ahe

L,
FKTH

VETENSKAP
28 OCH KONST 2%

e o

Degree Project in Electrical Engineering

Second cycle, 30 credits

Metrics-Driven Front-End Power
Optimization for the EMCA DSP

XINYU XUE

Metrics-Driven Front-End Power
Optimization for the EMCA DSP

XINYU XUE

Master's Programme, Embedded Systems, 120 credits
Date: March 24, 2025

Supervisors: loannis Savvidis, Ritika Ratnu
Examiner: Ahmed Hemani
School of Electrical Engineering and Computer Science
Host company: Ericsson AB
Swedish title: Metrikstyrd front-end effektoptimering fér EMCA DSP

© 2025 Xinyu Xue

Abstract | i

Abstract

The increasing energy demands of mobile networks pose significant
challenges to sustainability and cost efficiency. In the Ericsson Many-
Core Architecture (EMCA), the in-house Digital Signal Processor (DSP)
Intellectual Property (IP) block, which is central to high-performance radio
signal processing, employs a wide range of power-saving features. However,
any further small power optimization in the DSP could make a big difference
at Application-Specific Integrated Circuit (ASIC) System on Chip (SoC) level
due to the vast number of instances integrated. Prior differential energy
analysis has shown that when the DSP employs a Run-fast-then-stop scheme,
which is to complete the workload with maximum performance and then
enters a power-saving mode for the remaining time slack to reduce power,
it is more energy efficient as compared to a Just-in-time scheme, which is
trying to adjust the peak performance to elongate the runtime with a lower
average power consumption goal. This observation indicates that there are
indeed remaining power optimization opportunities for registers, memories,
combinational logic, and the lower levels of the clock tree.

This thesis applied a hybrid power analysis and optimization flow to the
DSP. The flow combines automated power optimization using PowerPro with
integrated formal verification for bug-free Register Transfer Level (RTL) codes
and a manual optimization framework targeting potential high-value manual
changes. Automated optimizations achieved a 4.49% reduction in dynamic
power and a 0.84% improvement in Dynamic Clock Gating Efficiency (DCGE)
for the DSP block, with potential increases up to 12.73% power savings and
2.38% DCGE improvement when manual optimizations are applied.

The study demonstrates this methodology to another block (arbiter and
router) in EMCA. This block showed a 6.52% reduction in dynamic power
and a 1.28% DCGE improvement with PowerPro, with manual optimizations
potential of total power savings of 27.7% and DCGE improvements of 5.5%.

This hybrid flow enables IP blocks to be treated as black boxes, simplifying
the optimization process for engineers outside the design team. Additionally,
the methodology demonstrated minimal impact on area and timing, making
it practical for real-world application. This approach sets a foundation for
energy-efficient ASIC design, addressing critical sustainability challenges in
next-generation mobile networks.

ii | Abstract

Keywords

Power analysis, Power optimization, Clock gating, Dynamic power, Applica-
tion specific integrated circuit (ASIC)

Sammanfattning | iii

Sammanfattning

Mobilnitens 6kande energibehov innebir betydande utmaningar for hallbarhet
och kostnadseffektivitet. I Ericssons manga kédrna-arkitektur (EMCA), anvén-
der det interna digitala signalprocessorn (DSP) immateriella réttigheter (IP),
som ir centralt for hogpresterande radiosignalbehandling, ett brett utbud av
energibesparande funktioner. Men varje ytterligare liten effektoptimering i
DSP kan gora stor skillnad pa den applikationsspecifika integrerade kretsen
(ASIC) System-on-Chip (SoC) niva péd grund av det stora antalet integrerade
instanser. Tidigare differentiell energianalys har visat att nir DSP anvinder ett
kor-snabbt-sedan-stopp-schema, vilket ar att slutfora arbetsbelastningen med
maximal prestanda och sedan gér in i ett energisparldge under den aterstdende
tiden for att minska strommen, 4r det mer energieffektivt jimfort med ett Just-
in-time-schema, som forsoker justera toppprestanda for att forlinga kortiden
med ett ldgre genomsnittlig energiforbrukningsmdl. Denna observation
indikerar att det verkligen finns kvarstaende effektoptimeringsméjligheter for
register, minnen, kombinationslogik och de ldgre nivaerna av klocktradet.

Denna avhandling tillimpade en hybrid effektanalys och optimeringsflode
pd DSP. Flodet kombinerar automatiserad effektoptimering med PowerPro
med integrerad formell verifiering for felfria registeroverforingsnivikoder
(RTL) och ett manuellt optimeringsramverk som riktar in sig pd potentiella
hogvirdiga manuella dndringar. Automatiserade optimeringar uppnadde en
minskning med 4,49% i dynamisk effekt och en 0,84% forbattring av DCGE
for DSP-blocket, med potentiella 6kningar upp till 12,73% energibesparingar
och 2,38% DCGE-forbittring ndr manuella optimeringar tillimpas.

Studien visar denna metod for ett annat block (arbiter och router) i EMCA.
Detta block visade en 6,52% minskning av dynamisk effekt och en 1,28%
DCGE-forbittring med PowerPro, med manuell optimeringspotential for total
energibesparing pa 27,7% och DCGE-forbittringar pd 5,5%.

Detta hybridflode gor att IP-block kan behandlas som svarta lador,
vilket forenklar optimeringsprocessen for ingenjorer utanfor designteamet.
Dessutom visade metoden minimal paverkan pa yta och timing, vilket
gjorde den praktisk for tillimpning i verkligheten. Detta tillvigagingssitt
lagger grunden for energieffektiv ASIC-design, som tar itu med kritiska
héllbarhetsutmaningar i nédsta generations mobilnit.

iv| Sammanfattning

Nyckelord

Effektanalys, Effektoptimering, Clock gating, Dynamisk effekt, Applikations-
specifika integrerade kretsar (ASIC)

Acknowledgments | v

Acknowledgments

Upon completing this work, I would like to express my gratitude to all those
who supported me throughout this journey.

First and foremost, I would like to express my sincerest gratitude to Ioannis
Savvidis, my supervisor at Ericsson. From my very first day onboard to the
final presentation, he provided invaluable guidance at every step of this study.
He always gave me patient guidance, whether it was addressing high-level
research strategies or delving into specific metrics and details. His profound
expertise and previous work in this field helped me overcome numerous
challenges and even inspired my future career.

I would like to thank Anders Engqvist, my line manager at Ericsson. He
provided me with the resources and permissions I needed to do this work and
introduced me to his team so that I could better carry out this work.

I also owe a special debt of gratitude to the design team, Jakob Brundin
and Marcus Nordh. Their extensive experience and knowledge of the DSP IP
have provided a lot of inspiration and help for this work. Marcus also helped
me with many detailed technical issues in the early stages of this work.

My thanks also go to several other colleagues at Ericsson who supported
me during various stages of this study: Zilin Zhang, Anjana Ramesh Menon,
Eric Roller, Henrick Steffansson, Joao Altermann, Jithin Sasidharan, and
Govind Sreekumar.

I would like to express my appreciation to the team at Siemens EDA for
their guidance and support with PowerPro: Richard Langridge, Himanshu
Banga, and Anders Fredriksson. Additionally, I am grateful to Robin
Theander at Synopsys for his valuable instructions regarding Design Compiler.

I would like to express my gratitude to my supervisor at KTH, Ritika
Ratnu, for her invaluable guidance and support throughout my thesis work. I
would also like to extend my heartfelt thanks to my examiner, professor Ahmed
Hemani, make this work available for publication in the future.

Finally, my deepest gratitude goes to my parents. I would not have made
it this far without their unwavering support and love.

Completing this thesis marks a significant milestone in my academic career
and brings my master’s degree journey to a perfect end. No matter where the
future takes me, I will always remember where I started and remain deeply
grateful to all those who helped me along the way.

Stockholm, March 2025
Xinyu Xue

vi | Acknowledgments

Contents | vii

Contents

1 Introduction 1
1.1 Background 1
1.2 Problem 3
1.3 Purpose e 3
1.4 Goals 3
1.5 Delimitations 4
1.6 Structure of thethesis 4

2 Background 5
2.1 Power dissipationin ASICs 5

2.1.1 Staticpowero e e 5

2.1.2 Static power optimization. 6

2.1.3 Dynamicpower 7
2.1.3.1 Internalpower 7

2.1.3.2 Switchingpower 8

2.1.4 Dynamic power optimization 8

22 Clockgating e 9
2.2.1 Hierarchical clock gating 10

222 Localclock gating 10
2.2.2.1 Combinational clock gating 11

2.2.2.2 Sequential clock gating 11

2.2.3 Clock gating threshold 14

2.3 Differential energy analysis 15
23.1 Theory 15

2.3.2 Analysisonthe DSPblock 16

2.4 Dynamic power metricso e 18
2.4.1 Switching activity oo oL, 18

2.4.2 Static clock gating efficiency (SCGE) 19

2.4.3 Dynamic clock gating efficiency (DCGE) 20

viii | Contents

2.4.4 Register output activity density for flip-flops (ROADF) 21
2.4.5 Register output activity density for enables (ROADE) . 22

3 Methods 23
3.1 Power analysis and optimizationtools 23
3.1.1 ActivityExplorer 23
312 VCD2TB e 24
3.1.3 SpyglassPower, 25
3.1.4 PowerProand SLEC-Pro 25
3.1.5 PrimeTimePX 26
3.2 Building power and power metrics curves 26
3.3 Power optimizationflow 30
3.4 Replay gate-level simulation 33
3.5 Post-optimization verification 33
3.5.1 Equivalencecheck 33
3,52 Sanitycheck, 35
3.6 Post-optimization analysis 36
3.6.1 RTLanalysis 38
3.6.1.1 Code comparison before and after Power-
Pro optimization 39
3.6.1.2 Analysis of optimization effects at the
hierarchical instance level 40
3.6.1.3 Analysis of optimization effects at the
registerlevel 41
3.6.2 Gate-level analysis 42
3.6.3 Estimation of potential optimization opportunities and
effects of future manual changes 43
4 Results and Analysis 45
4.1 Variation in characteristics of the IP blocks after power
optimization 45
4.2 Optimizationof Block 1 46
4.2.1 Baseline power metrics curves 46
4.2.2 Power optimization settings 48
423 RTLpoweranalysis. 50
424 Gate-level poweranalysis 55
4.2.5 Estimation of manual optimization 58
4.2.6 Clock gating threshold analysis 59
4.3 Optimizationof Block2 61

Contents | ix

4.3.1 Baseline power metrics curves and optimization settings 61

432 RTLpoweranalysis. 62

4.3.3 Gate-level power analysis 63

4.3.4 Estimation of manual optimization 66

5 Conclusions and Future work 69
5.1 Conclusions L o 69

5.2 Future work

References

x | Contents

List of Figures | xi

List of Figures

1.1 Breaking the energy curve [1] 2
2.1 Leakage current in a Complementary Metal Oxide Semicon-

ductor (CMOS) inverter 6
2.2 Short-circuit current in a CMOS inverter 7
2.3 Capacitive charging and discharging in a CMOS inverter . .. 8
2.4 An example of combinational clock gating 12
2.5 Anexample of sequential clock gating 13
2.6 Anexample of recirculating register 14
2.7 Concept of differential energy analysis [20] 16
2.8 Activity graphs of Run-Fast-Then-Stop (RFTS) and Just-In-

Time (JIT)scheme 17
3.1 The Graphical User Interface (GUI) of ActivityExplorer . .. 24
3.2 Anexample of the powercurve [19] 27
3.3 Steps to build the power metrics curves 29
3.4 Power optimization flow using PowerPro 31
3.5 Post-optimization verificationflow 34
3.6 Post-optimization analysisflow 37
3.7 Example of code before PowerPro optimization 39
3.8 Example of code after PowerPro optimization 40
3.9 Register matrix and “the bad corner” 43
4.1 Dynamic power curves of the baseline design of Block 1 . . . 47

4.2 DCGE and activity curves of the baseline design of Block 1 . . 49
4.3 Baseline and optimized total dynamic power curves for Block

1 at RTL level (Cropped View) 51
4.4 Total Dynamic power savings for Block 1 at RTL level 52
4.5 Baseline and optimized DCGE curves for Block 1 at RTL level 53
4.6 DCGE improvements for Block 1 at RTL level 54

xii | List of Figures

4.7 Baseline and optimized total dynamic power curves for Block

I at gate level (Cropped View) 56
4.8 Baseline and optimized DCGE curves for Block 1 at gate level 57
4.9 Impact of clock gating threshold on total dynamic power . . . 59
4.10 Impact of clock gating thresholdon DCGE 60
4.11 Dynamic power curves of the baseline design of Block2 . . . 62

4.12 DCGE and activity curves of the baseline design of Block 2 . . 63
4.13 Baseline and optimized total dynamic power curves for Block
2atRTLlevel L 64
4.14 Baseline and optimized DCGE curves for Block 2 at RTL level 64
4.15 Baseline and optimized total dynamic power curves for Block
2atgatelevel L L L 65
4.16 Baseline and optimized DCGE curves for Block 2 at gate level 65

List of Tables | xiii

List of Tables

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Reproduced results of differential energy analysis on the DSP . 18

Variation in characteristics of the IP blocks 46
Fast Signal Database (FSDB) weight factors input PowerPro . 50
Total dynamic power savings for Block 1 at RTL level 52
DCGE improvements for Block 1 at RTL level 55
Total dynamic power savings for Block 1 at RTL vs. Gate Level 57
DCGE Improvements for Block 1 at RTL vs. Gate Level . . . 58

Optimization results for Block 2 at RTL vs. Gate Level 66

xiv | List of Tables

List of acronyms and abbreviations | xv

List of acronyms and abbreviations

ASIC Application-Specific Integrated Circuit
CMOS Complementary Metal Oxide Semiconductor
CSv Comma-Separated Values

DCGE Dynamic Clock Gating Efficiency

DSP Digital Signal Processor
DUT Design Under Test
EDA Electronic Design Automation

EMCA Ericsson Many-Core Architecture

FF Flip-Flop

FIR Finite Impulse Response
FSDB Fast Signal Database

GLS Gate Level Simulation

GUI Graphical User Interface
ICGC Integrated Clock Gating Cells
1P Intellectual Property

JIT Just-In-Time

MAC Multiply and Accumulate

NMOS N-type Metal Oxide Semiconductor

PMOS P-type Metal Oxide Semiconductor

RFTS Run-Fast-Then-Stop

ROADE Register Output Activity Density for Enables
ROADF Register Output Activity Density for Fip-flops
RTL Register Transfer Level

SCGE Static Clock Gating Efficiency

xvi | List of acronyms and abbreviations

SoC System on Chip
TCL Tool Command Language

VCD Value Change Dump

List of Symbols Used | xvii

List of Symbols Used

The following symbols will be later used within the body of the thesis.
At; Duration of the ¢-th time interval, see equation (2.2)

DCGEjnua Estimated DCGE improvement from manual optimization, see
equation (3.2)

DCGEpowerpro DCGE improvement achieved by PowerPro, page 44
Bpowerpro Total bit-width of all registers optimized by PowerPro,page 44
Biopio Total bit-width of the top 10 registers and register arrays,page 44
E Total energy consumed over a given period of time, see equation (2.2)
N Total number of discrete time intervals, page 15
P(t) Instantaneous power as a function of time, see equation (2.2)

P Power consumption during the ¢-th time interval, see equation (2.2)

Pranua Estimated total dynamic power savings from manual optimization, see
equation (3.2)

Prowerpro Total dynamic power savings achieved by PowerPro, page 44

xviii | List of Symbols Used

Introduction | 1

Chapter 1

Introduction

This chapter describes the specific problem that this thesis addresses, the
context of the problem, and the goals of this thesis project, and it outlines
the structure of the thesis.

