limitations, particularly
in capturing minute details and understanding local spatial relationships within
images. In contrast, neural networks are capable of accurately analysing complex
image cues, o↵ering promising possibilities for more accurate and timely breast
cancer detection, as evidenced across our studies.

In Study A, we demonstrate the ability of the AI model to identify women
at an elevated risk of developing breast cancer, compared to traditional density
baselines. Study B emphases the necessity to distinguish between inherent risk and
cancer signs in AI-based breast cancer diagnosis. By making this distinction, AI
models o↵er improved long-term risk prediction. Study C takes a unique angle on
cancer prediction, centering on the concept of “masking potential”. The findings
show that AI models tailored to assess masking potential surpass their density-based
counterparts, particularly in predicting interval or large invasive cancers. Taking
advantage of high-resolution images, Study D further improves the accuracy of
risk predictions without significantly increasing computational demands. Study E
finally validates the e�cacy of AI models that focus on cancer signs and inherent risk
in predicting upcoming cancers. It also highlights the valuable contribution of the
masking model, particularly in detecting cancers that might be overlooked by other
models. The retrospective findings demonstrate a higher level of performance when
all three models are combined into one, surpassing its conventional age and density
counterparts. Furthermore, the ongoing clinical trial validates AISmartDensity’s
e↵ectiveness in real-world mammographic screenings, potentially paving the way
for early detection that could save lives.

Our findings conclude that AI models can identify important image cues, includ-
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ing very subtle ones, in various breast cancer tasks. These models can be used to
complement and enhance the current mammography screening process, e↵ectively
providing radiologists with a second set of eyes, which might also aid in easing the
di�culties brought on by the radiologists shortage.

This research is more than just a technical achievement – it also holds the
potential to signal a new era of personalized patient care. By evaluating individual
risk scores, hospitals can adjust interventions and make sure high-risk patients
receive timely and enhanced care. This not only ensures e↵ective resource allocation
but also improves patient outcomes.

While mammography has been our primary focus, our research methodologies
could be relevant to a broader spectrum. For instance, decoupling risk from cancer
signs may be applicable to other cancer research, and the PatchDropout approach
holds potential for uses beyond just medical imaging.

However, despite the promises o↵ered by AI models, several challenges persist.
To begin, AI models require access to datasets containing a large number of anno-
tated images to ensure the robust performance in real-world scenarios. However,
many previous breast cancer studies involving AI models have been confined to
datasets with fewer than a thousand annotated mammograms. Furthermore, class
imbalance is a common issue in mammography datasets, where the positive cases
are significantly outnumbered by the negative ones, due to the skewed nature of
the screening population. To mitigate the challenges imposed by limited training
data, researchers have employed techniques such as data augmentation [96–99] and
transfer learning [100–102]. Nevertheless, the need for large, carefully maintained
datasets remains critical for achieving more e↵ective model training. Another issue
that negatively e↵ects the research potential is domain shift, which is rooted in
the variability of devices and their manufacturers. Moreover, uncurated data with
noise can compromise the model’s e↵ectiveness in tasks such as lesion localization
or classification.

Furthermore, due to computational constraints, many attempts have been con-
strained to using resized images or cropped portions of the original images. This
poses a significant challenge when employing neural networks in mammography
tasks. For models to e↵ectively analyze mammography screenings, it is crucial that
they can identify the relevant features which often take up only a small fraction
of the full image. This challenge becomes particularly pronounced when microcal-
cifications are present. Therefore, any alteration of images, either downscaling or
cropping, can harm model e↵ectiveness and should ideally be avoided. Our pro-
posed method PatchDropout is specifically designed to address this computational
challenge.

In light of these challenges, it is essential to view our findings with a balanced
perspective of optimism and caution. We should note that the journey to incor-
porating AI into mammography analysis is only getting started. While the path
forward holds significant promise, it is also paved with challenges that the research
community must overcome.

As we continue to refine and implement AI techniques in mammography, the
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real-world implications extend beyond improved detection rates; they can save lives,
as evidenced by our ongoing clinical trial.

To summarise, the collective findings from our research studies show a paradig-
matic shift towards applying AI models in mammography analysis. Given the
promising results, we anticipate that further research within the field of mammog-
raphy will increasingly be conducted using AI models going forward.
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