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Abstract
Accurate wire length estimation is critical for early-stage physical design in
advanced CMOS nodes. Traditional wire length estimation models, such
as those proposed by Donath and Davis, have been widely used to predict
interconnect distributions. However, their assumptions—such as uniform
placement, rigid grid structures, and simplified interconnect probability
functions—do not fully capture the complexities of modern physical designs.
This thesis aims to refine these models by incorporating more realistic
placement constraints and empirical validation.

The first part of the study focuses on extracting Rent’s coefficients using
two different methods: the Growing Box Method and the Recursive Splitting
Method. Both methods yield nearly identical Rent exponents, differing
only at the second decimal place, but the Recursive Splitting Method offers
significantly reduced computation time.

Next, the traditional wire length estimation models of Donath and Davis
are evaluated. Donath’s model shows a significant deviation from actual
distributions, likely due to its reliance on hierarchical placement, whereas the
project focuses on PnR based placed designs. Davis’ model provides better
accuracy for longer interconnects but fails to capture short-range interconnect
behavior, leading to overestimations by orders of magnitude.

To address these limitations, this thesis proposes a hybrid wire length
estimation model. The Davis model is optimized by adjusting its power-law
exponent to better fit empirical data for longer interconnects. However, short
interconnect behavior is modeled separately using Monte Carlo simulations.
This approach accounts for non-uniform cell sizes, pin locations, and realistic
placement constraints. The final combined model achieves a strong fit to real
design data, with an R2 value of 0.984.

The study also identifies key challenges, including the sensitivity of wire
length estimation to binning choices in PDFs. To mitigate this, CDFs are
used instead, improving stability and accuracy. Additionally, the transition
point between short and long interconnect models remains an area for potential
refinement.

Future work could focus on extending the model to purely a priori wire
length estimation by starting from a circuit graph and integrating partitioning
and placement techniques rather than relying on post-layout data. Further
refinements could also involve improving transition continuity between short
and long interconnect models, and generalizing the approach to heterogeneous
integration scenarios.
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Sammanfattning
Noggrann uppskattning av ledningslängder är avgörande för fysisk design

i ett tidigt skede vid avancerade CMOS-noder. Traditionella modeller för
ledningslängdsuppskattning, såsom de som föreslagits av Donath och Davis,
har länge använts för att förutsäga fördelningen av förbindelser. Deras
antaganden – såsom jämn placering, styva rutnätsstrukturer och förenklade
sannolikhetsfunktioner för förbindelser – fångar dock inte fullt ut komplex-
iteten i moderna fysiska designer. Denna avhandling syftar till att förfina
dessa modeller genom att införliva mer realistiska placeringsbegränsningar
och empirisk validering.

Den första delen av studien fokuserar på att extrahera Rents koefficienter
med hjälp av två olika metoder: den växande boxmetoden och den rekursiva
delningsmetoden. Båda metoderna ger nästan identiska Rent-exponenter, som
endast skiljer sig på andra decimalen, men den rekursiva delningsmetoden
erbjuder avsevärt minskad beräkningstid.

Därefter utvärderas de traditionella modellerna för ledningslängdsupp-
skattning av Donath och Davis. Donaths modell visar en tydlig avvikelse från
de faktiska fördelningarna, troligen på grund av dess beroende av hierarkisk
placering, medan detta projekt fokuserar på PnR-baserade placerade designer.
Davis modell ger bättre noggrannhet för längre förbindelser men misslyckas
med att fånga beteendet hos korta förbindelser, vilket leder till överskattningar
med flera tiopotenser.

För att hantera dessa begränsningar föreslår denna avhandling en
hybridmodell för ledningslängdsuppskattning. Davis modell optimeras
genom att justera dess potenslagsexponent för att bättre passa empiriska
data för längre förbindelser. Kortare förbindelser modelleras dock separat
med hjälp av Monte Carlo-simuleringar. Denna metod tar hänsyn till
icke-uniforma celldimensioner, kontaktpunkternas positioner och realistiska
placeringsbegränsningar. Den slutliga kombinerade modellen uppnår god
överensstämmelse med verkliga designdata, med ett R2-värde på 0.984.

Studien identifierar också viktiga utmaningar, inklusive känsligheten i
ledningslängdsuppskattning med avseende på binningval i sannolikhetsfördel-
ningsfunktioner (PDF). För att mildra detta används i stället kumulativa
fördelningsfunktioner (CDF), vilket förbättrar stabilitet och noggrannhet.
Övergångspunkten mellan modellerna för korta och långa förbindelser återstår
dessutom som ett område för potentiell förbättring.

Framtida arbete kan fokusera på att utöka modellen till en ren a priori
uppskattning av ledningslängd genom att utgå från ett kretsschema och
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integrera partitionerings- och placeringsmetoder snarare än att förlita sig på
layoutdata. Vidare förbättringar kan också involvera förbättrad kontinuitet i
övergången mellan korta och långa förbindelsemodeller, samt generalisering
av metoden till heterogena integrationsscenarier.
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Chapter 1

Introduction

1.1 Problem Setting
This research was conducted at imec, a Belgium-based research and
innovation center specializing in nanoelectronics and digital technology. As
part of the Physical Design Research Team, this project was carried out in close
collaboration with ARM. Consequently, the designs analyzed in this study are
based on ARM architectures.

Accurate wire length distribution models are essential for early-stage
physical design estimation, enabling efficient placement, routing, and
performance prediction in modern VLSI circuits. Traditional models often
assume rigid grid structures with uniform cell sizes. However, with increasing
design complexity, variations in cell size, placement density, and pin locations
significantly impact interconnect distributions.

The primary objective of this project is to develop a theoretical wire length
distribution model that accurately characterizes interconnect behavior in
advancedCMOSnode-basedARMdesigns. Thismodel aims to bridge the gap
between traditional Rent’s rule-based estimations and modern physical design
challenges by incorporating non-uniform cell sizes, variable pin locations, and
realistic placement constraints.

Given the growing complexity of physical design in advanced technology
nodes, the project examines the following question:

• How can a theoretical wire length distribution model be formulated to ac-
curately predict interconnect requirements while maintaining computational
efficiency and practical applicability?
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1.2 Motivation
As semiconductor technology advances towards smaller feature sizes, the
complexity and cost of fabrication continue to rise significantly. With the
transition to advanced CMOS nodes, techniques such as Extreme Ultraviolet
Lithography (EUV) are required to achieve the necessary resolution, adding
substantial manufacturing costs. The Back-End-of-Line (BEOL) process,
responsible for interconnect fabrication, is particularly affected by these cost
constraints. Therefore, a precise wire length distribution model is essential
to optimize BEOL resources efficiently, reducing waste and improving cost-
effectiveness.

Furthermore, to obtain accurate interconnect data, conventional method-
ologies require full Place-and-Route (PnR) execution, which is computation-
ally expensive and time-consuming. This motivates the need for a theoretical
model that can predict wire length distributions early in the design cycle,
starting directly from the netlist.

Such a model would enable early-stage routing requirement estimation
and guide BEOL optimization in terms of metal pitch, the number of metal
layers, and overall routing resources. By integrating this approach, it becomes
possible to make informed design decisions that improve manufacturability,
enhance performance, and reduce the overall design-to-fabrication turnaround
time. The development of an accurate wire length distribution model for
advanced ARM-based CMOS designs is, therefore, a crucial step toward
efficient and cost-effective semiconductor design and manufacturing.

1.3 Related Literature
Wire length estimation methods can be broadly categorized into three
approaches [1]:

1. Empirical Methods: These methods derive equations for circuit properties
through data extraction and curve fitting. They rely on statistical analysis of
existing designs to establish predictive models. While they offer reasonable
accuracy, they often lack generalization across different technology nodes.

2. Procedural Methods: These methods refine wire length estimates by
analyzing detailed aspects of the design process, including placement,
routing, and interconnection structures. They provide improved accuracy
by considering physical design constraints and design flow specifics but
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are computationally expensive and heavily dependent on the specific design
methodology used.