1.1 Background

The rapid expansion of mobile network traffic presents significant challenges
in terms of energy consumption and sustainability. While mobile networks are
essential for enabling digital transformation, their operational energy demands
contribute substantially to the industry’s carbon footprint. The introduction
of 5G networks presents both opportunities and challenges. If deployed in a
manner similar to previous generations, like 3G and 4G, to meet increasing
traffic demands, energy consumption could increase dramatically, with some
service providers predicting doubling energy use to meet increasing traffic
demands, which is unsustainable in terms of cost and environmental impact
[1].

To address these issues, Ericsson has developed a holistic approach to
“breaking the energy curve”, which is shown in Figure 1.1, in order to reduce
overall network energy consumption while meeting the growing demand for
data.

When this overarching approach is specific to digital System on Chip
(SoC) Application-Specific Integrated Circuits (ASICs) at the Intellectual
Property (IP) level, low-power front-end design becomes a crucial focus. This
includes two primary strategies. The first is hierarchical clock and data gating,
which disables digital functions when they are not being used. The second

2| Introduction

Traditional roll-out

. Breaking the energy curve approach

Total network energy consumption

2G

Network roll-out over time

Figure 1.1: Breaking the energy curve [1]

is local clock gating within individual IP blocks and low-power features are
consistently active and enabled within IP.

Ericsson Many-Core Architecture (EMCA) is an important architecture
for radio signal processing with extreme data rates [2]. The Digital Signal
Processor (DSP) IP block lies at the heart of the EMCA. Therefore, it should
be considered an essential block for applying low-power design.

The DSP IP is highly optimized and hierarchical clock gating has been
applied. However, prior differential energy analysis has shown that when DSP
employs a Run-fast-then-stop scheme, which is to complete the workload with
maximum performance and then enters a power saving mode for the remaining
time slack to reduce power, it is more energy efficient than a Just-in-time
scheme, which is trying to adjust the peak performance to prolong the run time
with a lower average power consumption goal. This observation indicates that
there are indeed remaining power optimization opportunities for local clock
gating in DSP [P (more detailed information on differential energy analysis
will be described in Section 2.3).

Thus, it is essential to perform further power optimization for DSP. Due to
the large number of integrated DSP instances, any small power optimization
in DSP could make a massive difference at the ASIC SoC level. This thesis
project will focus on identifying and delivering optimization opportunities
using a hybrid flow, including automatic power optimization with integrated
formal verification guarantees for bug-free Register Transfer Level (RTL) and
a manual optimization flow for more sophisticated changes.

Introduction | 3

1.2 Problem

The research questions of this thesis are:

1. How can a hybrid flow be used to characterize and optimize the DSP
block, based on front-end energy performance metrics?

2. What strategies ensure optimal DSP power optimization for the best
optimization effect? How much power can be saved?

1.3 Purpose

This thesis aims to perform a hybrid power analysis and optimization flow
for the highly optimized DSP IP block within EMCA. This research aims to
improve the energy efficiency of the DSP block by identifying and addressing
residual power inefficiencies, contributing to overall power savings within
EMCA. By leveraging both automated and manual optimization techniques,
the study provides a systematic approach to power optimization based on front-
end energy performance metrics.

This study offers practical insights into advanced power saving techniques,
enabling more efficient local clock setting at the IP level. The optimization
flow can be completed by anyone outside the design team, who treats design as
a black box. This ensures quick and easy power optimization and is a scalable
framework to optimize power at high performance ASICs.

Furthermore, the ethical considerations of this study align with global
sustainability goals in terms of social and environmental benefits. Energy-
efficient design reduces operational costs and mitigates the environmental
footprint of mobile networks, supporting long-term ecological balance.

1.4 Goals

The primary goal of this thesis is to design and validate a hybrid power analysis
and optimization flow for the DSP block within EMCA, in order to improve
its power efficiency. This goal is divided into the following sub-goals:

1. Power analysis and profiling: Perform a comprehensive power
analysis for the DSP block by extracting energy performance metrics,
allowing detailed power profiling.

4 | Introduction

2. Power optimization: Apply a hybrid optimization flow to the DSP
block, integrating automated methods based on the Electronic Design
Automation (EDA) tools with manual analysis for improved power
savings. The effectiveness of this optimization will be validated,
ensuring the correctness of the design and quantifying the power
reduction achieved.

3. Application on additional EMCA IP blocks: Extend the hybrid
optimization flow to another critical EMCA block to further improve
overall power efficiency. This step also serves to validate the scalability
and effectiveness of the flow across diverse [P blocks.

1.5 Delimitations

This thesis focuses on power analysis and optimization for two specific [P
blocks within the EMCA: 1) the DSP and 2) the Arbiter and Router. The
optimization process follows a hybrid approach consisting of two phases.

In the first automated phase, the EDA tools were utilized to perform
automatic optimizations, generating optimized RTL code. These optimized
designs were verified by several EDA tools, and their effectiveness was
validated.

The second phase involves the identification of registers with high
potential for further manual optimization. Specific metrics were utilized to
extract a list of such registers based on their contribution to power savings.
However, the scope of this thesis does not include the implementation of
manual optimization. Although the study provides a detailed list of the
registers for manual optimization, no modifications to the RTL code were
performed beyond the automated phase. Further design refinement through
manual optimization will be delegated to the design team for future work.

1.6 Structure of the thesis

Chapter 2 presents relevant background information about power and power
optimization in ASIC. Chapter 3 describes the tools and processes used
for power analysis and optimization. It presents a hybrid flow combining
automated and manual techniques. Chapter 4 presents the results collected
in two case studies, in which two IP blocks are analyzed and optimized using
the flow mentioned in Chapter 3. Chapter 5 concludes the thesis and discusses
future work.

Background | 5

Chapter 2

Background

This chapter provides basic background information about power dissipation
in ASIC designs. In addition, it describes key power optimization techniques
such as hierarchical and local clock gating and relevant metrics such as
Dynamic Clock Gating Efficiency (DCGE) that are used to evaluate their
effectiveness. The chapter also discusses related work, including differential
energy analysis, a method for identifying power inefficiencies by comparing
energy consumption under varied job execution schemes. These concepts
establish the foundation for understanding and addressing power optimization
challenges in digital ASIC design.

2.1 Power dissipation in ASICs

Power consumption has become a critical concern in the design of ASIC
due to the increasing demand for high-performance and low-power electronic
devices. Understanding the different types of power consumption is essential
for developing strategies to minimize energy usage and improve thermal
performance.

Power dissipation in an ASIC can be broadly classified into two main
categories: static power and dynamic power. Each category arises from
different physical phenomena within the circuit components and affects the
overall efficiency of ASIC [3].

2.1.1 Static power

Static power is the power consumed by a circuit when it is in steady state and
does not switch. This power dissipation is primarily due to leakage currents

6 | Background

that flow through transistors even when they are turned off, so static power is
also called leakage power. The main sources of leakage currents include the
following:

* Sub-threshold leakage: The current that flows from the drain to the
source of a transistor when the transistor operates in the weak inversion
region where the gate voltage is lower than the threshold voltage.

» Gate leakage: The current that flows directly from the gate of the
transistor through the oxide to the substrate due to gate oxide tunneling
and hot carrier injection.

ouT

Sub-threshold
leakage

Figure 2.1: Leakage current in a Complementary Metal Oxide Semiconductor
(CMOS) inverter

These two types of leakage current in CMOS are shown in figure 2.1.

2.1.2 Static power optimization

As transistor sizes shrink in advanced manufacturing processes, leakage
currents become more significant due to reduced threshold voltages and
thinner gate oxides [4]. To reduce leakage current and static power
consumption, several techniques can be employed. An effective method is
to use high-threshold voltage (high-V4,) transistors in non-critical paths to
minimize sub-threshold leakage currents [5]. Power gating is another strategy,
in which sleep transistors disconnect the power supply from idle circuits,
effectively reducing leakage during standby modes [6]. Furthermore, applying
reverse body bias can increase the threshold voltage during idle periods,
thereby decreasing leakage currents [7].

Background | 7

2.1.3 Dynamic power

Dynamic power is the power consumed when transistors in the circuit are

switching states, from logic high to logic low or vice versa, which means the

power consumed due to applying a time-variant signal to the circuit.
Dynamic power consists of two main components:

1. Internal (Short-Circuit) Power
2. Switching Power

These components are associated with different activities during the
operation of the circuit [8].

2.1.3.1 Internal power

Internal power, also known as short-circuit power, is dissipated due to short-
circuit currents that flow directly from the supply voltage to the ground during
the switching of transistors. Figure 2.2 shows an example of the short-circuit
current in the CMOS inverter. Such short-circuit currents occur because,
during a transition from logic high to logic low or vice versa, there is often
a finite period in which one transistor is turning on while the other has not
fully turned off, creating a direct current path [9].

Short-circuit
current

ouTt

Figure 2.2: Short-circuit current in a CMOS inverter

Although internal power is typically smaller than the switching power,
it can become significant at high clock frequencies or in circuits with very
steep input transitions. As integration density and clock speeds increase, even
a modest increase in short-circuit events per switching cycle can contribute
noticeably to the total dynamic power budget. Furthermore, changing device
structures and lower supply voltages in advanced technology nodes require
careful management of internal power components [10].

8| Background

2.1.3.2 Switching power

Switching power is the dominant component of dynamic power in digital
circuits. Switching power arises from the charging and discharging of the load
capacitances during signal transitions [8, 10].

—

IN — out

— T

Figure 2.3: Capacitive charging and discharging in a CMOS inverter

Switching power arises from the process of charging and discharging
capacitances at the nodes of a circuit during signal transitions. Figure 2.3
shows the charging and discharging of the capacitance in the CMOS inverter.
When a digital signal transitions from a low logic state to a high logic state,
the capacitance at the output node is charged by the current flowing through
the pull-up network implemented by a P-type Metal Oxide Semiconductor
(PMOS) transistor. This charging process draws energy from the power supply
to store it as electrical energy within the capacitor. In contrast, when the signal
transitions from a high logic state to a low logic state, the stored energy in the
capacitor is discharged through the pulldown network implemented by an N-
type Metal Oxide Semiconductor (NMOS) transistor and dissipated as heat
in the circuit. This repetitive cycle of charging and discharging occurs at
every node in the circuit that experiences signal transitions, contributing to
the overall dynamic power dissipation [11].

2.1.4 Dynamic power optimization

For internal power, the optimization techniques mainly include optimizing
transistor sizes, adjusting transistor threshold voltages, and controlling input
slew rates by carefully inserting buffers or resizing the driver [12], etc.

For switching power, its value can be calculated using the following
equation:

Background |9

Pswitching =a X CVL X VD2D X f (21)

where:

* «is the activity factor (probability of a node switching per clock cycle),
» (], is the load capacitance,

* Vpp is the supply voltage,

* f is the clock frequency [10].

Reducing any of these parameters can decrease the switching power, which
is crucial for low-power design considerations.

One strategy to reduce switching power is to reduce the supply voltage
(Vbp), which has the most significant impact due to the quadratic relationship
between voltage and power consumption. Methods such as dynamic voltage
scaling (DVS), in which processors adjust their voltage dynamically based on
performance needs, are widely used [13]. However, voltage reduction must be
carefully balanced against its impact on circuit speed.

Frequency reduction is another effective technique, as it decreases the
number of transitions per second. For example, clock gating reduces
the effective clock frequency to zero for idle registers or blocks, thereby
eliminating unnecessary toggling.

2.2 Clock gating

Clock gating is one of the most effective techniques to reduce dynamic power
in ASICs. Clock gating reduces unnecessary switching activity by selectively
disabling the clock signal to specific parts when they are not active, thereby
reducing the switching power, which is the dominant part of the total dynamic
power.

Clock gating can be categorized into hierarchical clock gating and local
clock gating, each serving distinct purposes based on the granularity of
the power savings. This section delves into the principles, implementation
strategies, and benefits of clock gating techniques and explores the importance
of parameters such as the clock gating threshold.

10| Background

2.2.1 Hierarchical clock gating

Hierarchical clock gating, also known as system clock gating, is a coarse-
grained power optimization technique that reduces switching activity by gating
the clock for the IP blocks. This mechanism involved integrating the hier clock
gating cell to gate the root clock at the top level of an IP block. The enable
condition of the clock gating can typically be triggered either by software
commands or by detecting idle conditions at the IP level, such as inactive
interfaces or the absence of pending tasks, then the cell will stop the clock for
the entire block and effectively disable all the switching activity in the block
[14].

Hierarchical clock gating is highly effective for power savings because it
globally disables the clock of the entire module. However, it is only applicable
in scenarios where the module is in an entirely sleep state. For example,
it is not suitable for scenarios such as stall conditions, where the module
temporarily halts operations but may still require partial activity or data
retention to maintain the system state and resume functionality seamlessly.
Furthermore, hierarchical clock gating is also unsuitable for high-activity
scenarios. For such operating conditions, alternative clock gating techniques,
such as local clock gating, are required to complement the power-saving
strategies and ensure efficient clock signal management.

2.2.2 Local clock gating

Local clock gating is another type of clock gating that reduces clock activity
in the IP block.

Unlike hierarchical clock gating, which shuts off all clocks at the top
level of an IP block when it enters a complete sleep state, local clock gating
selectively suspends the clock for specific registers within the block while the
block continues to produce outputs. As a fine-grained clock gating technique,
it remains effective even when hierarchical clock gating cannot be applied,
enabling the gating of internal register clocks and yielding power savings for
specific register banks and logic connected to them. Local clock gating can
be used in conjunction with hierarchical clock gating to achieve further power
savings.

Local clock gating is typically implemented through gating conditions
specified in RTL code, which is identified by synthesis tools and synthesized
into Integrated Clock Gating Cells (ICGC). Therefore, correct and efficient
inserting enable conditions for local clock gating in the RTL code is critical
and requires significant effort. Optimizing local clock gating is also one of the

Background | 11

key focus areas to improve the overall efficiency of the module.
Local clock gating can be categorized into two types: combinational clock
gating and sequential clock gating.

2.2.2.1 Combinational clock gating

Combinational clock gating is a technique that detects when a register holds
its data without changes and disables the clock signal to the register during
such periods. This approach reduces the dynamic power consumed by both
the register and the clock network driving it [15].

Opportunities for the insertion of combinational clock gating can be
identified by analyzing conditional assignments in the RTL code. For example,
clock gating logic can replace constructs like if (cond) out < in. Power-
aware logic synthesis tools are capable of recognizing such coding patterns
and automatically substituting them with clock gating logic to optimize power
consumption effectively.

The following Verilog code snippet is an example of inferable combina-
tional clock gating:

always @(posedge clk) begin
if (EN)
Q <= D;
end

In the provided code, the register () loads new data only when the EN
signal is activated; otherwise, it retains its previous value. If the power-aware
logic synthesis tools can be used, they will identify the clock gating condition
and substitute the logic to an integrated clock gating cell at the clock input of
the register. The ICGC will suppress the clock toggle unless the enable signal
E'N is activated [16]. The example circuit is shown in figure 2.4.

2.2.2.2 Sequential clock gating

Sequential clock gating is another type of local clock gating that can be inferred
from the RTL code.

Sequential analysis-based clock gating involves deriving new enable
conditions to control the clock signal, effectively gating it when new data are
unnecessary in downstream logic or when the data remain stable or invalid.
This method is referred to as the sequential clock gating transformation [15].