3. Theoretical Methods: These methods generate closed-form equations for
wire length distribution based on simplified assumptions about interconnec-
tion structures. Among these, Rent’s Rule remains one of the most widely
used frameworks.

Among the theoretical methods, Rent’s Rule stands out as a robust
framework for wire length estimation. Originally proposed by Landman
and Russo in the 1960s [2], Rent’s Rule establishes a relationship between
the number of terminals and blocks in a partitioned circuit. This rule has
been extensively utilized in hierarchical wire length estimation, forming the
basis for numerous subsequent models. In the late 1970s, Donath extended
Rent’s Rule to estimate wire lengths more systematically, leading to significant
advancements in theoretical estimation techniques [3, 4].

Building upon Donath’s approach, Davis introduced a stochastic wire
length model in the late 1990s [5]. This model incorporated probabilistic
principles to overcome the limitations of deterministic methods, enabling a
more accurate representation of wire length distributions in VLSI designs.
Around the same time, Stoorbandt et al. independently developed a
probabilistic method lusing generating polynomials to represent distributions
efficiently [6].

In the late 2010s, Prasad et al.[7] further refined the Davis Model by
incorporating the effects of variable fanout on wire length distribution,
improving the accuracy of interconnect predictions in modern CMOS designs.
These advancements demonstrate the evolution of wire length estimation
models from deterministic approximations to probabilistic and stochastic
approaches that better capture real-world design variability.

1.4 Designs Under Consideration
In this study, four ARM designs were analyzed to develop the wire length
distribution model. These include two 64-bit ARM core designs and two M0
ARM designs. The two 64-bit ARM designs feature the same cell technology
(N3, Nanosheet) and contain approximately 700,000 cells, with the primary
distinction being that the second design operates at a higher frequency. The
two M0 ARM designs have a significantly smaller cell count of about 16,000
and differ in terms of cell technology: one utilizes N2, Nanosheet technology,
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while the other employs A7, CFET technology. The specifications of these
designs are summarized in Table 1.1.

Table 1.1: Design Specifications

Design 64-bit ARM #1 64-bit ARM #2 M0 ARM #1 M0 ARM #2
No. of cells ∼700k ∼700k ∼16k ∼16k

Cell Technology N3, Nanosheet N3, Nanosheet N2, Nanosheet A7, CFET

The three key cell technologies used in this study—N3, N2, and A7—are
described below:

• N3 (imec’s 3nm technology): This technology employs nanosheet
(NSH) transistors with a 5-track (5T) standard cell height, a gate pitch
of 42 nm, and a metal pitch of 18 nm. It also features a back-end-of-line
(BEOL) metal stack with 17 full-stack (FS) layers and utilizes buried
power rails (BPR) for scaling improvements[8].

• N2 (imec’s 2nm technology): This is an evolution of N3, using
nanosheet transistors but with a 6-track (6T) standard cell height and
a larger gate pitch of 48 nm. The metal pitch remains at 18 nm, and the
BEOL stack is similar to N3 with 17 FS layers[9].

• A7 (imec’s 7Å technology): The A7 technology introduces com-
plementary field-effect transistors (CFET), allowing further device
stacking and power efficiency improvements. It features a 3.5-track
(3.5T) standard cell height, a gate pitch of 42 nm, and a slightly relaxed
metal pitch of 19 nm. The BEOL stack consists of 13 FS layers and 5
bottom-stack (BS) layers, along with backside power delivery network
(BS-PDN) for enhanced power efficiency[10].

Table 1.2 summarizes the key attributes of these technology nodes.

Table 1.2: Cell Technology Specifications

Technology Node N3 N2 A7
Transistor Structure NSH NSH NSH CFET

Std Cell Height [#tracks] 5T 6T 3.5T
Gate Pitch [nm] 42 48 42

Metal Pitch (MP) [nm] 18 18 19
Scaling Boosters BPR - BS-PDN
BEOL Metal Stack 17 (FS) 17 (FS) 13 (FS) + 5 (BS)
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1.5 Delimitations
This study is concerned with developing a theoretical wire length distribution
model for advanced CMOS node-based ARM designs. However, certain
aspects of wire length modeling and physical design are explicitly beyond the
scope of this work.

A complete theoretical wire length distribution model based on Rent’s rule
generally consists of two major components:

1. Placement and routing of modules from the circuit graph onto a Manhattan
grid.

2. Extraction of Rent’s coefficients from the placed circuit and implementing
the proposed wire length distribution model.

While the overarching motivation remains the estimation of routing
requirements and facilitating early-stage design decisions, both of these
components represent extensive research questions on their own. Given the
complexity and scale of such an endeavor, this thesis is explicitly limited to
the second part—extracting Rent’s parameters from post-placement circuits
and refining existing wire length models.

Instead of formulating an a priori model that predicts wire length
distributions before placement and routing, this thesis takes a posteriori
approach. This means that PnR-run ARM designs are analyzed to optimize
current wire length estimation methods and propose improvements tailored
for advanced nodes. Consequently, this study does not attempt to:

• Developing or implementing placement and routing techniques from circuit
graph.

• Predict wire length distributions before placement using a purely theoretical
model.

• Address specific process or manufacturing variations affecting interconnect
behavior.

• Extend the model beyond ARM-based designs or to older technology nodes.

1.6 Thesis Outline
The outline of the thesis is as follows: Chapter 2 provides a comprehensive
background on the digital design cycle and presents the theoretical model for
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digital design. It outlines the stages and processes involved in digital design,
establishing the framework for understanding the methodologies discussed in
later chapters. Chapter 3 presents the theoretical foundation for Rent’s rule
and reviews existing wirelength estimation techniques. Chapter 4 introduces
the methodology for the extraction of rent coefficients, including detailed
procedures and results. Chapter 5 presents the methodology and results for the
wire length distribution estimation models. Chapter 6 provides a discussion of
the findings. Finally, Chapter 7 concludes the thesis by summarizing the key
insights and outlining potential directions for future research, emphasizing the
significance of the results and their broader impact on digital design.
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Chapter 2

Digital Design Cycle and Mod-
els

This chapter presents a basic background on digital design, situating the
research presented in this thesis. Using the Y-chart proposed by Gajski and
Kuhn, we explore the stages of the design cycle and clarify the specific position
of the thesis work in that process. Furthermore, this chapter describes how
the main goal of this thesis is the development of more accurate wire length
estimation methods. Moreover, a background about the theoretical models of
digital design is provided.

2.1 Digital Design Cycle
Realizing a digital design involves multiple steps (Figure 2.1), starting from
system specification and progressing through functional, logic, circuit, and
physical design, ultimately leading to chip fabrication and testing.

Figure 2.1: A basic digital design cycle [11]

In order to view these steps in broader sense, we illustrate it using a design
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space, where a “point” in the space represents the system to be designed and
the different design views can be illustrated as the “projections” along one of
the directions. These dimensions and views can be represented using Gajski
and Kuhn’s Y-chart [12], as shown in Figure 2.2.

Figure 2.2: Gajski-Kuhn VLSI design abstraction-level chart [13]

Digital systems can be described from three primary perspectives, each
offering a unique understanding of their design and functionality. The
first perspective is the behavioral domain, which focuses on the system’s
functional and temporal behavior. This involves examining the relationship
between the system’s inputs and outputs over time. In addition to functional
and timing aspects, the behavioral perspective also includes considerations
such as power dissipation and the system’s resilience to errors, both of which
are critical for modern digital systems.

The logical structural domain, being the second perspective, describes
how a design implements the desired behavior, focusing on the arrangement of
basic components. Unlike the behavioral perspective, which defines what the
system does, this view details its organization using block diagrams, circuit
outlines, and logical schematics.

The third and final perspective is the physical structural domain, which
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deals with the system’s physical realization in a specific technology. This
perspective focuses on geometric properties, including length, diameter,
area, and volume, which only become apparent in this dimension. The
geometric depiction of the digital design is called the layout and the method to
determine this representation is known as the layout process. Together, these
three perspectives provide a comprehensive framework for understanding and
designing digital systems.

2.1.1 Design Trajectory
Returning to the original description of the design cycle in Figure 2.1, it can
be expanded to realize how each step traverses the Y-chart as follows:

1. System Specification: The system specification, being a high-level and
frequently informal representation of the system, is where the design process
starts. Important elements including performance, functionality, size, speed,
and power requirements are described in this specification. However, it
is typically incomplete and imprecise, utilizing language, diagrams, and
plots to formulate the problem. Due to its informal nature, the system
specification is unsuitable for automated digital design tools, necessitating
a formal description of system behavior. This formalization marks the first
stage of Gajski’s Y-chart and is addressed in the functional design phase.

2. Functional Design: In this phase, the system’s behavior is formally
described, providing the foundation for subsequent design steps. This
involves defining the relationship between inputs and outputs, with an
emphasis on functional and temporal behavior. The formal description
ensures compatibility with automated tools, allowing for simulation and
verification of the system’s intended operation.

3. Logic Design: The arithmetic and logic operations required to implement
the functional behavior are determined and tested during the logic design
process. Usually, hardware description languages like VHDL or Verilog
are used to describe these operations. The logic is represented using
boolean expressions, which are optimized to produce a simple design while
maintaining the required functionality. This process, which is frequently
called refining, guarantees that the design is precise and efficient.

4. Design Synthesis: This phase transforms the behavioral description into a
structural representation. Often called “technology mapping”,this step maps
functions to components from a predefined library associated with the chosen
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technology. At this stage, the design remains abstract, without geometric
details, focusing instead on logical interconnections.

5. Physical Design: The logical framework is translated into a tangible
representation in a particular technology during the physical design process.
Interconnections become actualized as physical wires, and the system takes
on its final shape, such as a chip, board, or cabinet. Design guidelines based
on material qualities and limitations of the production process dictate the
layout.

6. Fabrication and Testing: Once the design is complete, it undergoes
fabrication and testing. Fabrication transfers the layout to a wafer, while
testing ensures the system functions correctly. Although these steps are not
part of the design trajectory, they are crucial for producing a functional end
product.

2.1.2 Applicability of this Thesis in the Design Cycle
This thesis’s work falls under the design cycle’s physical design phase,
specifically addressing the layout generation step, which determines a circuit’s
physical structure based on its logical representation. Wire-length estimation
plays a critical role in this process, as it directly impacts the quality and
feasibility of the layout. Accurate wire-length predictions ensure that circuits
meet system specifications while adhering to the constraints of the physical
architecture, including minimal component pitches and wire widths defined
by advanced CMOS nodes.

2.2 Theoretical Models of Digital Design
This thesis centers on a posteriori wire length estimation methods. Such
estimations are applied when the placement of components is predetermined,
aiming to predict the wire length that will result after routing. This technique
proves particularly useful in scenarios where routing is considerably more
computationally expensive than either placement or wire length prediction.
The estimations are grounded in three theoretical frameworks: the circuit
model, the physical architecture model, and the layout generation model.

This chapter provides a background about these three models with some
definitions and illustrations relevant to these topics.
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2.2.1 The Circuit Model
A circuit can be defined as a design that is viewed through the logical structural
perspective. On the Gajski-Kuhn’s Y-chart it lies on the structural domain
branch (Figure 2.2). A circuit can be represented as a set of interconnected
blocks, which can signify transistors, gates, or entire subcircuits. These
interconnections are referred to as nets, and nets connected to more than two
blocks are termed multi-terminal nets. Some nets also connect to the external
environment of the circuit, known as external nets, as opposed to internal
nets, which connect only to blocks within the circuit. To effectively model
these external nets, a special type of block, called a pin, is introduced. A pin
represents the external terminal for a net, and every external net is connected
to exactly one pin. Consequently, the number of pins in a circuit corresponds
to the number of external nets, while the other internal blocks are referred to
as logic blocks. A basic circuit model is shown in Figure 2.3.

Figure 2.3: A basic circuit model [14]

2.2.2 The Physical Architectural Model
The significance of a circuit’s interconnection length emerges only once
the circuit has been mapped onto a physical architecture. According to
the structural levels outlined in the Y-chart, this physical architecture might
correspond to a substrate used for placing logic cells or a computer board
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on which chips are mounted. Across all abstraction levels, the architecture
generally exhibits a regular structure, enabling the definition of unit distances
and imposing constraints on where components can be placed.

In the physical architecture model, logic blocks correspond to cells, which
are designated positions for placement, while pads are positions for pins.
Each cell or pad is assumed to accommodate only one logic block or pin,
respectively. Nets are represented by channels and connection points within
this framework, creating a structured mapping of interconnections.

One widely adopted representation of the physical architecture is the
Manhattan grid, illustrated in Figure 2.4. In this model, adjacent cells are
positioned on a uniform lattice, with interconnecting channels linking them.
Distances within the grid are computed using the Manhattan metric, where the
distance d between two points located at (X1, Y1) and (X2, Y2) is given by:

d = |X2 −X1|+ |Y2 − Y1| (2.1)

Figure 2.4: The Manhattan Grid

2.2.3 The Layout Generation Model
In its abstract form, a circuit consists of interconnected logic blocks,
with properties such as wire length remaining undefined until the physical
implementation stage. As described by Gajski and Kuhn in their Y-chart
(Figure 2.2), this transition happens during the layout generation phase, where
the logical design is translated into a physical layout, making it possible to
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assess wire lengths and interconnection efficiency. This section introduces
the models for placement and routing within this context.

2.2.3.1 The Placement Model

Circuit placement involves assigning logic blocks and pins to designated cells
and pads on a grid (Figure 2.5) according to optimization goals, mainly
minimizing wire length. The wire length between blocks is estimated as
the shortest distance between their corresponding cells, with the overall wire
length being the sum of these individual distances. By minimizing this
total wire length, the placement becomes more compact, thereby reducing
interconnect delays and enhancing overall efficiency.

Figure 2.5: Placement of a circuit

2.2.3.2 The Routing Model

The interconnection length is determined once the wire’s routing path through
the physical architecture is defined. Routing allocates paths within channels,
focusing on minimizing the path length—i.e., the number of channel segments
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the wire passes through. Although channel occupation could be considered
as an additional factor, it is not explicitly modeled due to its complexity and
the limitations of estimation methods. Nonetheless, this simplification is not
critical, as standard cell designs typically adjust channel widths or layers to
accommodate routing requirements. This assumption is supported by the
modeling of short interconnects. Figure 2.6 shows the routing of nets within
the architectural model.

Figure 2.6: Routing a net through the shortest path
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Chapter 3

Rent’s Rule and Wirelength Es-
timation techniques

As mentioned previously in Chapter 1, wire length estimation methods are
categorized into empirical, procedural, and theoretical approaches. Each has
its strengths, but not all are equally suitable for every situation.

Among the theoretical methods, Rent’s Rule stands out as a robust
framework for wire length estimation. Proposed in the 1960s by Landman
and Russo [2] and further developed over decades, it correlates the number
of terminals and blocks in a partitioned circuit using a simple mathematical
relationship that will be explained in detail in section ??. Unlike random-
placement models, Rent’s Rule captures the inherent structure and complexity
of circuit designs, making it more accurate and versatile for various
architectures.

The work of Donath [3, 4] in the 1970s extended Rent’s Rule to estimate
wire lengths hierarchically, forming the foundation of modern theoretical
estimation techniques. Despite its simplicity, Rent’s Rule has proven to be
remarkably effective in predicting interconnection requirements across diverse
design scales, including 3D architectures and complex multi-terminal nets.

Given the limitations of empirical and proceduralmethods for early design-
stage estimations, Rent’s Rule provides an optimal balance of simplicity,
accuracy, and adaptability. It forms the basis of this thesis and serves as the
starting point for exploring advanced wire length estimation techniques. The
following sections are dedicated to explain the implication of Rent’s Rule, it’s
basic understanding and coffecients involved in it.
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3.1 Definition and Interpretation
To theoretically validate Rent’s rule, consider a circuit placed within a physical
architecture, as shown in Figure 3.1. Assume the architecture is sufficiently
large such that its boundaries do not influence the analysis. A bounded region
within this architecture is defined, containing a statistically homogeneous
functional circuit block. Homogeneity implies that parameters such as the
average wire length per logic block and the average number of terminals per
logic block are independent of the block’s position within the region or its
surroundings.