12| Background

CLK

IcGC >
EN

Figure 2.4: An example of combinational clock gating

An example of this transformation can be seen in the following RTL code
snippet:

always @(posedge clk) begin

Q0 <= DO;
Ql <= DI;
EN <= SEL:

end
assign OUT = EN ? Q0 : QI;

In this code, no clock gating conditions can be detected directly, and the
registers () and @), latch new data values every cycle. As a result, after
the sequential clock gating transformation of the RTL code, when the code is
processed by low-power RTL synthesis tools, these registers would not initially
have clock gating implementation.

However, closer inspection reveals that if the £V signal is high, the data
latched into (); during the previous cycle is not used. In such cases, the
previous value of (); can be retained instead of being updated. Through
sequential reasoning, ~ (SFE L) can be identified as the new enable condition
for (). Similarly, for @)y, the sequential analysis identifies SEL as the new
enable condition. These new conditions correspond to the updated RTL code
snippet:

always @(posedge clk) begin
if (SEL)
Q0 <= DO;
if (~SEL)
Q1 <= DI;

Background |13

EN <= SEL;
end
assign OUT = EN ? Q0 : QI;

When processed by low-power synthesis tools, the updated code ensures
the insertion of clock gating logic for both () and (). The example circuit is
shown in figure 2.5.

SEL EN
CLK
Do Qo
— 1CGC ——
M
L
ouT
D1 Q1
! IcGe >

Figure 2.5: An example of sequential clock gating

System-level and sequential clock gating has a broader impact on power
savings than simple combinational clock gating because they typically address
global clocking inefficiencies. Sequential clock gating, in particular, is highly
effective in reducing peak power consumption. Such transformations were
implemented manually, requiring designers to identify and modify enable
conditions.

However, this process is inherently challenging and prone to errors.
Identifying opportunities for clock gating requires detailed analysis and
implementing gating logic without introducing functional errors can be
complex. Moreover, verifying the functional correctness of these changes is

14| Background

difficult, as most functional test benches may fail to provide adequate coverage
for such optimizations.

2.2.3 Clock gating threshold

The clock gating threshold refers to the minimum number of bits required for a
register to qualify for clock gating during synthesis. This threshold is a critical
parameter used in various steps involving EDA tools, including synthesis, RTL
power analysis, and RTL clock gating optimization.

For registers in the RTL code with inferable clock gating enable conditions
if their bit-width is greater than or equal to the threshold, the tool generates
a clock gating cell to gate the clock input of the register, which is a similar
implementation as 2.4.

However, for registers with a bit-width smaller than the threshold, the tool
synthesizes a feedback multiplexer at the data input instead, which is a similar
implementation to 2.6.

EN
CLK

Figure 2.6: An example of recirculating register

This approach, known as a “recirculating register” implementation, uses
the enable signal to either select a new data value or retain the previous
value by recirculating it [17]. Importantly, no clock gating cell is added
to the clock input in this type of implementation, resulting in clock activity
remaining unaffected and failing to reduce unnecessary toggling. Moreover,
the redundant feedback multiplexer introduced to implement the logic in the
RTL code not only increases resource usage but also leads to higher power
consumption. Therefore, it is important to check the synthesis reports and
avoid the occurrences of the recirculating registers.

Background |15

2.3 Differential energy analysis

Differential energy analysis, introduced by ANSYS and Qualcomm, is a
method used to analyze and identify power optimization opportunities within
a design [18]. Differential energy analysis can be a macroscopical analysis,
which means identifying the power bugs at early stages without understanding
the inner details of the design, just putting into the tests and profiling the
blocks. In the context of this study, this approach was applied to the DSP
IP block, revealing a certain inefficiency in local clock gating.

2.3.1 Theory

Differential energy analysis focuses on energy, which is a fundamental metric
that represents the total power consumed over time. Mathematically, energy
(E) is calculated as the integral of power (P) over time (f). The equation is
given as follows:

N
E= / P(t)ydt~) Pi-At; (2.2)
i=1
Where:
» F is the total energy consumed,
* P(t) is the instantaneous power as a function of time,
* P, is the power consumption during the ¢-th time interval,
e At, is the duration of the i-th time interval,
* N is the total number of intervals.

The core idea of differential energy analysis is to compare the energy
consumed by the design during a test case with the energy usage of a slowed
version of the same test case [19]. Slowdown is introduced by adding stalls,
starvation, or latencies to the test case without changing the original workload.
In theory, the energy consumed by the typical and delayed test cases should
remain equal for a consistent workload. This is because power consumption
should decrease proportionally as the test duration increases due to added
latencies.

Figure 2.7 illustrates the concept of differential energy analysis. In each
plot in the figure, the blue region corresponds to the power versus time

16 | Background

Power Power Real Scenario:
. Lower the utilization,
2 Ideal Scenario: 2 higher was the energy
Energy should be primarily due to
similar inefficiency in the
design The energy
difference
1‘ ” can be used
1 1 =~~~ """ to expose the
design’s
EnerayB = EnergyY EnerayB < EnergyY inefficiency
0 1 2 Time 0 1 2 Time
Energy = f(C,V,Workload) Energy = f(C,V,Workload, RunTime)

Figure 2.7: Concept of differential energy analysis [20]

profile of a typical job, with the area under the curve representing its energy
consumption. The yellow region illustrates the same job with added latencies,
resulting in a longer completion duration. Since both scenarios perform the
same workload, their energy consumption, corresponding to the area under
the respective curves, should remain identical.

The plot on the left represents an ideal design in terms of power because the
area of the blue region is equal to the area of the yellow region, which indicates
that both scenarios have the same energy consumption. In contrast, the plot
on the right illustrates a more realistic situation where the energy consumption
of the delayed job exceeds that of the typical job. Consequently, the energy
consumed becomes not only a function of the workload but also dependent on
the runtime of the job, which is undesirable and exposes the inefficiency of the
design.

2.3.2 Analysis on the DSP block

This study reproduced the previous work [21], which is the differential analysis
of the DSP block. Two sets of assembly codes provided by the work [22]
were used to implement the Finite Impulse Response (FIR) algorithm using
the DSP. The core of the FIR algorithm is a set of multiply and accumulate
operations, and the Multiply and Accumulate (MAC) units within the DSP
are the primary resources for completing this algorithm. The assembly codes
provide two working schemes for the FIR algorithm by adjusting the number
of MAC units used for computing simultaneously. The schemes are as follows:

1. Run-Fast-Then-Stop (RFTS) scheme: 16 MAC units are used, which

Background |17

allows the DSP to complete the workload with nominal performance
and then go to certain sleep states for the remaining slack. The energy
consumption of this scheme corresponds to the blue area in figure 2.7.

2. Just-In-Time (JIT) scheme: 4 MAC units are used, which adjusts peak
performance to elongate runtime with lower power consumption. The
energy consumption of this scheme corresponds to the yellow area in

figure 2.7.
RFTS scheme
100 —AAAAA TeA A PR,
|
|
050 \ |
i '
1
=
el ,] | sleep sleep
— |
S 23 i) 73 37 122 145 T/0 T95 219
E Ous '3.76us 7.68us 11.45us 15.21us 1#.13us 22.8%us 26.66us 30.58us 34.341
S ! }
= ! \
~ 1
> i | JIT scheme
.*g‘ 0.40 AN A A A Ao VAR e ‘lpm«,ﬁw.u\._.;adwVﬂnM P
F=1 J f 1
) 1
< 1
- |
1 1
0.20 ! !
1 1
1 1
1 1
1 1
1 1
Ik 1 1
T46 170 195 219

27 73 g NEES
Qus '377us _ 7.6%s 1145us 1522us 1d.14us 22.91us 26.67us 30.59us 34.364

Figure 2.8: Activity graphs of RFTS and JIT scheme

The activity graphs of when DSP applies two job execution schemes are
shown in figure 2.8. Two identical FIR job runs were performed under two
different execution schemes. The upper section of the figure illustrates the DSP
activity graph for the RFTS scheme. With the RETS scheme, the DSP operates
at higher performance levels before going into a sleep state, repeating a high
activity-to-sleep cycle twice. The duration of sleep is adjusted so that the total
time for one active and sleep cycle matches the time required for the execution
of a single job under the JIT scheme. In contrast, with the JI'T scheme, the DSP
operates at a lower performance level continuously until completing a single
run, repeating a moderate-activity cycle twice.

With the REFTS scheme, sleep periods activate hierarchical clock gating,
effectively suppressing clock toggles within DSP during these intervals. In
contrast, in the JIT scheme, the DSP remains continuously active, causing

18| Background

the hierarchical clock gating to be inapplicable. Only local clock gating is
active in this case. Therefore, the differential energy analysis of these two job
execution schemes mainly evaluates whether local clock gating in DSP can
achieve a similar effect of clock toggle suppression and corresponding power
reduction as hierarchical clock gating.

Table 2.1: Reproduced results of differential energy analysis on the DSP

Metric JIT scheme RETS scheme Ratio
Unitless Energy 538813 277968 1.94
Total Power Normalized 100% 52.09% 1.92
Dynamic Power Normalized 100% 51.59% 1.94

Table 2.1 presents the results of the reproduction of the differential energy
analysis performed on the DSP. The results are comparable to the previous
results in [21]. The data in the table indicate that the unitless energy consumed
by DSP with the JIT scheme is approximately 1.9 times that of the RFTS
scheme. This corresponds to the area of the yellow section in Figure 2.7 being
approximately 1.9 times larger than that of the blue section. Ideally, this ratio
should be close to 1. The observed discrepancy arises because, with the JIT
scheme, local clock gating of the DSP cannot achieve effects comparable to
hierarchical clock gating. As a result, not all redundant clock toggles are
suppressed with the JIT scheme. This finding highlights the potential for
further optimization of the local clock gating in the DSP.

2.4 Dynamic power metrics

Beyond analyzing dynamic power alone, a more detailed investigation of
power inefficiencies, including potential power bugs, was carried out at the
register and block levels. This involved utilizing various power metrics. This
section introduces the definitions of several key dynamic power metrics that
are fundamental in analyzing and improving the power efficiency of digital
designs.

2.4.1 Switching activity

Switching activity refers to the frequency of signal toggles relative to the clock
cycle, representing the dynamic behavior of signals in a design. It is a crucial
characterization metric used in power analysis, particularly at the RTL level,

Background |19

where it provides a reasonably accurate estimate of signal behavior during
simulation.

Activity is typically measured as the number of toggles on a signal per
clock cycle and can be expressed as a percentage. For example, A signal that
toggles on every clock edge (both rising and falling) has an activity of 200%,
such as a continuously running clock. A signal that changes its value once per
clock cycle is defined as having an activity of 100%.

Captured activity data can be categorized into the following:

» Total Average Activity: Reflects the overall toggle behavior across the
design, combining all signals, including clocks, combinational logic,
and registers.

» Average Combinational Activity: Focuses on the toggle rate of
combinational logic, providing insight into the activity levels of purely
logic-driven paths.

* Average Register Activity: Measures the toggle rate of data registers
that are directly influenced by clock and data transitions.

Activity is crucial for estimating dynamic power consumption, as toggles
directly correlate with dynamic power dissipation. The collected activity data,
visualized as average activity over time using tools such as ActivityExplorer
and Spyglass Power, allows designers to assess the activity levels of a block at
different times. This helps infer power consumption patterns and select time
windows that represent varying power levels for detailed power analysis.

In addition, average activity can be used as a preliminary indicator of
potential power problems for specific operating points. For example, at idle
or stall operating points where no tasks are being executed, or data updates
occur, the activity value should ideally be close to zero. If it is found to be
significantly higher, it suggests the possibility of redundant activity caused
by insufficient clock gating. This could lead to unnecessary dynamic power
consumption, highlighting the need for further investigation and potential
optimization.

2.4.2 Static clock gating efficiency (SCGE)

Static Clock Gating Efficiency (SCGE), also known as clock gating ratio, is a
metric that quantifies the proportion of clocked elements within a design that
are gated with clock gating logic. It is typically expressed as the percentage of

20 | Background

registers with clock gating enabled out of the total number of registers in the
design. Mathematically, it can be represented as:

Number of clock gated registers

SCGE = (2.3)

Number of total registers

SCGE can be observed in the reports generated from RTL power analysis
and the synthesis report for the pre-layout netlist. A low SCGE in these
reports often indicates that the design lacks sufficient clock gating and may
have significant power inefficiencies. Blocks with minimal or no clock gating
should be improved to reduce power consumption.

However, a high SCGE does not necessarily guarantee that the design
employs effective clock gating. In some cases, clock gating cells may fail to
suppress clock activity effectively when the associated registers have no data
activity. As a result, a high SCGE might not reflect underlying inefficiencies
in such clock gating implementation. Therefore, evaluating the efficiency of
clock gating within a block requires the consideration of additional metrics
along with SCGE to provide a comprehensive assessment.

2.4.3 Dynamic clock gating efficiency (DCGE)

DCGE is a metric that evaluates the effectiveness of clock gating in
suppressing unnecessary clock toggling in real time during circuit operation.
Unlike static clock gating efficiency, which measures the proportion of gated
registers in a design, DCGE is an activity-dependent metric. It focuses on
the actual runtime behavior of the clock network and registers under specific
workloads or test scenarios.

DCGE is typically expressed as the ratio of the number of clock toggles
suppressed by clock gating to the total number of clock toggles that would
occur without clock gating. Mathematically, it can be defined as follows:

DOCE — Number of gated clock toggles

Number of total clock toggles
Number of active clock toggles after clock gating

(2.4)
—1-

Number of total clock toggles

Since DCGE measures the efficiency based on the actual clock activity, it
provides a more accurate representation of the effectiveness of clock gating
compared to the structurally focused SCGE. This is particularly evident in
idle or stall states, where no data updates should occur within the block. In

Background | 21

such scenarios, DCGE serves as a reliable metric to evaluate the clock gating
performance, with a healthy DCGE value close to 100%. This indicates that
the majority of register clock toggles are successfully suppressed by clock
gating. Otherwise, a low DCGE at the stall and idle operating points indicates
power bugs in the design.

However, in high-activity scenarios, DCGE may not accurately reflect the
true efficiency of clock gating. As more registers need to toggle, achieving
a DCGE value close to 100% becomes unrealistic and unnecessary. In these
cases, additional metrics should be used to evaluate the effectiveness of clock
gating under high-activity conditions.

That said, even in high-activity operating points, if design optimizations
are applied that do not alter the functionality of the block but result in a relative
increase in DCGE, this improvement can still be considered an enhancement
in clock gating. This is because more clock toggles are being suppressed
without affecting the functionality of the design, demonstrating improved
power efficiency.

2.4.4 Register output activity density for flip-flops
(ROADF)

Register Output Activity Density for Fip-flops (ROADF) is a metric that
quantifies the activity level of the flip-flop by measuring the ratio of its data
output toggles to the total number of clock cycles. ROADF is mathematically
defined as:

ROADF — Number of toggles on the data pin of the flip — flop

Number of toggles on the clock pin of the flip — flop @5)

ROADF is an effective metric for evaluating the quality of clock gating for
a specific register. According to its definition, a low ROADF value indicates
that the number of toggles on the data pin is significantly lower than that on
the clock pin. This suggests that many clock pin toggles are redundant. In
contrast, a ROADF value approaching 100% implies that almost no clock pin
toggles are unnecessary, reflecting efficient clock gating.