Figure 3.1: Change in bounding box size

Within this bounded region, logic blocks communicate with the external
system through T terminals. By slightly expanding the boundary to include an
additional ∆B logic blocks, it is reasonable to assume these new blocks will
require the same level of communication as the original B blocks. Therefore,
the incremental number of terminals required, ∆T , is given by:

∆T =
T

B
∆B (3.1)

This analysis can be refined by considering placement optimization,
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represented by the Rent exponent p. The modified expression introduces a
proportionality factor, leading to:

∆T = p
T

B
∆B (3.2)

To simplify further, we replace the finite changes ∆B and ∆T with
differentials dB and dT , respectively:

dT

T
= p

dB

B
(3.3)

Solving this differential equation yields:

T = tBp (3.4)

Here, t is the constant of integration and represents the average number
of terminals per logic block. This final expression corresponds to Rent’s rule,
with the Rent exponent p reflecting the level of placement optimization in a
statistically homogeneous circuit with a given interconnection topology.

3.2 Understanding Rent Exponent
The Rent exponent (p) in Rent’s rule offers valuable insights into the placement
optimization and interconnection complexity of a circuit. When p = 1, there
is no placement optimization, and the circuit behaves as if its logic blocks are
arranged randomly. This value also represents the upper bound for p, as the
maximum number of terminals for any region containing B logic blocks in a
homogeneous system is given by T = tB.

The lower bound of p is determined by the circuit’s interconnection
topology, as it is generally impossible to arrange all connected logic blocks
adjacently, even with optimal placement. This lower bound, denoted as p∗, is
known as the intrinsic Rent exponent, a concept introduced in [15]. For circuits
with optimal placement, the Rent exponent is equal to p∗ and is solely defined
by the circuit’s topological properties. Therefore, the intrinsic Rent exponent
serves as a measure of the complexity of the circuit’s interconnection topology
[16].

For instance, consider two extremes: a simple chain of logic blocks
connected in sequence and a circuit with a highly nested network of loops.
Intuitively, the latter has a more complex interconnection structure, and this
difference in topological complexity is captured by the intrinsic Rent exponent.
Higher values of p∗ correspond to greater interconnection complexity. For
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connected graphs, p∗ typically ranges from 0 to 1. In practice, the intrinsic
Rent exponent for typical circuits falls between 0.3 for regular architectures
(e.g., RAM) and 0.75 for more complex designs (e.g., high-performance VLSI
circuits).

3.3 Rent Characteristics
As previously mentioned, Rent’s rule describes the relationship between the
number of terminals (T ) and the number of blocks (B) in a partitioned circuit.
When plotted on a log-log scale, the data points typically align along a straight
line, confirming Rent’s prediction. The slope of this line represents the Rent
exponent (p), which is a keymetric for circuit complexity. Figure 3.2 illustrates
this behavior for a 64-bit arm core with about 700k cells, where the estimated
Rent exponent is p = 0.424.

Figure 3.2: Cell count vs terminal count for a of 64-bit arm core with ~700k
instances

However, deviations from this behavior occur in specific regions, referred
to as Rent regions. These deviations, discussed below, reveal additional
insights into circuit design constraints and interconnection complexity.
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3.3.1 Rent Region I
In Region I, Rent’s rule is most consistent, with a clear linear relationship
between the number of terminals and blocks. This region typically represents
the majority of the circuit’s behavior, where the Rent exponent provides an
accurate measure of interconnection complexity. It is here that the intrinsic
properties of the circuit’s topology dominate.

3.3.2 Rent Region II
Region II corresponds to the largest module sizes, where the number of
terminals is significantly lower than predicted by Rent’s rule. This deviation
occurs due to physical and design constraints, such as the limitation of circuit
pins. Since the number of pins grows with the square root of the number
of blocks (proportional to the chip’s boundary), it often increases slower
than required. Designers address this by reducing interconnection complexity
through techniques such as technology mapping, parallel-to-serial conversion,
encoding, and block duplication. These methods minimize pin usage while
maintaining functionality, thereby altering Rent’s rule at higher levels of
hierarchy.

3.3.3 Rent Region III
Region III is observed for small module sizes, where the number of terminals
per block exceeds the predictions of Rent’s rule. This deviation arises because
the complexity of interconnections at low hierarchy levels is often constrained
by the implementation technology rather than circuit topology. For instance,
logic blocks in most circuits typically have one output terminal but multiple
input terminals. A mismatch between available and required interconnections
results in a relatively higher terminal count. This effect diminishes as module
sizes increase, allowing Rent’s rule to reassert itself for larger partitions.

Figure 3.2 captures these three distinct regions, providing a comprehensive
view of Rent’s behavior across various module sizes. Different methods to
extract this rent plot will be explained in Chapter 4.

3.4 Wire Length Estimation Techniques
Wire length estimation plays a fundamental role in the design and optimization
of VLSI circuits. Accurate estimations are crucial for predicting circuit
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performance, power consumption, and manufacturability during the early
design stages. This chapter presents two prominent approaches to wire length
estimation: Donath’s hierarchical placement model and Davis’ stochastic
wire length distribution. The theoretical underpinnings of these methods are
explored here, while their practical implementation will be detailed in the next
chapter.

3.4.1 Donath’s Wire Length Estimation
Donath’s method, introduced in the late 1970s [3, 4], was one of the first
systematic approaches for wire length estimation. It is based on a hierarchical
placement model, which uses recursive partitioning of the circuit and its
physical architecture into smaller subregions. Themodel assumes aManhattan
grid as the underlying architecture and minimizes wire lengths by using Rent’s
rule to maintain placement optimization.

Empirical studies conducted on real computer systems have shown that the
distribution of interconnection lengths can be approximated by the following
function:

H(l) ≈

{
Bl−γ, for 1 ≤ l ≤ lc

0, otherwise,
(3.5)

where l represents the interconnection length measured in circuit pitches,
B is a constant, γ is a parameter that characterizes the logic, and lc denotes a
cut-off length. Furthermore, a straightforward relationship has been observed
between the exponents of the Rent equation and the length distribution
function, expressed as γ = 3− 2p.

3.4.1.1 Hierarchical Placement Model

The hierarchical placement model begins by partitioning the circuit into four
equal subcircuits, which are then mapped onto four corresponding subregions
of aManhattan grid. This recursive partitioning continues until each subregion
contains a single logic block. At each level of hierarchy, the number
of terminals and the interconnections between subregions are determined
using Rent’s rule. This rule ensures that the interconnection complexity is
proportional to the size of the subcircuits.

Figure 3.3 illustrates the hierarchical partitioning process. At every step,
the model aims to place densely connected logic blocks close to each other to
minimize interconnection lengths. The final placement reflects an optimized
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Figure 3.3: Donath’s placement model: (a) recursive partitioning of a circuit
(b) Manhattan grid mapping of the same circuit [17]

spatial distribution of logic blocks, resulting in a wire length distribution that
approximates real-world layouts.

3.4.1.2 Donath’s Wire Length Distribution Function

P. Christie et.al calculated the wirelength distribution at each hierarchical
level [18]. The total number of interconnections at a given level k can
be expressed through a probability density function Pk(l), where l denotes
the interconnection length measured in circuit pitches. The function Pk(l)

represents the fraction of interconnections with length l at a specific level k.
This can be formulated as:

Pk(l) =
Number of wires of length l within a fully interconnected array

Total number of wires
(3.6)

The total number of wires at level k, denoted as hk(l), is then given by the
product of Pk(l) and the number of interconnections nk:

hk(l) = nkPk(l) (3.7)

where the total number of interconnections at the k-th hierarchical level is
given by:

nk = AC · p · (1− 4p−1) · 4k(p−1), (3.8)
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where:

• A: A proportionality constant dependent on the circuit structure and
Rent’s rule,

• C: Total number of gates in the circuit, given as C = 4L,

• k: The current hierarchical level, with 0 ≤ k < L,

• p: Rent’s exponent, describing the relationship between the number of
gates and interconnections.