ROADF can be analyzed using EDA tools such as Spyglass Power,
typically inspected alongside DCGE in the register view. When a register
exhibits both low ROADF and low DCGE, it indicates inefficient clock gating,
resulting in excessive clock toggles. This information serves as a valuable
reference for designers, helping them identify specific registers that should

22 | Background

be targeted for optimization to reduce redundant clock activity and improve
power efficiency.

2.4.5 Register output activity density for enables
(ROADE)

Register Output Activity Density for Enables (ROADE) is an extension of
ROADF, evaluated using the same criterion, but is a metric for all registers
that share the same clock enable signal. ROADE is mathematically defined
as:

ROADE — Number of toggles on the data pin .(s) 2.6)
Number of toggles on the clock pin

When multiple registers share the same enable signal, ROADE aggregates
the toggles of all data pins associated with these registers. However, if all
registers toggle simultaneously, it is counted as a single toggle to prevent
overestimating activity. The denominator accounts for clock pin toggles rather
than the root clock, ensuring that the effect of clock gating enable conditions
is properly reflected.

ROADE is a critical metric used to assess the effectiveness of clock
gating, particularly in scenarios where the design operates under non-idle test
cases. Unlike idle conditions, where a low DCGE often signifies inefficient
clock gating at active operating points, a low DCGE may simply reflect the
need for frequent data transitions that prevent clock suppression. In such
cases, ROADE provides a more comprehensive measure of clock gating
performance by taking into account the relationship between data transitions
and clock activity in the design [23]. A high ROADE value indicates effective
clock gating, where clock edges are predominantly used for meaningful data
transitions, while a low ROADE suggests redundant clock toggles that do
not correspond to data output activity. This metric is particularly useful
for identifying areas where clock toggling might be optimized to reduce
unnecessary power consumption.

ROADE is a valuable power profiling metric generated by tools such as
SpyGlass Power. The ideal value of ROADE for healthy clock gating within
a design would be above 90%. By representing the quality of the enabling
conditions, ROADE helps designers evaluate and refine clock gating strategies
to maximize power efficiency, making it an essential metric for power-aware
design optimization.

Methods | 23

Chapter 3
Methods

A comprehensive power analysis and optimization flow is applied to eliminate
the residual power bugs in the design. This flow mainly contains two phases:
Phase 1 is automatic power optimization by enhancing the clock gating in
the design with the aid of EDA tools; Phase 2 is the extraction of specific
registers whose clock gating could still be manually improved after Phase 1.
The following subsections will describe the EDA tools and the main steps in
this flow.

3.1 Power analysis and optimization tools

In this study, several EDA tools were used to perform power analysis
and optimization. In addition to these tools, some commonly used ASIC
tools were also used. Xcelium, provided by Cadence, and Verdi, provided
by Synopsys, were used to compile, simulate the design, and inspect the
simulation waveform. Synopsys Design Compiler was used to synthesize the
RTL codes and produce pre-layout netlists.

3.1.1 ActivityExplorer

ActivityExplorer, also known as VCD2RPT++, is an Ericsson in-house tool
for activity analysis of a block [24].

The tool takes in the RTL model or the netlist of the block, with the Value
Change Dump (VCD) simulation files, to perform the visualized analysis of
the switching activity of the block. As shown in figure 3.1, the Graphical User
Interface (GUI) of ActivityExplorer provides the time-based activity analysis
at different hierarchical instances in the block and produces the visualization

24 | Methods

activity waveforms. One can quickly inspect the waveform and identify the
activity states of each sub-block in the whole simulation window; hence, it is
an efficient tool for activity analysis and power bugs inspection at the early
stage of power analysis.

In this study, ActivityExplorer was a guide for choosing the appropriate
time window based on different activity levels for further detailed power
analysis.

VCD2RPT++ Activity Explorer - switching_activity.csv

Activity Roadmap Main - sub-block 1 - X

=

‘ 4 2 11 13 16 18 20
Qus 14%us 153us 1.70us 1.8%us 1.93us 204us 221us 233us 24dus

Activity Roadmap Aux0 - sub-block 2 - X

1 4] 1T 13 10 18 0
7q Ous 14%us 153us 170us 1Blus 1.98us 204us 221us 233us 234us
Activity Roadmap Aux1[*] - sub-block 3 = 5

= [e B
e 5

=T T A
] 2 9 11 13 16

T ——
— [3 e [1.41 ‘53 1.704 1.81 1.93u 204 221 21;3‘31 lelu:
@ ﬂ i ﬂ 2.157us | 75.0% (15/20) ﬂﬂ * [[<#sic> MQJ X us us L L = . L] 5 =

Figure 3.1: The GUI of ActivityExplorer

3.1.2 VCD2TB

VCD2TB is an Ericsson in-house tool that helps bring up a power Gate
Level Simulation (GLS) by converting the input stimuli VCD file into a
SystemVerilog testbench [25].

A typical functional verification environment is built around RTL model
simulations, so a netlist Design Under Test (DUT) cannot easily plug and play
in such an environment. VCD2TB is a tool that saves this effort because it
can decouple verifiers from power GLS to save resources, and no special GLS
environment that brings up effort is needed.

In this study, VCD2TB was used to generate test benches for different test
cases, which will be used for power GLS needed in gate-level power analysis.

Methods | 25

3.1.3 Spyglass Power

Spyglass Power, a part of the Spyglass suite, is a power estimation tool provided
by Synopsys.

Spyglass Power takes in the RTL codes of the block, the technology library,
and the simulation waveform file (the Fast Signal Database (FSDB) format is
being used in this study). It will output detailed power and metrics data at
different hierarchical levels in the block. It can also produce the activity and
metrics of every specific register, for example, DCGE and ROADF.

This tool provides a quick early-stage power analysis, as it only takes in
the RTL codes rather than the real netlist. It uses the technology library to
perform a pseudo-synthesis to the block, produce a pseudo-netlist, and then
perform power estimation based on it. While SpyGlass Power offers valuable
early-stage insights into the power consumption of the block at the RTL level,
its power analysis can occasionally be less precise than that performed on a
real-synthesized netlist. Thus, netlist power analysis is also involved in the
process of this study to lead to more robust and accurate power estimation.

In this study, Spyglass Power was used to perform an RTL power analysis
for the baseline design and all optimized designs to validate the optimization
in the early stages. A detailed description of the usage of Spyglass Power is
provided in Subsection 3.6.1.

3.1.4 PowerPro and SLEC-Pro

PowerPro is an EDA tool provided by Siemens. It provides a fully automated
power optimization flow, focusing on improving the local clock gating
efficiency of the block. SLEC-Pro is a companion tool with PowerPro and
provides an equivalence check as a preliminary verification of the PowerPro-
produced code.

Compared with fully manual power optimization, which requires iterative
identification and optimization of power bugs that require a lot of human
effort, PowerPro is able to realize fully automatic clock gating optimization
and formal verification that produce bug-free RTL codes.

In this study, PowerPro was used to produce power-optimized RTL codes,
where we were able to know in advance what DCGE boost is achievable
based on the RTL changes introduced by the tool. SLEC-Pro was used to
preliminary verify the optimized code. A more detailed description of the
power optimization flow using these tools will be provided in subsection 3.3.

26 | Methods

3.1.5 PrimeTimePX

PrimeTimePX is a Synopsys power analysis tool that performs an accurate
power analysis at the gate level.

PrimeTimePX takes in the netlist of the block, technology library,
constraints and parasitic files, and the gate-level simulation waveform file (the
VCD format is being used in this study). It can provide precise reports for
power and DCGE for all the hierarchical instances.

In this study, PrimeTimePX was used to perform a power analysis for the
netlists of the baseline and optimized design after RTL power analysis, as the
final validation of the optimization effects.

3.2 Building power and power metrics curves

The initial step of this study was to collect the power and power metrics at
different operating points and build curves using the data collected at these
points by interpolation.

The operating points mainly included the following working modes:

1. The lowest power state: Let the block work in sleep mode and turn
on the hierarchical clock gating (if applicable to the block). This mode
involves very low utilization and leads to the lowest power consumption.
Power consumption and DCGE data collected in this state are the criteria
to judge whether hierarchical clock gating is efficient. If the dynamic
power is close to 0, and DCGE is close to 100%, it can be judged that
hierarchical clock gating is effective.

2. Low power state: Let the block work in idle or stall mode. Turn off
the hierarchical clock gating (if applicable to the block). This mode
involves low utilization and leads to low power consumption. Power
consumption and DCGE data collected in this state are the criteria to
judge whether local clock gating is efficient. If the dynamic power is
close to 0, and DCGE is close to 100%, it can be judged that local clock
gating is effective. Otherwise, the local clock gating applied to the block
should be improved.

3. Intermediate power state: Let the block perform normal functions. In
this state, the power consumption of the block was at an intermediate
level between the low-power states and higher-power states.

Methods | 27

4. High power state: Let the block work in a high-traffic working mode.
This state contained the highest activity working mode that the block
could achieve, leading to the highest power consumption.

All the above types of operating points were selected from the test cases
given by the design team. The types and quantities of operating points might
vary depending on the module being analyzed. For example, if hierarchical
clock gating is not applicable to the tested design, the lowest power state
was not included. If the module was so small that the power consumption in
high and low-activity states did not differ much, fewer operating points might
be needed. On the contrary, if the module was so big that its peak power
consumption was very large, more operating points in the intermediate power
states might be needed to make the interpolation more accurate.

Figure 3.2 showed an example of a power curve. The power consumption
data were collected at different operating points, arranged by the activity
intensity, and plotted on the graph, then the curve was made using piecewise
linear interpolation. Multiple curves were made with a similar style, using
different types of power and power metrics data, such as combinational
dynamic power, sequential dynamic power, DCGE, etc.

power
consumption
A
@
L
”
’
P
’
dynamic
power [J
leakage
dl- . h.h >
poweron idle typical high ig .
reset released (thermal) DC/DC delivered

thermal Capability

Figure 3.2: An example of the power curve [19]

The purposes of building power and power metrics curves were two-fold:

1. Power characterization: By building the curves, it could show the
power consumption of the block under various working conditions so

28 | Methods

that analysts and the design team could have a clear understanding
of the power consumption of the block. In particular, it could be
directly observed from the curves whether there are power consumption
problems for some special operating points. For example, if the power
consumption of the operating points of stall or idle (local clock gating
was in effect) was more significant than the power consumption of the
operating points of sleep (hierarchical clock gating was in effect), there
was a potential optimization opportunity for the local clock gating.

2. Inspection of the optimization effects: After some optimization of the
block and power analysis, the new curves were created and overlayed
with the baseline curves in the same graph. The differences between
the new and optimized curves and the baseline curves were the criteria
for measuring the optimization. If the optimized curves for dynamic
power were generally located below the baseline curves, optimization
was considered to lead to a reduction in power consumption, which
represents a positive optimization. Similarly, if the optimized curves
for DCGE were generally located above the baseline curves, the
optimization was regarded to have improved DCGE, which also
represented a positive optimization.

The steps for performing power analysis, collecting power metrics data,
and building the curves are shown in Figure 3.3.

For the initial step of power analysis, RTL simulation was performed using
Xcelium and Verdi based on the test cases given by the design team. During
the RTL simulation, VCD simulation waveform files were produced. For each
test case, the initial RTL simulation was conducted in a full-window format,
meaning the simulation time covered the entire duration of the test case. This
approach was intended to allow, in subsequent analyses, the selection of a time
segment within the complete test case that would represent a typical activity
level for this test case.

The VCD files obtained in the previous step were used as input for the
Activity Explorer. Based on the activity variation curves in the Activity
Explorer GUI, which showed how activity changes over time, a shorter and
more representative time window was selected for each test case to serve as
the time window for power analysis.

The selected time windows for the test cases were re-simulated using the
same tools to generate FSDB simulation waveform files. The resulting FSDB
files will also be retained as input files for the subsequent power optimization
process. The simulation waveform files, along with the RTL code of the

Methods | 29

VCD Files

Activity Graph & Report

Power Metrics on
Multiple Operating
Points

v

Power Metrics Curves

Figure 3.3: Steps to build the power metrics curves

module and technology libraries, were then input into Spyglass Power for
power analysis. From the final Comma-Separated Values (CSV) file output by
Spyglass Power, several types of metrics were extracted: total dynamic power,
combinational dynamic power, sequential dynamic power, memory dynamic
power, clock dynamic power, and DCGE, etc.

Using the above process, each test case underwent simulation, activity
analysis, time window selection, re-simulation, and power analysis to obtain
power metrics. The power metrics data collected at multiple operating points
across various test cases were then sorted in ascending order based on activity
levels and plotted in the graph. Finally, piecewise interpolation was used to

30 | Methods

construct power metrics curves from these data points.

3.3 Power optimization flow

The EDA tool PowerPro was used as the power optimization tool in this
study. PowerPro enables automated identification of clock-gating optimization
opportunities in the RTL code and performs power optimization by modifying
the original RTL code to insert clock-gating conditions [26].

The main steps in power optimization using PowerPro are shown in Figure
3.4. The main flow was performed using a Tool Command Language (TCL)
script.

In the flow, the main inputs were the initial RTL codes, technology
libraries, and one or a mix of the simulation waveforms in the FSDB format.
The FSDB files were the ones that were used for the Spyglass Power analysis.
PowerPro performed a structural-based optimization. It identified all possible
functionally correct structural gating opportunities from the analysis of the
RTL source code. The optimal set of conditions was selected by focusing
on optimization or checking power saving by using the FSDB simulation
waveforms. The weight factor was used when multiple FSDB files were
available. The value specifies by which the switching activity data in the FSDB
file must be scaled before annotating the switching activity data.

After the read-in of the input files, PowerPro performed the operation
of prototyping the design. In prototyping, PowerPro mainly performed the
following steps [27]:

1. Consistency checks: Ensured that the library, netlist, and constraints
provided to PowerPro were consistent and were within the valid subset
accepted by the tool.

2. Normalization: Adjusted the design to align with database invariants.
Since the design was stored in the database at the operator level, certain
modifications were required.

3. Generic Optimizations: Performed technology-independent optimiza-
tions to remove redundancy in the design.

The next step was to check the annotation rate of the FSDB files. The
annotation rates reported for each FSDB file were indicators for judging
whether the waveform file matched the design itself, and the value of the
annotation rate for every FSDB file should be greater than 80%. Otherwise,

Methods | 31

FSDB 1 * weight factor 1 +
FSDB 2 * weight factor 2 + ...

h.

- Mix of
Initial simulation
RTL codes <

waveforms [*

Yes

mmittedkx‘

>98% ? h

Yes

v

Optimized
RTL codes

Figure 3.4: Power optimization flow using PowerPro

some debug steps were needed to ensure the correctness and effectiveness
of optimization. The leading possible causes of a poor annotation rate in
FSDB include the FSDB dumper that lacks read access to all regions in the
design, resulting in incomplete activity information for all modules in FSDB,
or a mismatch between the module path specified in the PowerPro setup and
the actual path. To handle these issues requires manual debugging based on

32 | Methods

information from the report. Once the FSDB annotation rate reached 80% or
higher, clock gating insertion could proceed.

The following step of clock-gating insertion was the core step of
optimization. This study mainly used the following two types of clock gating
insertion using PowerPro [28]:

1. Observability-based clock gating: Identified the unobservable writes
in a data path and found the new enable condition to gate the related
registers in this path.

2. Stability-based clock gating: This type of clock gating worked by
identifying periods of inactivity in registers or flip-flops and gating
the clock signal to avoid unnecessary switching during these stable or
constant states. It included two subtypes:

(a) Symbolic stability-based clock gating: Identified the stable or
unchanged writes for a period at the input of a register. The enable
conditions could be generated at the head of the pipelined data path
to gate the related registers.