To compute the overall length distribution H(l) across all levels, the
contributions from each hierarchical level are summed:

H(l) =
L−1∑
k=0

hk(l) (3.9)

where L is the number of hierarchical levels.

Figure 3.4: (a) Diagonal interconnections (b) Adjacent interconnections
[18]

To derive Pk(l), the interconnections are classified into diagonal
and adjacent interconnections, as shown in Fig. 3.4. The diagonal
interconnections, as indicated in Fig. 3.4(a), occur between gates at positions
(x1, y1) and (x2, y2). The length l of such interconnections is determined as:

l = |x1 − x2|+ |y1 − y2| (3.10)
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Assuming uniform gate distribution and independent placement, the
probability distributions Pxd

and Pyd for the x- and y-axis contributions are
identical. The diagonal distribution Pk(l) is derived as:

Pkd = Pxd
∗ Pyd (3.11)

For the adjacent interconnections, as depicted in Fig. 3.4(b), the length l

is calculated similarly. Combining these diagonal and adjacent probabilities
yields the total probability density function for interconnections at level k:

Pk(l) =
2Pkd(l) + 4Pka(l)

6
(3.12)

Where, the function Pk(l) is defined as:

Pk(l) =


−l3+4al2+l

6a4
, for 0 ≤ l ≤ a

5l3−36al2+(72a2−5)l−32a3+8a
18a4

, for a ≤ l ≤ 2a
−l3+12al2−(48a2−1)l+64a3−4a

18a4
, for 2a ≤ l ≤ 4a

0, otherwise.

(3.13)

where a =
√
N and N is the total number of cells. The overall system

length distribution function H(l) is computed by summing the level-wise
distributions. For example, using Rent’s parameters for hierarchy depth L and
gate block sizes, the distribution H(l) can be visualized as in Fig. 3.5, where
H(l) rapidly decreases as l increases.

Finally, the expectation of the interconnection length ⟨l⟩ is evaluated to
validate the distribution:

⟨l⟩ =
L−1∑
l=0

l ·H(l) (3.14)

This derivation method confirms the adherence to Donath’s hierarchical
framework, ensuring that the interconnection length distribution aligns with
Rent’s partitioning model.

3.4.2 Davis’ Wire Length Estimation
Davis’ stochastic wire length model [5] builds upon Donath’s approach
by incorporating probabilistic principles to address the shortcomings of
deterministic methods. This model derives a complete wire length distribution
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Figure 3.5: System length distribution function [18]

using Rent’s rule as its foundation and introduces stochastic variables to
capture the variability in interconnection lengths. This model provides
a comprehensive framework for estimating local, semi-global, and global
interconnect requirements, which are essential for the design of future
integrated circuits.

3.4.2.1 Site Density Function / Structural Distribution

The site density function, also referred to as the structural distribution,
describes the spatial arrangement of interconnects within the logic network. It
quantifies the number of gate pairs separated by a specific distance ℓ in a square
array of N gates. The number of gate pairs M(ℓ) separated by a Manhattan
distance ℓ is given by:

M(ℓ) =

{
ℓ3

3
− 2ℓ2

√
N + 2ℓN, for 1 ≤ ℓ <

√
N

1
3
(2
√
N − ℓ)3, for

√
N ≤ ℓ < 2

√
N

(3.15)

This function captures the structural distribution of interconnects, which
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is essential for understanding the spatial density of wires in the network.

3.4.2.2 Occupational Probability / Probability Distribution

The occupational probability, or the probability distribution, describes the
likelihood of an interconnect having a specific length ℓ. The occupational
probability is derived from law of conservation of terminals [5], and is given
by:

Iexp(ℓ) =
αk

2ℓ
[(1 + ℓ(ℓ− 1))p − (ℓ(ℓ− 1))p + (ℓ(ℓ+ 1))p − (1 + ℓ(ℓ+ 1))p]

(3.16)
Here, α is the fraction of on-chip terminals that are sink terminals.

3.4.2.3 Interconnect Density Function

The interconnect density function (i.d.f.) quantifies the number of
interconnects per unit length and is derived by combining the site density
function and the occupational probability. A visual representation of these
two distributions is shown in Figure 3.6. The i.d.f. is defined as:

Figure 3.6: Site density function and probability distribution visualized [19]

i(ℓ) = M(ℓ) · Iexp(ℓ) (3.17)
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Substituting the expressions forM(ℓ) and Iexp(ℓ), the i.d.f. becomes:

i(ℓ) =

{
αk
2

(
ℓ3

3
− 2

√
Nℓ2 + 2Nℓ

)
ℓ2p−4, for 1 ≤ ℓ <

√
N

αk
6
(2
√
N − ℓ)3ℓ2p−4, for

√
N ≤ ℓ < 2

√
N

(3.18)

where α is the fraction of on-chip terminals that are sink terminals, and
Γ is the normalization factor. The i.d.f. provides a continuous description of
the interconnect distribution, enabling the calculation of the total number of
interconnects within a specific length range:

I(a < ℓ < b) =

∫ b

a

i(ℓ) dℓ (3.19)

Davis’ wire-length estimation model offers a robust framework for
predicting interconnect requirements in GSI systems. By integrating the
concepts of structural distribution, occupational probability, and interconnect
density, this model provides a comprehensive tool for analyzing and
optimizing the wiring requirements of integrated circuits. The closed-form
analytical expressions derived from this model facilitate efficient computation
and simulations.
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Chapter 4

Rent Coefficient Extraction: Meth-
ods and Results

This chapter delves into the methodology for determining the Rent exponent
(p) and average terminals per cell (t) from physical architectures, based on
Rent’s Rule. Rent’s Rule, a power law that relates the number of cells to
the number of terminals in a design, forms a straight line when plotted on a
log-log scale. Accurate extraction of Rent coefficients requires extensive data
collection for various partitions of the architecture, ensuring a comprehensive
coverage of the physical implementation.

The extraction process begins with accessing physical architectures using
imec’s NoMachine (remote host) and Cadence Innovus. Through custom TCL
scripts, key architectural data such as the number of cells, number of nets,
and their respective locations are retrieved. This information is partitioned
either through TCL scripts or Python algorithms, enabling the identification
of the number of cells and corresponding terminals within defined boundaries.
Here, the term ”terminals” does not refer to the total physical terminals of
the architecture but rather to the nets emanating from virtual boundaries
around groups of cells. The data obtained is stored in CSV format for further
processing.

The log-log Rent plot is generated using Python libraries such as Pandas
and Matplotlib, providing a visual representation of the relationship between
cells and terminals. The Rent coefficients are extracted by calculating the
slope and intercept of the linear region (Region 2) of the Rent plot. The slope
corresponds to the Rent exponent (p), while the intercept provides the average
terminals per cell (t).

In this chapter, we describe two approaches for partitioning the design
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and extracting Rent coefficients: the Growing Box Method and the Recursive
Splitting Method. Each method is detailed in subsequent sections, outlining
their respective advantages, implementation steps, and relevance to Rent
analysis. This systematic approach provides a robust framework for
Rent coefficient extraction, ensuring accuracy and scalability for complex
architectures.

4.1 Growing Box Method
The Growing Box Method is a systematic approach for extracting Rent
coefficients by iteratively growing a virtual box from the center of the physical
architecture to the chip periphery. This method provides a straightforward way
to analyze the relationship between the number of cells contained within the
box and the unique nets crossing its boundaries, which is critical for generating
data for Rent’s Rule analysis.

The methodology is implemented entirely in Tcl within Cadence Innovus,
where the physical architecture is loaded for computation. The process begins
by retrieving the boundary dimensions of the design and calculating the
coordinates of its center. A virtual box is initialized at the center, with an
initial side length that determines the number of cells contained in the smallest
data point.

At each iteration, the following steps are performed:

• The corner coordinates of the virtual box are stored, along with the
coordinates of all cells and nets in the design.

• The number of cells inside the virtual box is determined by comparing
the coordinates of the box to the coordinates of the cells.

• The number of unique nets crossing the boundaries of the box is
calculated by analyzing the net coordinates relative to the boundary of
the box:

– If a net crosses only one side of the box, it is counted as one.
– If a net crosses two sides of the box, it is counted as two.

• The size of the box is incremented linearly at each step, controlling the
resolution and the number of data points.

The iteration continues until the number of unique nets crossing the
boundary starts to decrease, signaling the end of Region 2 in the Rent plot



Rent Coefficient Extraction: Methods and Results | 29

and the beginning of Region 3. The extracted data—representing the number
of cells and corresponding terminals for each virtual box size—is stored in a
CSV file for subsequent analysis.

In Python, the data is plotted on a log-log scale using Pandas and
Matplotlib libraries. The slope of the curve in Region 2 provides the Rent
exponent (p), while the intercept indicates the average number of terminals
per cell (t). For the purpose of our consequent implementation of wire length
distribution modeling, we will just focus on the rent exponent. An example
Rent plot for a 64-bit ARM core design with approximately 700,000 cells
demonstrates the effectiveness of the method, where the rent exponent was
0.424 (Figure 4.1).

Figure 4.1: Rent plot- Cell count vs Terminal count for a of 64-bit arm core
with about 700k instances

While the computation in Tcl provides accuracy, it is relatively slow for
architectures with a very large number of cells and nets due to the iterative
nature of the algorithm. For example, processing a design with 700,000 cells
required approximately 180 minutes. A summary of computation times for
various designs is provided in Table 4.1.

The flow chart showing the procedure and the Rent plot is shown in Figure
4.2. This method, while computationally intensive for larger designs, provides
a reliable framework for Rent coefficient extraction.
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Design Number of Cells Computation Time (min)
64-bit ARM Core Design 1 ∼700k 180
64-bit ARM Core Design 2 ∼700k 180
ARM M0 Design 1 ∼16k 20
ARM M0 Design 2 ∼16k 20

Table 4.1: Computation Times for Growing Box Method

Figure 4.2: Growing box method flow chart [7]

4.2 Recursive Splitting Method
The Recursive Splitting Method is an iterative approach for extracting Rent
coefficients, inspired by the recursive partitioning of circuit graphs in Donath’s
hierarchical placement model (3.4.1.1). However, in this thesis, the method is
applied directly to the physical architecture, as the focus is on a posteriori
estimation rather than a priori modeling. A visual representation of the
recursive splitting process is shown in Figure 4.3.

The implementation begins with storing design data in a CSV file using
TCL code in Cadence Innovus. This CSV file contains the names of all
cells and nets, their respective x and y coordinates, and the chip’s boundary
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Figure 4.3: Recursive partitioning of a grid in 4 sub modules

coordinates. Due to the complexity of the code compared to the Growing
Box Method, the subsequent computations and visualizations were performed
entirely in Python.

In Python, the CSV file was loaded using Pandas, and the data was
organized into NumPy arrays for efficient computation. From the boundary
coordinates of the chip, the midpoint of the design was calculated, and the chip
was partitioned into four quadrants (or sub-regions). For each sub-region:

• The number of cells within the virtual box was counted by comparing
their coordinates with the sub-region boundaries.

• The number of unique nets crossing the boundaries of the virtual box
was calculated:

– If a net crosses only one side of the box, the terminal count is
incremented by one.

– If a net crosses two sides of the box, the terminal count is
incremented by two.

At the first iteration, the four quadrants provide four data points for the
Rent plot. In subsequent iterations, each of these sub-regions is recursively
partitioned into four smaller sub-regions, and the number of cells and terminals
are counted again. At each iteration level, the number of data points equals 4L,
where L is the iteration level, starting from 1 (Level 0, corresponding to the
entire chip, is excluded as it lies outside Region 2 and provides only a single
data point).
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For the example of a 64-bit ARM core design with approximately 700,000
cells, five levels of iteration were performed, resulting in data points across
Region 2 of the Rent plot. The Rent plot for this design is shown in Figure 4.4,
where the Rent exponent p was calculated as 0.43. This value is consistent
with the p value obtained using the Growing Box Method.

Figure 4.4: Rent plot- Cell count vs Terminal count for a 64-bit arm core with
about 700k instances

Design Number of Cells Computation Time (min)
64-bit ARM Core Design 1 ∼700k 15
64-bit ARM Core Design 2 ∼700k 15
ARM M0 Design 1 ∼16k 5
ARM M0 Design 2 ∼16k 5

Table 4.2: Computation Times for Recursive Splitting Method

The Recursive Splitting Method proved to be computationally efficient
compared to the Growing Box Method. While the latter required
approximately 180 minutes to process a design with 700,000 cells, the
Recursive Splitting Method completed the computation in just 15 minutes for
the same design. A summary of the computation times for various designs is
provided in Table 4.2.
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Chapter 5

Wire length Distribution Mod-
els: Methods and Results

In the previous chapters, the concept of the Rent exponent, its extraction
methods, and its utilization in wire length distribution models such as those
proposed by Donath and Davis was explored. Building on this foundation, this
chapter focuses on the implementation of thesemodels in Python and evaluates
the reasonableness of their outputs.

The chapter begins by detailing the procedure to extract actual wire
length data from Cadence Innovus, emphasizing the steps required to process
and validate the data. Followed by it, Donath’s and Davis’ models are
implemented. Additionally, challenges associated with binning data for
probability density functions (PDFs) are discussed, and the rationale for
using cumulative distribution functions (CDFs) as a more robust alternative
is presented.

Improvements to the existing models are explored, particularly through
adjustments to the exponent of the power-law distribution relation. These
modifications address discrepancies observed in the models’ predictions when
compared to empirical data. Furthermore, enhancements through the variable
cell size model are introduced, with a particular focus on capturing the
behavior of very short interconnects that are not well-represented in traditional
approaches.

Through Python-based implementation and analysis, this chapter demon-
strates how theoretical models can be adapted and refined to better align with
real-world data, providing valuable insights into wire length distribution in
modern physical architectures. The results and findings presented in this
chapter set the stage for more accurate and scalable interconnect prediction
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methods in future work.

5.1 Actual Wire Length Distribution Extrac-
tion

To analyze the actual wire length distribution, the designs were opened in
Cadence Innovus, and the net data was extracted using TCL scripts. For
each design, the number of nets, their respective lengths, and net names were
retrieved and stored in a CSV file. This data served as the foundation for
plotting and analyzing the wire length distribution.

The CSV file was processed in Python using the Pandas library, and the
net lengths were stored in a NumPy array for efficient computation. To bin
the data for the wire length distribution, the number of bins, bin counts, and
bin edges were defined. The binning process was carefully executed to ensure
meaningful distribution data.

To address issues associated with non-physical or zero-length nets and
ensure proper representation on log-log plots, a filter was applied to exclude
net lengths equal to or less than zero. This filtering step was crucial for
eliminating noise and ensuring the data accurately reflected the physical
characteristics of the design. The resulting distributions were plotted using
Python libraries such asMatplotlib, focusing on the designs alreadymentioned
in earlier sections (Figure 5.1).

The following table summarizes the relevant information for the analyzed
designs, including the number of cells, number of nets, and Rent exponent.
These values provide context for interpreting the wire length distributions and
assessing the agreement with the models discussed in subsequent sections.

Table 5.1: Summary of design characteristics used for wire length distribution
extraction.

Design Number of Cells Number of Nets Rent Exponent Slope of the Distribution
64-bit arm core design 1 ∼700k 631217 0.43 -1.58
64-bit arm core design 2 ∼700k 545912 0.413 -1.52
arm M0 design 1 ∼16k 16257 0.378 -1.49
arm M0 design 2 ∼16k 15668 0.35 -1.45
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Figure 5.1: Actual wire length distribution of different designs (log-log)

5.2 Implementing Donath’s Wire Length Dis-
tribution Model

The derivation of Donath’s wire length distribution model was previously
explained in Chapter 3. While Donath’s original approach began with
the netlist or circuit graph, this thesis deviates by utilizing the physical
implementation of the design. For this purpose, the recursive splitting of the
architecture, as described in Section 4.2, serves as the foundational data source
for implementing the model.