(b) Constant stability-based clock gating: Identified the constant or
unchanged writes in the flops and generated new enable condition
to gate these flops.

After the automatic insertion of different types of clock gating, PowerPro
automatically compiled the modified codes. During the compilation, if the
tool found any moves in the patched codes to be ineffective or could not be
compiled correctly, it recommitted that move and recompiled the codes until
every move was clean. According to the empirical data [26], If less than 98%
moves were committed, the settings of PowePro should be debugged.

Once all of the above steps were completed and cleaned, the optimized
RTL codes were created. The pre-layout netlists for the baseline and optimized
designs were created using the Synopsys Design Compiler. These netlists were
used for further gate-level simulation and gate-level power analysis.

Although PowerPro compiled and provided an optimized power report
after generating the optimized code, for more reliable results in this study,
PowerPro was used only to generate the optimized code, not as a final
verification of correctness and validation of the optimization effectiveness.
Some third-party tools were used for verification and power analysis.

Methods | 33

3.4 Replay gate-level simulation

The replay gate-level simulation served as an essential step in this study,
preparing for subsequent sanity check and gate-level power analysis. RTL
simulation was conducted using the original RTL code and all test cases,
generating the input stimuli VCD for each test case. These VCD files were
then fed into VCD2TB to create the SystemVerilog test bench for gate-level
simulation corresponding to each test case.

Using these test benches generated from VCD2TB, the gate-level
simulation could fully reuse the existing RTL simulation environment and
independently compile and run with the Verilog netlist. For each test case,
the gate-level simulation was performed in full window format, which means
that the simulation time was the same as the initial RTL simulation and covered
the entire duration of the test case.

During the gate-level simulation, power VCD files were generated for
future gate-level power analysis with PrimeTimePX. The values of the gate-
level reference signals were also written into text files in real-time during the
simulation, comprising a selection of critical signals. These signals were
chosen for their sensitivity to potential simulation issues such as improper
initialization, corruption by unknown values (Xs), misaligned events, or other
discrepancies. In such cases, these signals would likely exhibit incorrect
values, making them effective indicators of simulation integrity. These
reference signals were subsequently used for sanity checks to ensure the
accuracy and reliability of the gate-level simulation, which were introduced
in Section 3.5.2.

3.5 Post-optimization verification

To ensure that the optimizations brought about by PowerPro did not change
the original functionality of the design, verification steps were required to
guarantee that the improved RTL maintained functional integrity. Post-
optimization verification was mainly divided into equivalence checks and
sanity checks. The primary process in the verification flow is illustrated in
3.5.

3.5.1 Equivalence check

SLEC-Pro was a companion tool for PowerPro. In this study, it was
used after the generation of the optimized codes, serving as a sequential

34 | Methods

initial
RTL codes

Optimized
RTL codes

RTLvs. RTL

Initial RTL RTL Optimized
pre-layout reference RTLVCD reference pre-layout
netlist signals signals netlist
Gate-level
testbench
Gate-level Gate-level
reference ™ reference
signals signals

| e

Gate vs. Gate

RTL vs. Gate

Figure 3.5: Post-optimization verification flow

logic equivalence check solution. The TCL scripts that set up SLEC-Pro
were automatically generated by PowerPro during the optimization process.

Methods | 35

By using the generated scripts, SLEC-Pro automatically performed formal
verification to compare the original RTL with the low-power RTL generated
by PowerPro. This approach significantly reduced the effort required to verify
low-power modifications and enhanced the efficiency of the equivalence check
process.

3.5.2 Sanity check

If the SLEC-Pro results were clean, further verification steps were performed.
Sanity checks were performed using reference signals. Sanity checks verified
the correctness and consistency of the design by comparing critical signal
values under various conditions to detect any functional mismatches. For
each test case, the original RTL code, the PowerPro-optimized RTL code, the
original pre-layout netlist, and the optimized pre-layout netlist were simulated,
and their reference signals were output to text files.

After the simulations, three comparisons of the reference signals were
carried out by directly checking whether the text files containing the reference
signals were identical:

1. RTL vs. RTL: The first comparison was between the reference signals
obtained by simulating the original RTL code and those from the
PowerPro-optimized RTL code. This step ensured that the functionality
of the RTL code remained the same before and after optimization when
running the test cases.

2. RTL vs. Gate: The second comparison was between the reference
signals obtained from simulating the original RTL code and those from
simulating the pre-layout netlist synthesized from the original RTL
code. This step verified that the test benches generated by VCD2TB
for gate-level simulation, as well as the original RTL simulation
environment test cases, provided the same stimulus for the design.
Furthermore, it confirmed that the synthesis flow produced a netlist
functionally equivalent to the RTL code.

3. Gate vs. Gate: The third comparison was between the reference
signals obtained by simulating the netlist synthesized from the original
RTL code and those from simulating the netlist synthesized from the
PowerPro-optimized RTL code. This step validated that the netlist
synthesized from the PowerPro-optimized code retained the same
functionality as the original netlist.

36 | Methods

If all three checks passed, it was concluded that the PowerPro-optimized
code and the synthesized netlist maintained the same functionality as
the original design. Every set of code generated by PowerPro required
the previous verification process to ensure the correctness of the results.
Subsequently, the verified optimized RTL code and netlist were used for
further post-optimization analysis.

3.6 Post-optimization analysis

After verifying the code, it was essential to validate the improvement achieved
through optimization. Since PowerPro was solely utilized to generate the
optimized RTL codes, separate engines were used for the optimization and
analysis processes to ensure an unbiased evaluation.

The post-optimization analysis flow in this study is shown in figure 3.6. A
comprehensive power analysis was performed in three stages to ensure robust
and reliable results. This multi-stage approach not only enhanced the accuracy
of power metrics but also provided detailed insights into the effectiveness of
the optimizations at different levels and aspects of the design.

In this study, post-optimization analysis was structured into three key
phases:

1. RTL analysis: Spyglass Power was used to compare the changes of
the RTL codes and examine power optimizations at both the hierarchy
instance and the register levels. During this phase, Python scripts were
used to automate the comparison of optimization results, allowing for
a thorough and efficient evaluation of how PowerPro optimizations
affected specific design components.

2. Gate-level analysis: PrimeTimePX was used for gate-level power
analysis to achieve highly accurate and definitive power metrics. This
step served as the final confirmation stage, ensuring that the results
were precise and trustworthy. The gate-level analysis provided a
comprehensive view of power consumption under realistic operating
conditions, solidifying confidence in the reported power savings.

3. Estimation of potential optimization opportunities and effects of
future manual changes: Python scripts were developed to identify
registers with significant manual optimization potential. A list of these
registers was generated and their total bit-width was calculated. The
ratio of this bit-width to that of registers already optimized by PowerPro

Initial
RTL codes

Initial
pre-layout

netlist

RTL FSDB

Gate-level VCD

Optimization on

total dynamic power &

DCGE

Methods | 37

Optimized
RTL codes

RTL FSDB

Optimized

pre-layout
netlist

Gate-level VCD

A

Total bit-width of the
PowerPro-optimized

registers

r

Estimation of the
effects of future
manual changes

h

Top 10 registers to be
manually optimized &
Total bit-width

Figure 3.6: Post-optimization analysis flow

38 | Methods

was determined. This ratio and the power savings achieved by PowerPro
were used to estimate the potential impact of future manual adjustments.
This phase offered a systematic framework for prioritizing manual
optimization efforts based on their likely contribution to overall power
reduction.

In summary, the first two phases confirmed the optimizations achieved
automatically by PowerPro, while the third phase estimated the potential
improvements that could be achieved through manual modifications on top of
these optimizations. This made it possible to establish a hybrid optimization
flow that combines both automatic and manual approaches.

3.6.1 RTL analysis

RTL power analysis was mainly performed using Spyglass Power. Both the
original RTL code and the PowerPro-optimized and verified RTL code were
simulated at all operating points of the test cases to generate FSDB-format
RTL simulation waveforms. These waveforms, along with the respective RTL
codes, were then input into Spyglass Power for power analysis.

Spyglass Power provided three main types of information:

1. The GUI of Spyglass Power enabled a comparison of the code before
and after optimization, enabling an analysis of the modifications made
by PowerPro.

2. After completion of all steps, PowerPro generated a CSV file containing
detailed power metrics for all hierarchical instances.

3. The GUI of Spyglass Power included a register view, where power
metrics for each register could be examined. These register-level metrics
could also be exported as CSV files for further analysis.

To achieve a fast and effective analysis of the optimization effects using
the above information, several Python scripts were developed to support the
Spyglass Power analysis. These scripts were specifically designed to analyze
and compare CSV files exported from Spyglass Power, which contain detailed
power consumption data at the register and module levels. By automating
the extraction and comparison of power metrics, the scripts enabled a more
efficient evaluation of power usage patterns within the design hierarchy.

Methods | 39

3.6.1.1 Code comparison before and after PowerPro optimiza-
tion

Compared with the original RTL code and the optimized RTL code side by side
in the Spyglass Power GUI, the changes made by PowerPro to the RTL code
could be clearly observed and analyzed. Figures3.7 and 3.8 present examples
of code segments before and after PowerPro optimization, respectively. From
the additional content in Figure 3.8 compared to Figure 3.7, it was observed
that lines 97 to 104 in Figure 3.8 introduced clock-gating enable logic
generated by PowerPro, encapsulated in a module. Furthermore, lines 132
to 151 in Figure 3.8 showed the injection of the clock-gating condition created
by PowerPro into the clocked processes.

106 dout_reg : process (clk, rst n)

107 variable add sel vec v : std logic vector(add sel vec'length downto 0);
108 begin -- process dout reg

109 if rst_ n = '0' then -- asynchronous reset (active low)
110 dout vec d <= (others => (others == '0'));

111 elsif rising edge(clk) then -- rising clock edge

112 +-- 15 lines: add_sel vec v := add sel vec & "0@';-----==-=-c=ssccmcocmmmmmmm e caaan
127 read sel vec <= (others == '0');

128 read_sel vec_d <= (others => '0');

129 add sel vec <= (others => '0");

130 add sel vec d <= (others == '0");

131 elsif rising edge(clk) then -- rising clock edge

132 | if rd = '1" then

133 read_sel vec <= ram_sel;

134 add_sel vec <= add sel;

135 else

136 read_sel vec <= (others => '0");

137 add_sel_vec <= (others => '0");

138 end if;

139 read_sel vec d <= read sel vec;

140 add sel vec d <= add sel vec;

141 end if;
142 end process read sel reg;

Figure 3.7: Example of code before PowerPro optimization

40 | Methods

97 --PowerPro-CG

98 inst_cg const _stb cm ram wrap : cg const stb cm ram wrap port map (

99 rd == rd 1,

100 clk => clk 1,

101 E 669321 => E_ 669321,

102 read_sel_vec_en => cg_c_read sel_vec_en,

103 read sel _vec d en => cg c _read_sel vec d en

104);

105 dout_reg : process (clk, rst_n)

106 variable add_sel vec v : std_logic_vector(add_sel vec'length downto 0);

167 begin -- process dout_reg

108 if rst_n = '0' then -- asynchronous reset (active low)

109 dout vec d <= (others => (others => '0'));

116 elsif rising edge(clk) then -- rising clock edge

111 +-- 15 lines: add sel vec v := add sel VeC & '@";------------=cccccoccmcoccccnnmmaacaaaacccaoaaaas
126 read_sel vec <= (others = '09');

127 read_sel_vec_d <= (others = '0');

128 add sel vec <= (others => '0');

129 add sel vec d <= (others => '0');

130 elsif rising edge(clk) then -- rising clock edge

131 if rd = '1' then

132 if (calypto lib.powerpro cg package.is enabled(cg c read sel vec en)) then --PowerPro-CG
133 read_sel vec <= ram_sel;

134 end if;

135 if (calypto lib.powerpro cg package.is enabled(cg c read sel vec en)) then --PowerPro-CG
136 add sel vec <= add sel;

137 end if;

138 else

139 if (calypto_lib.powerpro_cg_package.is_enabled(cg_c_read_sel_vec_en)) then --PowerPro-CG
140 read_sel_vec <= (others => '0');

141 end if;

142 if (calypto lib.powerpro cg package.is enabled(cg c_read sel vec en)) then --PowerPro-CG
143 add sel vec <= (others => '0');

144 end if;

145 end if;

146 if (calypto_lib.powerpro_cg_package.is_enabled(cg_c_read_sel_vec_d_en)) then --PowerPro-CG
147 read_sel vec d <= read_sel vec;

148 end if; -

149 if (calypto_lib.powerpro _cg package.is enabled(cg c_read sel vec d en)) then --PowerPro-CG
158 add sel vec d <= add sel vec;

151 end if;

152 end if;
153 end process read_sel_reg;

Figure 3.8: Example of code after PowerPro optimization

PowerPro clearly marked each segment of added code with comments.
If manual insertion of clock-gating conditions were required, the logic for
generating enable signals and their source signals could be traced back to the
enable logic module created by PowerPro. This shows that the automatically
generated clock-gating optimization code by PowerPro was readable and could
serve as a valuable reference for future manual modifications.

3.6.1.2 Analysis of optimization effects at the hierarchical
instance level

After Spyglass Power completed every run of RTL power analysis, it
generated a CSV file named HierarchicalBrowser.csv . This CSV
file contained detailed data for all hierarchy instances in the design, including
various types of activity, power, and power metrics. A Python script was
developed to compare the HierarchicalBrowser. csv files before and

Methods | 41

after optimization. By matching the first column (the names of the hierarchy
instances), the script identified the corresponding hierarchy instances and
calculated the dynamic power savings by subtracting the total dynamic power
of the optimized design from that of the original.

The script further sorted the hierarchical instances by the above total
dynamic power changes and highlighted the power types with the most
significant changes, displaying the results in the terminal. This tool
was used to analyze the instances that contributed most significantly to
the optimization, providing insights into which parts of the design were
most affected by PowerPro’s adjustments. This analysis is valuable for
understanding the impact of optimization and identifying critical areas where
further improvements could yield more significant power savings, thus
enhancing overall design efficiency.

3.6.1.3 Analysis of optimization effects at the register level

In Spyglass Power GUI, there was a register view that displayed power, activity,
and power metrics such as ROADF and DCGE for each specific register in the
design. This register view also allowed the extraction of these data into a CSV
file. A Python script was developed to compare the extracted register CSV
files before and after optimization. By matching the first column (the names
of the registers), the script identified the corresponding registers before and
after optimization. The DCGE improvement was calculated by subtracting
the original DCGE from the optimized DCGE.

The script filtered all registers with a DCGE improvement of more than
25% and sorted them by register bit-width in descending order. Then it printed
these registers, along with their DCGE values before and after optimization, on
the terminal. Additionally, the script calculated and printed the total bit-width
of the registers optimized by PowerPro.

This script provided a list of registers where the changes from PowerPro
led to significant DCGE improvements. These registers were shown to
benefit from RTL code modifications to enhance DCGE. Therefore, if the
PowerPro optimization results were used as a reference for manual RTL code
modifications, these registers should be prioritized. The total bit-width of
the PowerPro-optimized registers calculated by the script was further used in
Section 3.6.3 to estimate the effects of future manual changes.

42 | Methods

3.6.2 Gate-level analysis

After performing a RTL analysis with Spyglass Power, a gate-level analysis
was still necessary to obtain a more accurate and realistic assessment of power
consumption. RTL analysis provided a high-level view of the power metrics
based on the estimated activity and design hierarchy, which was valuable to
identify potential areas for improvement. However, it lacked the precision
required to account for the actual implementation details. Gate-level analysis,
performed after synthesis and using actual switching activity from gate-level
simulations, offered a more precise power consumption evaluation under near-
final design conditions. This step was crucial to validate the effectiveness of
the optimizations and to ensure that the results were consistent and reliable
when transitioning from RTL to the final physical design.

In this study, the legacy synthesis flow used in the original design was
used to synthesize the RTL code to produce the pre-layout netlists. During
synthesis, some of the original clock constraints were appropriately relaxed for
certain parts of the design to prevent excessive negative slack, thereby avoiding
adverse effects on subsequent power analysis. The synthesis report directly
displayed SCGE, allowing for observation of whether the number of gated
registers had increased as a result of the optimizations.

After obtaining the netlists synthesized from both the original design
and the PowerPro-optimized design, gate-level simulations were performed
using the SystemVerilog test benches generated following the steps in Section
3.4. The VCD waveforms obtained from these simulations were then input
into PrimeTimePX for gate-level power analysis. In addition to the VCD
files, the netlists, parasitics, and constraints were also provided as input to
PrimeTimePX. PrimeTimePX generated results for gate-level dynamic power
and DCGE using event-based dynamic power analysis.

PrimeTimePX was a tool used for accurate power estimation through
detailed netlist analysis, often employed for signoft-level power analysis.
By incorporating real switching activity from gate-level simulations and
considering detailed parasitics, PrimeTimePX provided highly precise power
metrics. This level of precision was essential for evaluating the final power
characteristics of the design under realistic operating conditions and ensured
that the optimization results were reliable.

Methods | 43

3.6.3 Estimation of potential optimization opportuni-
ties and effects of future manual changes

In the register view of the Spyglass Power GUI, there was a window displaying
the ROADF vs. DCGE matrix, as shown in Figure 3.9. This figure represented
the total Flip-Flop (FF) count of registers that fall into each ROADF and DCGE
region. The numbers in the cells indicate the FF count for registers in the
corresponding region of ROADF and DCGE.

ROADF(Q/CP) vs CG Eff. Matrix (on seroius06847) X
CG Efficiency
ROADF(Q/CP) | 0%-0% ‘ 0%-25% ‘ 25%-90% | O0%-15% ‘ 5%-100% ‘ 100%-100% | NA
50%%-T00% 3 0 0 0 7168 0 0
375%50% 0 0 0 0 1160 0 0
25%-37.5% 0 0 0 0 8 0 0
125%25% 0 0 0 0 508 0 0
0%-125% 1821 % 10 0 570 0 0
0%-0% 1215 56 10 0 3026 0 0
NA_GPO lg------ L it i Y 0 0 0 0
NA Q>CP 0 0 \ 0 0 0 0 0
=] | i
“Bad corner” IW]

Figure 3.9: Register matrix and “the bad corner”

In this matrix, the area highlighted in the lower left corner, where
ROADF was less than 12.5% and DCGE was less than 25%, was defined
as “the bad corner”. Registers in this region had very low ROADF and
DCGE values, indicating inefficient clock gating. This inefficiency was
characterized by significantly higher switching activity on the clock pins of
these registers compared to the activity on their data (D) pins, leading to
redundant clock toggling. Therefore, these registers should be prioritized for
manual optimization in the future.

In this study, the ROADF vs. DCGE matrix obtained from analyzing
the PowerPro-optimized code using Spyglass Power was exported as a CSV
file. A Python script was developed to explore this CSV file, focusing on
identifying the registers located in “the bad corner” (ROADF < 12.5% and
DCGE < 25%). The script sorted these registers by bit-width in descending
order and aggregated the bit-widths of register arrays, also ranking them from
high to low. Finally, the script outputs a list of the top 10 registers and register
arrays with the highest bit-widths as a summary for the design team. These
registers were identified as key targets for further manual optimizations on top

44 | Methods

of the PowerPro results.

The bit widths of the top 10 registers and register arrays were summed to
calculate their total bit width (Bpanua). This sum was then used to estimate
the potential total dynamic power savings (Ppana) and DCGE improvement
(DCGE 1 anuar) that could be achieved through manual optimization of these top
registers. The calculation also required the total bit-width of the PowerPro-
optimized registers (Bpowerpro)s as Well as the total dynamic power savings
(Ppowerpro) and DCGE improvement (DCGEpyyepro) Obtained from the gate-
level analysis. The following formulas express these relationships:

Bm n
P, manual = B PowerPro X anual (31)
BPowerPro
Bmanual
DCGEmanual = DCGEPowerPro X B— (32)
PowerPro

Here:

* Phanua: Estimated total dynamic power savings from manual optimiza-
tion.

* PpowerPro: Total dynamic power savings achieved by PowerPro.

* DCGEynua: Estimated DCGE improvement achievable through
manual optimization.

* DCGEpoyerpro: DCGE improvement achieved by PowerPro.
* Banua: Total bit-width of the top 10 registers and register arrays.
* Bpowerpro: Total bit-width of all registers optimized by PowerPro.

These formulas demonstrate that the estimated improvements are propor-
tional to the contribution of the bit-width of the top 10 registers to the overall
bit-width of PowerPro-optimized registers. Since these results are derived
based on proportional estimation, they only represent the maximum potential
improvements achievable through manual optimization. Further analysis by
the design team is necessary to assess the practical feasibility of implementing
these manual optimizations in the actual design process.

Results and Analysis |45

Chapter 4

Results and Analysis

In this study, two IP blocks are selected for power analysis and optimization
using the flow demonstrated in the previous chapter. These [P blocks
represent critical components in EMCA, each with distinct characteristics
and power consumption profiles. The optimization of these IP blocks
presents case studies of power optimization by improving local clock-
gating efficiency, enhancing energy performance as reflected in silicon, and
providing a comprehensive basis for evaluating the effectiveness of the
proposed methodology.

Block 1 is the EMCA DSP, an important [P block in EMCA. It is the
main focus of analysis and optimization in this study. Block 2 is the arbiter
and router within EMCA, an important component in the system that works
collaboratively with the DSP. It is integrated in more significant quantities
within the system but is a smaller-scale design compared to the DSP IP block.

4.1 Variation in characteristics of the IP
blocks after power optimization

When optimizing power, it is crucial to ensure that the process does not
significantly increase the area or other critical characteristics because a larger
area increases manufacturing costs and complicates integration. To validate
that power optimization does not negatively impact area, the study collected
and compared the data of the pre-layout netlist from the blocks before and after
the automated optimization process.

Table 4.1 illustrates the variation in characteristics of the two selected [P
blocks. For both Block 1 and Block 2, the number of memories remained

46 | Results and Analysis

Table 4.1: Variation in characteristics of the IP blocks

Block name Variation in the Variation in Variation in area
number of FFs the number of
memories
Block 1 +0.05% N/A -2.64%
Block 2 +0.18% N/A +0.92%

unchanged, and the variations in the number of flip-flops (FFs) and area were
minimal and well within acceptable limits. These results demonstrate that the
power optimization flow applied in this study does not negatively impact key
characteristics such as area, confirming its feasibility for practical use.

4.2 Optimization of Block 1

Block 1 is the EMCA DSP, which is the main focus of the analysis and
optimization in this study. Hierarchical clock gating has been applied to this
block.

4.2.1 Baseline power metrics curves

Building the baseline power metrics curves is the starting point of this study
to ensure power profiling and optimization validation across the full spectrum
of operating points.

For building these curves for Block 1, a total of 12 test cases are used.
These test cases include:

1. Test Case 0: Sleep state of the block. Hierarchical clock gating is
activated, ensuring that the block stays in its lowest power state.

2. Test Case 1: Stall state of the block. Hierarchical clock gating is
deactivated, and only local clock gating is working. The block remains
in a low-power state.

3. Test Case 2: Idle state of the block. Similar to Test Case 1, the
hierarchical clock gating is deactivated and only local clock gating is
working. The block remains in a low-power state.

Results and Analysis |47

4. Test Case 3 to 10: Typical test cases that allow the block to work
in the intermediate power state. The test cases are ordered by power
consumption, arranged from lowest to highest.

5. Test Case 11: A special test case that leads to the maximum activity
and allows the block to work in the highest power state.

I I I I I
1 Total Dynamic |
—=— Combinational Dynamic
Sequential Dynamic
__ 0.8 |+ Memory Dynamic 1
E Clock Dynamic
= i |
E 0.6
3
&
[04 [-
o
2
S
~
0.2} .
0 |
| | |

| | | | | | | | |

Q N &% % X 9 b A & o QO O
o IR IR N S A I
FFFFFFFFFF S

X XN X XN X\ XN XN XN X X\
S e & & S D D & & & A
SR S U U R R S S S P PN o

Test Cases

Figure 4.1: Dynamic power curves of the baseline design of Block 1

Figure 4.1 shows the normalized dynamic power curves of the baseline
design of Block 1. The curves include the total dynamic power curve and
its components, namely combinational dynamic power, sequential dynamic
power, memory dynamic power, and clock dynamic power.

The figure illustrates that as the test case numbers increase, the
total dynamic power and its components show an overall upward trend.
Furthermore, operating points are distributed across power states ranging from
low to high, reflecting the power consumption of the baseline design under
different power states.

The figure also directly highlights some power issues present in Block 1.
Under Test Case 0, hierarchical clock gating is activated. As shown in the

48 | Results and Analysis

figure, the total dynamic power and all its components are nearly zero for this
test case. This indicates that the hierarchical clock gating applied to this block
effectively gated the clock activity of the entire block, reducing dynamic power
to a shallow level.

In contrast, Test Cases 1 and 2 correspond to the stall and idle states,
respectively, where hierarchical clock gating is not activated, and only local
clock gating is enabled. Ideally, since the block performs no operations in
the stall and idle states, effective local clock gating should also reduce the
total dynamic power and its components to near-zero levels. However, the
figure shows a noticeable increase in total dynamic power and its components
for these two test cases compared to Test Case 0, indicating that the dynamic
power is no longer near zero.

This observation suggests that insufficient local clock gating results in
additional dynamic power consumption. Therefore, optimizing local clock
gating should be a priority in the subsequent work.

Figure 4.2 presents the activity and DCGE of the baseline design of Block 1
across Test Cases 0 to 12. It can be observed that as activity increases, DCGE
decreases. This trend aligns with general principles since higher activity in
a test case typically results in more frequent data updates across registers.
Consequently, fewer clock toggles need to be gated, leading to a reduction
in DCGE.

Similar to the issues identified in Figure 4.1, Figure 4.2 reveals an identical
problem. For Test Case 1, where hierarchical clock gating is effective, DCGE
is close to 100%. In contrast, for Test Cases 2 and 3, where only local clock
gating is active, DCGE shows a noticeable decline, falling below 95%. This
indicates that local clock gating is less effective than hierarchical clock gating
in suppressing clock toggles. The resulting redundant clock activity prevents
dynamic power from reaching its minimum level.

4.2.2 Power optimization settings

The FSDB files generated from simulating Block 1 in Test Cases 1 to 12
were input into PowerPro, which produced the optimized RTL code. Since
PowerPro optimizations do not involve hierarchical clock gating, Test Case
0 was excluded from the input to PowerPro. Instead, Test Case 0 was used
only to demonstrate the efficiency of hierarchical clock gating and serve as a
comparison point for evaluating the efficiency of local clock gating.
PowerPro supports the use of multiple FSDB files with different weight
factors to optimize a block. To investigate whether the weight factors of the

Results and Analysis |49

—o— Average Register Activity
DCGE —=— Average Combinational Net Activity
1 - —
0.8 |
=)
Q
N
vc—e —
g 06
s
Z
2 04 e |
2
S
2 //./
' /. i

Test Cases

Figure 4.2: DCGE and activity curves of the baseline design of Block 1

FSDB files significantly impact the optimization results and to determine the
best strategy to assign these weight factors to achieve the best optimization,
this study defined three FSDB mix configurations. These configurations were
based on the power characteristics of Block 1 in the baseline design in various
test cases. The three configurations are as follows:

1. Mix1: Default mix, assign higher weights to the test cases correspond-
ing to the typical workloads of Block 1 as identified by the design team
while evenly distributing the weights among the remaining test cases.

2. Mix2: Idle/stall extreme mix, assign higher weights to the idle and
stall test cases, which exhibit lower power consumption, while evenly
distributing the weights among the other test cases. Since stall
conditions are likely to occur more frequently than idle in real-world
operation, Test Case 2 is given a higher weight than Test Case 3.

100

95

90

85

80

DCGE (%)

50 | Results and Analysis

3. Mix3: Max power extreme mix, assign a significantly higher weight to
Test Case 11, which represents the highest power consumption scenario,
while evenly distributing the weights among the other test cases.

The specific weight assignments for each test case in these three FSDB
mix configurations are detailed in Table 4.2.

Table 4.2: FSDB weight factors input PowerPro

Mix1 Mix2 Mix3
Test Case 0 0% 0% 0%
Test Case 1 35% 75% 2%
Test Case 2 5% 5% 2%
Test Case 3 2% 2.22% 2%
Test Case 4 30% 2.22% 2%
Test Case 5 2% 2.22% 2%
Test Case 6 2% 2.22% 2%
Test Case 7 2% 2.22% 2%
Test Case 8 2% 2.22% 2%
Test Case 9 15% 2.22% 2%
Test Case 10 2% 2.22% 2%
Test Case 11 3% 2.22% 80%
Total 100% 100% 100%

The three FSDB mix configurations described above were input into
PowerPro, resulting in three sets of optimized RTL code. These optimized
RTL codes were then used for subsequent power analysis.

4.2.3 RTL power analysis

The three sets of optimized RTL code generated from the above three
FSDB mix configurations were all successfully verified, confirming that they
maintained the same functionality as the baseline design of Block 1. These
optimized designs were then re-simulated under Test Cases 1 to 12, followed
by an RTL power analysis using Spyglass Power. Since Test Case 0 only
applies hierarchical clock gating and was not subject to optimization in this
study, the power of the optimized designs was not analyzed and demonstrated
in all the following steps.

The metrics collected from the three sets of PowerPro-optimized RTL code
across different test cases were used to rebuild the curves, which were then

Results and Analysis |51

I I

1| |~ Baseline .
3 —— Mixl1
N .
= i Mix2 *
= 09, M3 /
S
Z 0.8} |
5]
2
£ 07 i
2
g
= 067 1
=
(@)
S 05| .
=

04 | | | b\ (\\ | | | i

e:b @b‘ @6 o o @QO @0’
¢ T T T T
D S D D S S
L <L L L \J NI L &e?
Test Cases

Figure 4.3: Baseline and optimized total dynamic power curves for Block 1 at
RTL level (Cropped View)

overlaid on the original baseline curves. Figure 4.3 presents the baseline and
optimized total dynamic power curves for Block 1 at the RTL level. To provide
a clearer view of the curve changes, the figure shows a cropped view, focusing
on Test Cases 3 through 10.

For all three optimized curves, the total dynamic power is consistently
decreased compared to the baseline curve in these test cases, indicating that the
optimized Block 1 achieved some power savings. The three optimized curves
are almost identical, suggesting that different FSDB weight mix configurations
did not result in significant differences in optimization effectiveness.

Figure 4.4 illustrates the percentage of total dynamic power savings for
each test case. Except for the operating point with the lowest activity, all test
cases show noticeable savings in total dynamic power. The slight negative
saving observed in Test Case 1 is likely attributable to discrepancies or
inaccuracies in the RTL power analysis, representing open items that require
further investigation and confirmation through gate-level power analysis.