The sorted data of hierarchical levels and corresponding cell counts,
obtained through the recursive splitting method, is loaded into Python.
Although the raw data is expressed in microns, computations are simplified
by using gate pitches as the unit of measurement. A gate pitch is defined as
the minimum distance between two adjacent cells and can be expressed as√
chip area/total cells. Assuming an equidistant arrangement of N cells, the

side length of the design can be approximated as
√
N . This approximation

enables efficient computation of the wire length distribution.
In Python, a function was created to compute the number of nets at the k-th

hierarchical level based on Equation 3.8. Another function was implemented
to compute the probability density function pk for each hierarchical level, as
described by Equation 3.13.
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For each level k, the normalized probability function pk is multiplied by
the total number of nets at that level to compute the wire length distribution
hk for that specific level. This process is iterated from level 0 to level 5, and
the final system-wide distribution is obtained by summing the distributions hk

across all levels. A flowchart of the process is shown in Figure 5.2.

Figure 5.2: Donath’s wire length distribution model flow chart

The resulting distributions were visualized using Matplotlib. A specific
example of the probability density function (PDF) at level 4 is shown in
Figure 5.3a. The total wire length distribution for the entire design is
illustrated in Figure 5.3b.

(a) (b)

Figure 5.3: (a) Probability density function for k = 4 Level (b) Length
distribution of hierarchical levels and total system distribution (zoomed in)

As an example, for the 64-bit ARM core design, the system-wide
distribution was analyzed using a log-log plot. The slope of the distribution
curve was extracted, as shown in Figure 5.4. A simple comparison with the
actual slope obtained from the extracted wire length data (refer to Table 5.1)
revealed significant discrepancies between the theoretical model and empirical
data.

Detailed reasoning for this discrepancy, including potential issues with
model assumptions and physical implementation constraints, will be discussed
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Figure 5.4: Donath’s wire length distribution vs actual distribution for a 64-bit
arm core with 700k instances (log-log)

in chapter 6.

5.3 Implementing Davis’ Wire Length Distri-
bution Model

In Chapter 3, we explained the core principles of Davis’ wire length distri-
bution model. Unlike Donath’s model, Davis’ approach decomposes wire
length distribution into two separate components: the structural distribution
and the occupational probability. The total wire length distribution is given
as the product of these two components. The mathematical expressions for
these distributions are provided in Equations 3.15 (structural distribution),
3.16 (occupational probability), and 3.18 (total wire length distribution).

5.3.1 Parameter Extraction and Preprocessing
Before implementing themodel in Python, key parameters were extracted from
Innovus using TCL scripts. These parameters include:

• Total number of cells in the design.

• Average fanout of nets.
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• Rent exponent, which can be obtained using either of the two extraction
methods described in Chapter 3.

Once extracted, the data was stored in a CSV file and subsequently loaded into
Python using Pandas.

5.3.2 Implementation of the Model in Python
A function was developed in Python to compute the occupational probability
based on Equation 3.16. This function takes two inputs: the Rent exponent
and the total number of cells in the design. Similarly, another function was
implemented for the structural distribution, following Equation 3.15. This
function requires two parameters: the total number of cells and the length
of a net.

5.3.2.1 Computing Structural Distribution

Figure 5.5: Structural distribution for M0 design with 16k instances
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Figure 5.6: Site density function for M0 design and theoretical distribution for
same number of cells

To further refine the model for specific designs, an alternative approach
was developed to calculate the structural distribution empirically. In this
approach, each cell was enumerated with every other cell in the design to
determine interconnect distances. The steps involved in this computation are
as follows:

1. A nested iteration was performed where each cell’s Manhattan distance
to every other cell was computed and stored.

2. To prevent redundant computations, once a cell’s distances were
calculated, it was removed from subsequent iterations.

3. This process continued until all cells were processed.

Figure 5.5 illustrates the structural distribution computed for an ARM
M0 design with approximately 16k cells. As evident from Figure 5.6, the
analytical function derived by Davis fits well over the computed distribution.
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5.3.2.2 Computing the Final Distribution

A normalization function was also implemented, which takes the Rent
exponent and total number of cells as input. A list of net lengths was defined,
ranging from 0 to amaximum value of 2

√
total number of cells. The following

steps were carried out to compute the final wire length distribution:

1. For each net length, the values of the structural distribution and
occupational probability were computed.

2. These values were multiplied together and stored in a list.

3. The final curve was plotted using Matplotlib.

Figure 5.7 shows the computed wire length distribution for the ARM M0
design. The log-log plot reveals that Davis’ model provides a reasonable
prediction for larger interconnect lengths. However, severe deviations are
observed for shorter interconnects.

Figure 5.7: Experimental and theoretical wire length distributions for M0
design with 16k instances

One major source of discrepancy in short interconnect predictions stems
from the way actual data is binned and plotted. The binning process can
significantly impact both the slope and the maximum number of nets in
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the probability density function (PDF). In contrast, the theoretical curve is
independent of such extraction concerns. Hence, the following approaches
will use CDFs instead.

5.4 Proposed Model for Wire Length Distri-
bution

Following the methodology of previous sections, net length data was extracted
from Innovus using a Tcl script and stored in a CSV file. This file was then
processed in Python for further analysis. The cumulative distribution functions
(CDFs) of the four designs considered throughout this study were computed
and normalized, as shown in Figure 5.8.

Figure 5.8: Cumulative distribution functions for different designs

From Figure 5.8, it can be observed that for shorter interconnects,
variations among the different designs are minimal. However, as the
interconnect length increases, noticeable differences emerge. This behavior
highlights the need for accurate modeling, particularly for longer wire lengths.
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5.4.1 Converting the Davis Model to CDF
Before constructing a new CDF-based model, the existing Davis probability
density function (PDF) model was converted to a cumulative distribution
function and normalized. The effects of varying Rent exponent p and the
average number of terminals per block t were examined. The results of this
analysis for the ARM M0 design are shown in Figure 5.9.

Figure 5.9: Experimental and theoretical CDFs for M0 design with 16k
instances with varying t and p

The figure reveals that the shape of the CDF is primarily dependent on p

and not on t. This is expected, as a normalized CDF only influences the shape
of the distribution, while t affects the maximum value but not the functional
form. This raises an important question: Is the extracted value of p incorrect,
or is there an issue with the exponent (2p− 4) in Davis’ model?

Since p was extracted using multiple independent methods (the Growing
Box Method and Recursive Splitting Method) and yielded consistent values,
we can reasonably assume that our extracted p values are correct. On the other
hand, in Davis’ model, the total distribution is computed as the product of
the structural distribution and the occupational probability. The structural
distribution depends solely on the physical dimensions of the design and the
total number of cells, making it independent of p. Therefore, any dependency
on p must arise solely from the occupational probability, which is derived
theoretically.

5.4.2 Refining the Model: Two-Part Optimization
Given these findings, the CDF modeling process was divided into two parts:
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1. Optimizing the Davis Model: The first approach focuses on improving
the Davis model by adjusting the exponent (2p − 4) to better fit the
empirical data for larger interconnects.

2. Monte Carlo Simulations for Shorter Interconnects: The Davis
model is valid only for gate pitches of one and greater, meaning it does
not accurately capture the behavior of very short interconnects. To
address this limitation, Monte Carlo simulations will be employed to
model short-range interconnect distributions more accurately.

These refinements will be explored in detail in the following sections.

5.5 Improving Davis Model – Longer Inter-
connects

For longer interconnects, the Davis model was improved by modifying the
power law variable of length. After applying binomial expansion, the original
model simplifies to the following equations:

Region 1: 1 < ℓ <
√
N (5.1)

i(ℓ) =
αk

2
Γ

(
ℓ3

3
− 2

√
Nℓ2 + 2Nℓ

)
ℓ2p−4 (5.2)

Region 2:
√
N ≤ ℓ < 2

√
N (5.3)

i(ℓ) =
αk

6
Γ
(
2
√
N − ℓ

)3

ℓ2p−4 (5.4)

Here, α is defined as fanout
fanout+1

, k represents the number of pins, Γ is the
normalization factor, N denotes the total number of gates, p is the Rent
exponent, and ℓ is the net length.