However, since significant savings are observed in most test cases,

52 | Results and Analysis

10 | | | | |
9l Mix1 IIMix2 I Mix3 |
= 8 .
S 5 |
I~
g 4 i
£
= 3 f
>
/2 :
8
g 1 f
O [|
_]- \\ q/\ (“7‘ b“ 6)‘ b\ (\\ Cb‘ 0,\ Q\ \\
N N
F FFFFF T F T S
N N S S S SN SIS
G R R R PP,

Test Cases

Figure 4.4: Total Dynamic power savings for Block 1 at RTL level

these changes are preliminarily considered more likely to represent actual
improvements. Among the three mixes, Mix 2 (idle/stall extreme mix)
demonstrates slightly better improvements than the other two mixes for most
operating points.

Table 4.3: Total dynamic power savings for Block 1 at RTL level

Mix1 Mix2 Mix3
Average total dynamic power saving 4.71% 4.77% 4.62%
Max total dynamic power saving 9.86% 9.87% 9.84%

Table 4.3 presents the average and maximum total dynamic power savings
for each FSDB mix configuration. Among the three mixes, Mix 2 achieves
the highest average and maximum power savings. However, the differences

Results and Analysis |53

compared to the other two mixes are minimal.

94 T T T T T T T T T T T
—eo— Baseline
92 - . —— Mixl |

| \ Mix2 | |
90 —" —— Mix3

88

86 -

DCGE (%)

84

82

80

78 | | | | | | | | | | |

|
%Q\w%uab«%q\q\\

4] 4] < 4] 4]
Cﬁz’ Q‘v Cj" Cﬁb‘ Q‘b Cﬁz’ Cﬁz’ Cj" Cf" Q%Q' C}’
R N R R CP R ClP e

Test Cases

Figure 4.5: Baseline and optimized DCGE curves for Block 1 at RTL level

The observation that weights do not significantly impact the optimization
effect can be attributed to the nature of the structural-based optimization by
PowerPro. The primary optimization opportunities are inherently identified
within the RTL code itself, while the FSDB files mainly serve to select the
optimal opportunities from those already identified.

Figure 4.5 shows the baseline and optimized DCGE curves for Block 1 at
the RTL level. Except for Test Case 1, the optimized design curves obviously
increase, appearing above the baseline curve. This indicates that the DCGE of
the optimized design has improved in most test cases.

Similar to the total dynamic power curves, the DCGE curves for the three
FSDB mix configurations are nearly identical. This suggests that the weight
factors assigned do not significantly influence the improvements in DCGE.

Figure 4.6 illustrates the percentage of DCGE improvement for each FSDB
mix configuration. Except for Test Case 1, all other test cases demonstrate
noticeable DCGE improvement. For most operating points, Mix 2 (idle/stall

54 | Results and Analysis

091 Mix11EMix2 L EMix3 | |

<
oo
T
|

DCGE Improvements(%)
[@n) (@)
o -3
I I
| |

0.5 .

RIS I R~y
R R R IR AR R G e e

Test Cases
Figure 4.6: DCGE improvements for Block 1 at RTL level

extreme mix) achieves slightly better improvements compared to the other two
mixes.

Table 4.4 presents the average and maximum DCGE improvement for
each FSDB mix configuration. Among the three mixes, Mix 2 achieves the
highest average and maximum DCGE improvement, with minimal differences
compared to the other two mixes.

This aligns with the conclusions drawn from the dynamic power savings
analysis: Weights do not significantly impact the optimization effect because
PowerPro performs structural-based optimization.

In summary, the PowerPro-optimized code demonstrated improvements
in both total dynamic power and DCGE in the RTL power analysis. While
the FSDB weight factors had little impact on the overall optimization
effectiveness, Mix 2, the idle/stall mix, achieved the best results among the
three configurations. Specifically, it delivered an average DCGE improvement

Results and Analysis | 55

Table 4.4: DCGE improvements for Block 1 at RTL level

Mix1 Mix2 Mix3
Average DCGE improvement 0.66% 0.67% 0.64%
Max DCGE improvement 0.81% 0.90% 0.82%

of 0.67% and an average total dynamic power saving of 4.77%.

Notably, these results highlight that even a slight percentage improvement
in DCGE can lead to significant total dynamic power savings at both the [P
and SoC levels.

4.2.4 Gate-level power analysis

To further validate the results of the RTL power analysis, the optimized code
was synthesized and subjected to gate-level power analysis. Since Mix 2
demonstrated slightly better improvements compared to the other FSDB mix
configurations in the RTL power analysis, the PowerPro-optimized RTL code
corresponding to Mix 2 was selected for synthesis. The baseline RTL code
was also synthesized for comparison.

The timing constraints for the synthesis for both sets of codes were relaxed
to 1.07 times the original clock period to prevent excessive negative slack,
which could otherwise affect the accuracy of the gate-level power analysis.
All other synthesis settings were kept identical for both designs.

After synthesis, the clock gating summary in the synthesis report showed
that the optimized code achieved approximately 1% higher SCGE compared to
the baseline code. This indicates an improvement in the proportion of registers
gated by clock gating, confirming that the optimization effectively enhanced
clock gating.

The metrics collected from the gate-level power analysis of the two netlists
were used to build the baseline and optimized curves at the gate level. Figure
4.7 presents the baseline and optimized total dynamic power curves for Block
1 at gate level. The figure displays a cropped view to provide a clearer
comparison of the curves, focusing on Test Cases 3 to 10.

The optimized total dynamic power curve consistently decreases and
appears below the baseline curve in all test cases. This indicates that the
dynamic power savings achieved through optimization remain evident and
widespread in gate-level power analysis.

Table 4.5 compares the results from the RTL power analysis and the gate-

56 | Results and Analysis

[[[
1{—e— Baseline -
—— Optimized (Mix2)

0.9

0.8

0.7}

0.6

Total Dynamic Power (Nromalized)

0.4 - .

Test Cases

Figure 4.7: Baseline and optimized total dynamic power curves for Block 1 at
gate level (Cropped View)

level power analysis. Since gate-level results were derived from the optimized
synthesized code using Mix 2, the RTL power analysis results for Mix 2 were
used for comparison.

In terms of the average total dynamic power savings, the gate-level result
is 4.49%, which shows a minimal difference from the 4.77% observed at the
RTL level. Notably, while Test Case 1 remains the operating point with the
most minor total dynamic power savings at the gate level, it achieves a 1.64%
total dynamic power saving, representing a minor positive optimization. This
confirms that the -0.60% saving observed at the RTL level was likely due to
inaccuracies in the RTL power analysis, and the actual change at the gate level
was a negligible power variation that resulted in a small positive optimization.

Overall, the results confirm that PowerPro delivered significant favorable
optimizations for most test cases at both the RTL and gate levels for Block 1.

For DCGE, Figure 4.8 presents the baseline and optimized DCGE curves
for Block 1 at the gate level. Across all test cases, the optimized curve
consistently increases, appearing above the baseline curve. This indicates that
the synthesized netlist of the optimized code achieved enhanced clock gating,

Results and Analysis |57

Table 4.5: Total dynamic power savings for Block 1 at RTL vs. Gate Level

RTL results Gate-level results

Average total dynamic power saving 4.77% 4.49%
Max total dynamic power saving 9.87% 6.33%
Minimum total dynamic power saving -0.60% 1.64%
92| —— Baseline |
90 |- —— Optimized (Mix2) | |
88 |- a
S 86| |
S 84
2
82 |- i
80 |- a
78 |- a

N9 % ™ > o A 9 N O
Q‘b%@ O‘b%@ Q‘Zr%@ O‘ﬁb@ Q‘b%e C/‘b%@ O‘Zgg) Q‘Zrc"e Q‘b%o ‘b‘:_"@ Gb%@
XN

&25’ &Qa%\ &@Q’\ &,@%\ (Qz;é\ &6} &e?\ &/@%& &,@%& &QCS\ &@%\

Test Cases
Figure 4.8: Baseline and optimized DCGE curves for Block 1 at gate level

suppressing more clock toggles. This improvement aligns with the observed
reductions in total dynamic power at the gate level.

Table 4.6 compares the DCGE improvements observed in the RTL and
gate-level power analyses. At the gate level, all test cases exhibited DCGE
improvements, with the smallest improvement being 0.2%. The average
DCGE improvement was 0.84%, and the maximum reached 1%. These
results are consistent with the observations at the RTL level, confirming that
optimizations brought by PowerPro significantly enhanced DCGE across all
test cases.

In summary, for the gate-level power analysis of Block 1, the netlist

58 | Results and Analysis

Table 4.6: DCGE Improvements for Block 1 at RTL vs. Gate Level

RTL results Gate-level results
Average DCGE improvement 0.67% 0.84%
Max DCGE improvement 0.90% 1.0%
Minimum DCGE improvement 0.05% 0.2%

synthesized from the PowerPro-optimized design demonstrated an average
total dynamic power saving of 4.49% and an average DCGE improvement
of 0.84% compared to the original design. These results represent the
final confirmed optimizations and will serve as the basis for the subsequent
calculations in the estimation of manual optimization.

4.2.5 Estimation of manual optimization

After completing the RTL and gate-level power analyses, the method described
in Section 3.6.3 was employed to identify manual optimization opportunities
that remain beyond automated optimizations from PowerPro. From the
register matrix in the register view of the Spyglass Power GUI for the
PowerPro-optimized code, a list of registers was extracted. Using the
script, the top 10 registers and arrays were filtered out for potential manual
optimization based on the criteria of ROADF less than 12.5%, DCGE less
than 25%, and the largest bit-width. The total bit-width of these registers and
arrays (Bmanua) Was calculated to be 1285.

Furthermore, as described in Section 3.6.1.3, the total bit-width of the
PowerPro optimized registers (Bpowerpro) Was determined to be 700. From
the results in Section 3.6.2, these registers were confirmed to contribute an
average total dynamic power saving (Ppowerpro) 0f 4.49% and an average DCGE
improvement (DCGEpgyerpro) Of 0.84% .

Using this data and Equations 3.1 and 3.2, it was estimated that
manual optimization could provide an additional improvement of up to
8.24% in dynamic power savings (DCGE,,ua) and up to 1.54% in DCGE
(DCGEanua)- This suggests that, when combined with the automated
PowerPro optimizations, manual efforts could ideally achieve a total of
12.73% in dynamic power savings and 2.38% in DCGE improvement.
These results highlight the potential of integrating manual optimization with
automated tools to further optimize power by improving clock gating.

Results and Analysis | 59

4.2.6 Clock gating threshold analysis

This section operates independently of the optimization performed on Block
1, which has been described in the previous sections in this chapter. It focuses
on analyzing the impact of different clock gating thresholds on the power and
DCGE of the block. Both Spyglass Power and PowerPro were configured
with clock gating thresholds ranging from 4 to 16, in increments of 2. Using
these varying thresholds, PowerPro was employed to optimize the RTL code,
followed by a RTL power analysis of both the baseline and post-optimized
designs. The total dynamic power and DCGE data were collected for each
threshold value and line graphs were constructed to visualize the results.

Power vs. Clock Gating Threshold

—=— Baseline
. 1 || —=—PowerPro Optimized .
=
g 0.95 | 2
3
)
2 09| .
fant
085 Il Il Il Il Il Il Il

4 6 8 10 12 14 16
Clock Gating Threshold

Figure 4.9: Impact of clock gating threshold on total dynamic power

Figure 4.9 illustrates the variation in total dynamic power with different
clock gating thresholds for both baseline and optimized designs. In the
curves, power values fluctuate with the threshold for both the baseline and
optimized designs without exhibiting a uniform trend. For the baseline design,
a threshold of 6 results in the lowest power, while for the optimized design,
a threshold of 8 achieves the most significant power savings and the lowest
power after optimization.

The principles of clock gating can explain this behavior. For the
same design, if the clock gating threshold is too high, synthesis tools may
transform the originally inserted clock gating enable conditions into redundant

60 | Results and Analysis

reiterating multiplexers to maintain logical correctness. This not only fails
to stop the clock toggles effectively, but also introduces additional logic,
increasing power consumption. Contrarily, if the clock gating threshold is
too low, an excessive number of modules may be gated, resulting in a higher
quantity of clock gating logic. The clock gating logic itself consumes power,
and when too much of it is introduced, the additional power overhead can offset
or even exceed the power savings achieved through clock gating. This trade-off
highlights the importance of selecting an appropriate clock gating threshold to
balance the benefits of reduced clock toggles against the overhead of additional
clock gating logic.

DCGE vs. Clock Gating Threshold

90 T T T T T T T
—— Baseline
—o— PowerPro Optimized
~ 85 :
=
sl
@)
O
280) .
7 4 6 8 10 12 14 16
Clock Gating Threshold

Figure 4.10: Impact of clock gating threshold on DCGE

Figure 4.10 shows the variation in DCGE with different clock gating
thresholds for both the baseline and optimized designs. In both cases, DCGE
decreases as the clock gating threshold increases. A higher clock gating
threshold means that fewer registers meet the clock gating condition, reducing
the overall number of gated registers. Consequently, more registers remain
active, leading to increased clock toggles relative to data toggles, which
decreases the DCGE.

The above analysis is insufficient to determine the most suitable clock
gating threshold for this block, as such a decision requires a more detailed
gate-level power analysis. However, its significance lies in highlighting that,

Results and Analysis |61

as shown in Figure 4.9, simply changing the clock gating threshold for the
same design can result in up to a 10% variation in power consumption.

This demonstrates that beyond modifying the code to enhance DCGE,
synthesis script or constraints optimization can unlock additional clock gating
opportunities with minimal effort. For example, the synthesis report should
be examined for the ungated registers caused by the “minimum bit-width
not met” condition. These registers have enable conditions for clock gating
defined in the code, but due to insufficient bit-width, their clock signals remain
ungated during synthesis. This not only fails to reduce clock toggles but also
introduces redundant reiterating multiplexers, which unnecessarily increase
power consumption.

To address this, designers should consider adjusting clock gating
conditions or modifying the clock gating threshold to prevent such occurrences
and thereby further reduce power consumption.

4.3 Optimization of Block 2

Block 2 is the arbiter and router within EMCA, an important component in the
system that works collaboratively with the DSP. It is a smaller-scale design
compared to the DSP IP block, and hierarchical clock gating has not been
applied to this block.

4.3.1 Baseline power metrics curves and optimization
settings

Since Block 2 is a relatively small block, its maximum power consumption
cannot reach exceptionally high values. Therefore, fewer test cases were
selected for power analysis and optimization compared to Block 1, allowing
for interpolation and the construction of metrics curves with fewer data.

Figure 4.11 demonstrates the dynamic power curves of the baseline design
of Block 2. Test Cases la to Sa are arranged in ascending order of total
dynamic power. Unlike Block 1, this module does not utilize hierarchical clock
gating, so there are no test cases where the block can enter a complete sleep
state.

Figure 4.12 presents the DCGE and activity curves of the baseline design
of Block 2. As activity increases, DCGE decreases, which is consistent with
expected behavior. Across these five test cases, the measured DCGE values
range from 84% to 86%.

62 | Results and Analysis

—o— Total Dynamic
3 —=— Combinational Dynamic
N . .
= Sequential Dynamic
£ 10} Clock Dynamic |
S
% /
y 09} |
2
~ 08 i
0.1+ i
- = =& Al
O | | | | |
> > > > >
%0\, %6% %e:b %Qb‘ %@6
ol * ol ol *
> S > > >
RS RS RS RS RS
Test Cases

Figure 4.11: Dynamic power curves of the baseline design of Block 2

In the above analysis, Test Cases 1a through 5a did not exhibit significant
variations in power levels. Furthermore, the analysis of Block 1 demonstrated
that different combinations of FSDB weight factors did not have a substantial
impact on the optimization results of PowerPro. Based on these findings, the
FSDB weight factors chosen for PowerPro optimization for Block 2 in this
study were evenly distributed across the five test cases. Each FSDB file was
assigned a weight factor of 20%.

4.3.2 RTL power analysis

After PowerPro optimized the baseline design using the original design and
the five FSDB files, the generated code was analyzed with Spyglass Power to
collect relevant metrics and rebuild the curves.

Figure 4.13 presents the baseline and optimized total dynamic power
curves for Block 2 at the RTL level. It can be observed that the optimized
curve shows minimal changes compared to the baseline curve. This may
be attributed to inaccuracies in RTL power analysis for smaller modules.
Therefore, exact power values and optimization effects should be further
verified through gate-level power analysis.

Results and Analysis | 63

—— Average Register Activity
DCGE —=— Average Combinational Net Activity

1 T T T T /
0.8

04 = 185

86

DCGE (%)

0.2 .

Activity (Normalized)

Test Cases
Figure 4.12: DCGE and activity curves of the baseline design of Block 2

Figure 4.14 shows the baseline and optimized DCGE curves for Block 2
at the RTL level. It is evident that the optimized curve consistently increases,
appearing above the baseline curve, indicating a significant improvement in
the DCGE of Block 2 after optimization.

4.3.3 Gate-level power analysis

To further validate the results of the RTL power analysis, the optimized code
for Block 2 was synthesized and subjected to gate-level power analysis. For
Block 2, the original timing constraints were retained during synthesis, as
neither the baseline nor the optimized design exhibited any negative slack.

According to the synthesis report, SCGE improved by 1.72%, indicating a
significant increase in the number of gated registers after optimization. This
shows that the clock gating of Block 2 was noticeably enhanced.

Figure 4.15 illustrate the baseline and optimized total dynamic power
curves for Block 2 at gate level. Across all test cases, the optimized curve
consistently lies below the baseline curve, with a noticeable downward shift.
This indicates that the optimized netlist for Block 2 achieved significant
reductions in total dynamic power under these test cases. These results suggest

64 | Results and Analysis

I I
1| |—e— Baseline

—— Optimized

Total Dynamic Power (Normalized)

0.95 |- i

0.9 i

> > > > >
%@\ %Q’% %Q’% %q’b‘ %;)
i (i (i (i ¥

S S S S S

RS RS RS RS &
Test Cases

Figure 4.13: Baseline and optimized total dynamic power curves for Block 2
at RTL level

87 T T T T T
—eo— Baseline

g 86 - -
m
6]
Q
A 85 \\\ |

8 4 \‘b‘l q/‘b‘l n)‘b‘l b“b‘l 6%}

5 5 & 5J X
¥ ¥ ¥ ¥ ¥
& & & & S
a\J a\J \J a\J a\J
Test Cases

Figure 4.14: Baseline and optimized DCGE curves for Block 2 at RTL level

that the lack of observable total dynamic power optimization in the RTL power
analysis was probably due to inaccuracies inherent in the RTL power analysis

Results and Analysis | 65

=
g I I
= 1.0 |—e— Baseline |
g —— Optimized
Z
— 095 -
(]
2
S
vt
2 0.90 -
g
<
=
>
% 0.85 | .
S > > > > >
= %e)\’ %@% %0'5 %e)b‘ %ef)
Q‘b Q‘b Q‘b Q‘b Cjb
& S S S &
& &2 &2 & NS
Test Cases

Figure 4.15: Baseline and optimized total dynamic power curves for Block 2
at gate level

rather than the absence of actual improvements.

I I I I I
—eo— Baseline
—— Optimized

87 -

86

DCGE - Gate Level (%)

Test Cases

Figure 4.16: Baseline and optimized DCGE curves for Block 2 at gate level

66 | Results and Analysis

Figure 4.16 presents the baseline and optimized DCGE curves for Block
2 at gate level. Across all test cases, the optimized curve consistently rises
and lies above the baseline curve. This indicates that the optimized netlist for
Block 2 achieved an increase in DCGE, demonstrating enhanced clock gating
efficiency in these test cases.

Table 4.7: Optimization results for Block 2 at RTL vs. Gate Level

RTL results Gate-level results

Average total dynamic power saving 0.41% 6.52%
Average DCGE improvement 1.10% 1.28%

Table 4.7 compares the optimization results for Block 2 observed in the
RTL power analysis and the gate-level power analysis. At the gate level, the
average total dynamic power saving is 6.52%, significantly higher than the
result observed at the RTL level. Since Block 2 is a relatively small module,
the actual power values at the RTL level may be more prone to inaccuracies.
Therefore, the results of the gate-level power analysis are considered more
reliable.

The average DCGE improvement at the gate level is 1.28%, which shows
a minimal difference compared to the RTL result. This further confirms the
consistency of the optimization’s impact on clock gating efficiency.

4.3.4 Estimation of manual optimization

The method used for the estimation of manual optimization for Block 2 is
consistent with that used in Block 1.

Using the Python script, the top 10 registers and arrays were filtered out
for potential manual optimization, and the total bit-width of these registers and
arrays (Bmanua) Was calculated to be 355.

The total bit-width of registers optimized by PowerPro (Bpgyerpro) Was
determined by the Python script to be 109. These registers were confirmed
to contribute an average total dynamic power saving (Ppowerpro) Of 6.5% and an
average DCGE improvement (DCGEpoyepro) Of 1.3% .

Using these data and Equations 3.1 and 3.2, it was estimated that manual
optimization could provide an additional improvement of up to 21.2% in
dynamic power savings (DCGEanar) and up to 4.2% in DCGE (DCGE anuar)-

Using the above data, when manual optimizations can be applied to Block
2 in addition to the automatic optimization, it could ideally achieve a total of

Results and Analysis |67

27.7% in total dynamic power savings and 5.5% in DCGE improvement.

68 | Results and Analysis

Conclusions and Future work | 69

Chapter 5

Conclusions and Future work

5.1 Conclusions

This thesis has demonstrated a systematic approach to the hybrid power
optimization of IP blocks within the EMCA architecture, focusing on
improving the efficiency of the local clock gating. The methodology, which
combines automated optimization using PowerPro with subsequent manual
optimization opportunities, has shown significant potential to improve energy
efficiency while preserving the functional integrity of the design.

The hybrid optimization flow successfully improved the clock gating
efficiency and saved power. For Block 1 (DSP), it is estimated that up to
12. 73% dynamic power savings and 2. 38% DCGE improvement will be
achieved in total if manual optimization can be applied. For Block 2 (arbiter
and router), up to 27.7% dynamic power saving and 5.5% DCGE improvement
in total can be estimated if manual optimization can be applied to the top 10
registers. These demonstrated improvements in energy efficiency contribute
to the overall power savings in EMCA.

The findings highlight the importance of improving the efficiency of local
clock gating, particularly for blocks like the DSP, where the hierarchical clock
gating already offers substantial energy savings. Additionally, analysis of
clock gating thresholds emphasized the importance of fine-tuning synthesis
constraints to further enhance clock-gating performance.

The hybrid optimization flow is practical and easy to implement. By
treating the design as a black box, engineers outside the design team can easily
use the entire flow and complete the analysis and optimization of a block in as
little as a few hours.

70 | Conclusions and Future work

5.2 Future work

The manual optimization phase in this study was limited to generating a list
of registers with high potential for optimization. Future efforts should focus
on implementing these manual optimizations, validating the effectiveness of
the identified registers, and further improving the clock gating efficiency and
saving overall power.

In the automated optimization phase using PowerPro, this study primarily
focused on the largest hierarchical instances within the IP blocks that could be
directly input into the tool as top-level modules. Future work could explore
optimizing smaller sub-blocks individually, comparing the optimization effect
achieved at this finer granularity. This would provide valuable insight into the
scalability and flexibility of the optimization flow.

Lastly, the flow can be extended to other IP blocks within the EMCA
architecture. Expanding the application of the flow would not only validate its
effectiveness across various designs but would also contribute to improving
the overall power efficiency of the EMCA.

References | 71

References

[1]

“Breaking the energy curve,” Ericsson, 2020. [Online]. Available:
https://www.ericsson.com/en/about-us/sustainability-and-corporate-r
esponsibility/environment/product-energy-performance [Pages xi, 1,
and 2.]

B. Ekelund, “Semiconductor challenges in the 5g and 6g technology
platforms,” in 2023 International Electron Devices Meeting (IEDM).
IEEE, 2023, pp. 1-5. [Page 2.]

J. M. Rabaey, A. P. Chandrakasan, and B. Nikoli¢, Digital integrated
circuits: a design perspective. Pearson Education, Incorporated., 2003.
[Page 5.]

K. Roy, S. Mukhopadhyay, and H. Mahmoodi-Meimand, “Leakage
current mechanisms and leakage reduction techniques in deep-
submicrometer cmos circuits,” Proceedings of the IEEE, vol. 91, no. 2,
pp- 305-327, 2003. [Page 6.]

S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and
J. Yamada, “l1-v power supply high-speed digital circuit technology
with multithreshold-voltage cmos,” IEEE Journal of Solid-state circuits,
vol. 30, no. 8, pp. 847-854, 1995. [Page 6.]

T.-H. Kim, J. Liu, J. Keane, and C. H. Kim, “Circuit techniques for ultra-
low power subthreshold srams,” in 2008 IEEE International Symposium
on Circuits and Systems (ISCAS). 1EEE, 2008, pp. 2574-2577. [Page 6.]

A. Keshavarzi, S. Ma, S. Narendra, B. Bloechel, K. Mistry, T. Ghani,
S. Borkar, and V. De, “Effectiveness of reverse body bias for leakage
control in scaled dual vt cmos ics,” in Proceedings of the 2001

international symposium on Low power electronics and design, 2001,
pp- 207-212. [Page 6.]

https://www.ericsson.com/en/about-us/sustainability-and-corporate-responsibility/environment/product-energy-performance
https://www.ericsson.com/en/about-us/sustainability-and-corporate-responsibility/environment/product-energy-performance

72 | References

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power cmos
digital design,” IEICE Transactions on Electronics, vol. 75, no. 4, pp.
371-382, 1992. [Pages 7 and 8.]

H. J. Veendrick, “Short-circuit dissipation of static cmos circuitry and
its impact on the design of bufter circuits,” IEEE Journal of Solid-State
Circuits, vol. 19, no. 4, pp. 468—473, 1984. [Page 7.]

D. Hodges, H. Jackson, and R. Saleh, Analysis and design of digital
integrated circuits. McGraw-Hill, Inc., 2003. [Pages 7, 8, and 9.]

F. N. Najm, “A survey of power estimation techniques in vlsi circuits,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 2, no. 4, pp. 446455, 1994. [Page 8.]

Y. Leblebici and S.-M. Kang, CMOS digital integrated circuits: analysis
and design. McGraw-Hill New York, 1996. [Page 8.]

T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation
of dynamic voltage scaling algorithms,” in Proceedings of the 1998
international symposium on Low power electronics and design, 1998,
pp. 76-81. [Page 9.]

I. Savvidis, “Auto local cg boost: Eliminating redundant dynamic power
at ip level for energy efficiency,” Ericsson, Tech. Rep., 2022, internal
Document. [Page 10.]

PowerPro User Manual, Version 10.4 ed., Mentor, June 2020. [Page 11.]

A. Priya, T. Agrawal, and M. Saxena, “Early-stage rtl power estimation
and exploration.” [Page 11.]

N. Koduri and K. Vittal, “Power analysis of clock gating at rtl,” Technical
Report, Atrenta Inc., San Jose, Calif. [Page 14.]

A. Krishnaswamy, “Getting ahead with early power analysis,”
Semiconductor Engineering, August 9 2018. [Online]. Available:
https://semiengineering.com/getting-ahead-with-early-power-analysis/
[Page 15.]

N. Balachandran, “Low power memory controller subsystem ip
exploration using rtl power flow: An end-to-end power analysis and
reduction methodology,” 2020. [Pages xi, 15, and 27.]

https://semiengineering.com/getting-ahead-with-early-power-analysis/

References |73

[20] Y. Wang, “Differential energy analysis for improved performance/watt in
mobile gpu,” in Design Automation Conference (DAC), 2018. [Pages xi
and 16.]

[21] I. Savvidis, “The quest for easy power-aware sw development: A novel
approach to dsp code profiling for energy/performance tradeoffs,” in
Design Automation Conference (DAC). Ericsson, 2018. [Pages 16
and 18.]

[22] M. Zhang, “Power-aware software development for emca dsp,” 2017.
[Page 16.]

[23] I. Savvidis and M. Do, Power Analysis Flow Rollout, Ericsson, 2023,
internal Document. [Page 22.]

[24] I. Savvidis, VCD2RPT++ ActivityExplorer Flow Guide, Ericsson, 2015,
internal Document. [Page 23.]

[25] I.Savvidis, “Dump, convert and replay: A targeted methodology to
mitigating power simulations effort,” in Design Automation Conference
(DAC). Ericsson, June 2019. [Page 24.]

[26] Z. Zhang, “Energy efficient ericsson many-core architecture (emca) ip
blocks for 5g asic,” 2021. [Pages 30 and 32.]

[27] PowerPro Reference Manual, Version 10.4 ed., Mentor, June 2020.
[Page 30.]

[28] I. Savvidis, PowerPro template-based optimization flow, Ericsson, 2022,
internal Document. [Page 32.]

74 | References

TRITA — EECS-EX 2025:78
Stockholm, Sweden 2025

www.kth.se

	Introduction
	Background
	Problem
	Purpose
	Goals
	Delimitations
	Structure of the thesis

	Background
	Power dissipation in ASICs
	Static power
	Static power optimization
	Dynamic power
	Internal power
	Switching power

	Dynamic power optimization

	Clock gating
	Hierarchical clock gating
	Local clock gating
	Combinational clock gating
	Sequential clock gating

	Clock gating threshold

	Differential energy analysis
	Theory
	Analysis on the DSP block

	Dynamic power metrics
	Switching activity
	Static clock gating efficiency (SCGE)
	Dynamic clock gating efficiency (DCGE)
	Register output activity density for flip-flops (ROADF)
	Register output activity density for enables (ROADE)

	Methods
	Power analysis and optimization tools
	ActivityExplorer
	VCD2TB
	Spyglass Power
	PowerPro and SLEC-Pro
	PrimeTimePX

	Building power and power metrics curves
	Power optimization flow
	Replay gate-level simulation
	Post-optimization verification
	Equivalence check
	Sanity check

	Post-optimization analysis
	RTL analysis
	Code comparison before and after PowerPro optimization
	Analysis of optimization effects at the hierarchical instance level
	Analysis of optimization effects at the register level

	Gate-level analysis
	Estimation of potential optimization opportunities and effects of future manual changes

	Results and Analysis
	Variation in characteristics of the IP blocks after power optimization
	Optimization of Block 1
	Baseline power metrics curves
	Power optimization settings
	RTL power analysis
	Gate-level power analysis
	Estimation of manual optimization
	Clock gating threshold analysis

	Optimization of Block 2
	Baseline power metrics curves and optimization settings
	RTL power analysis
	Gate-level power analysis
	Estimation of manual optimization

	Conclusions and Future work
	Conclusions
	Future work

	References