5.5.1 Implementation and Theoretical CDF
The implementation was carried out in Python in a manner similar to the
original Davis model. Additionally, a function was developed to compute
the theoretical cumulative distribution function (CDF), which takes the net
length and a new exponent (denoted as β in the implementation). To obtain
the theoretical CDF, the built-in quad function was used to integrate the Davis
probability density function (PDF).
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Figure 5.10: Improved Davis model CDF fit of a 64-bit arm core design with
700k instances

A wrapper function for curve_fit was also created, allowing for
interpolation to match the size of the experimental data. Curve fitting was then
performed by providing an initial guess for the β value, and the optimization
process determined an optimal value for β.

As an example, Figure 5.10 shows the improved Davis CDF for the 64-bit
ARM core design.

5.6 Variable Cell Size Model – Shorter Inter-
connects

As discussed earlier, all wire length distribution models presented thus far
assume uniform cell spacing, identical cell sizes, and a single pin located
at the center of each cell, as illustrated in Figure 5.11. However, real-world
designs often feature variable core sizes (total area/total cell area), diverse cell
dimensions, and non-uniform pin placements across the layout.

To better capture these variations, this section focuses on modeling the 64-
bit ARM core design. In particular, the goal is to analyze short interconnects
around gate pitch one using aMonte Carlo simulation. The simulation is based
on the following assumptions:
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Figure 5.11: Equidistant Manhattan Model

1. The cell height is fixed at 0.09.

2. The cell width follows a uniform distribution among four possible
values: W , 1.5W , 2W , and 2.5W , whereW = 0.09.

3. Pin locations are uniformly distributed within the cell (i.e., they can be
placed anywhere inside the cell boundaries).

4. There is no vertical spacing between rows; the second row begins
immediately after the first row ends.

5. Core utilization (set to 0.8 in this case) determines the total available
spacing in the layout.

6. Horizontal spacing between adjacent cells is randomly partitioned
among the four surrounding cells. For instance, if the total spacing
is 1, then cell b1 may receive a spacing s1 = 0.261, cell b2 a spacing
s2 = 0.429, and cell b3 a spacing s3 = 0.310, ensuring that all values
sum to 1 in each iteration.

7. Each respective cell spacing is further randomly divided between the
left and right sides of the cell. For example, if s1 = 0.261, the left side
of b1 might have 0.157 spacing while the right side has 0.104 spacing,
maintaining the sum of 0.261.

The experimental setup is depicted in Figure 5.12. The simulations were
performed in Python, running for 10,000 iterations.
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Figure 5.12: Proposed variable cell size model [20]

5.6.1 Monte Carlo Simulation
To model the variability in cell widths and pin placements, a Monte Carlo
approach was adopted. The key steps in the implementation are as follows:

• A function was developed to assign random widths to cells, selecting
from the predefined set of possible widths.

• The total layout width was computed, considering both the assigned cell
widths and the additional spacing dictated by the core utilization factor.

• The total spacing was randomly distributed among the surrounding
cells, ensuring that the sum remained consistent across iterations.

• Within each cell, pin locations were randomly generated using a uniform
distribution to reflect realistic variability.

• Absolute pin positions in the layout were determined by accounting for
both assigned cell widths and allocated spacing.

• Finally, Manhattan distances between the central cell pin and surround-
ing cell pins were calculated and stored for further analysis.
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The simulation results are visualized in Figure 5.13, illustrating the spatial
distribution of the first few iterations. The probability density function (PDF)
of the setup, depicted in Figure 5.12, highlights the variable nature of gate
pitch as opposed to the constant gate pitch assumption in older models.

(a) (b)

(c) (d)

Figure 5.13: First 4 Monte Carlo iterations of the proposed model

To further analyze the interconnect distribution, the cumulative distribu-
tion function (CDF) was computed. The CDF for net lengths up to gate pitch
2 is shown in Figure 5.15. The figure reveals that the probability distribution
of shorter interconnects exhibits significant variability, reinforcing the
importance of incorporating a variable cell size model in wire length
predictions.

These results demonstrate that incorporating variable cell sizes into
wire length modeling provides a more accurate representation of realistic
circuit layouts. By changing the assumptions of cell height and cell width
distribution, we can modify this model for other technology nodes. The
next section will discuss further refinements and practical implications of this
approach.

5.7 Combined CDF Model
In this section, the Modified Davis model for longer interconnects and the
Variable Cell Size model for shorter interconnects are combined to create
a unified wire length distribution model. The merging point for these two
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Figure 5.14: PDF of the proposed variable cell size model

models is set at gate pitch 2. To ensure a smooth transition between the two
distributions, the cumulative distribution functions (CDFs) of both models are
aligned at this point.

The implementation follows these steps:

• The CDF from the Variable Cell Size model is computed for
interconnect lengths up to gate pitch 2.

• The CDF from the Modified Davis model is calculated for interconnect
lengths beyond gate pitch 2.

• The transition point at gate pitch 2 is identified in both models.

• The CDFs are connected at this point, ensuring continuity and
preserving the overall distribution shape.

By combining these models, a more comprehensive and accurate
representation of interconnect length distribution is obtained. The fit between
the two models was evaluated using the coefficient of determination (R2),
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Figure 5.15: CDF of the proposed variable cell size model

which was found to be 0.98, indicating a strong correlation and a smooth
connection between the short and long interconnect distributions.

For the 64-bit ARM core design, the combined CDF is shown in
Figure 5.16. The figure demonstrates that the integration of the two
models provides a seamless transition from short to long interconnects while
maintaining accuracy.

This combined model provides a more realistic representation of wire
length distributions in modern VLSI designs, as it incorporates both the
variability in shorter interconnects due to cell size differences and the
statistical behavior of longer interconnects modeled by the Modified Davis
approach.
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Figure 5.16: Combined CDF model fit of a 64 bit arm core design with 700k
instances
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Chapter 6

Discussion

In this chapter, the key findings of the research are analyzed, their implications
are discussed, and potential limitations and future research directions are
outlined. The discussion revisits the accuracy and applicability of the
proposed model, its advantages over traditional methods, and its potential
impact on early-stage design decisions in physical design. In addition, the
assumptions, constraints, and trade-offs involved in the modeling process are
critically examined.

6.1 Comparison of Rent’s Coefficient Ex-
traction Techniques

Two methods, the Growing Box Method and the Recursive Splitting Method,
were employed to estimate the Rent exponent. Both methods are based
on the same fundamental assumptions for counting the number of crossing
nets and the number of cells within a bounded region. The extracted Rent
exponent, as shown in Figures 4.1 and 4.4, remains nearly identical between
the two methods, differing only in the second decimal place. This similarity
confirms the robustness of the extraction methodology irrespective of the
chosen approach.

Despite producing comparable results, these methods differ significantly
in implementation and computational efficiency. The Growing Box Method
is fully implemented in TCL, making it independent of external scripting
languages like Python. However, this comes at a cost—its computation time is
substantially higher compared to the Recursive Splitting Method. In contrast,
the Recursive Splitting Method leverages Python for loading the design data
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and performing computations, leading to a significant reduction in execution
time. The computation times for both methods are presented in Tables 4.1
and 4.2.

One major drawback of the Growing Box Method is its inherently
sequential approach, where a single box expands from the center outward.
This process could be optimized by introducing multiple growing boxes that
originate from different corners of the chip and expand towards the center
or opposing edges. Such a modification would not only reduce computation
time but also increase the number of data points for regions containing a
high density of cells and nets. By covering these regions multiple times,
the extraction process would yield a more accurate representation of Rent’s
coefficient distribution.

Moreover, the Recursive Splitting Method, while computationally ef-
ficient, inherently partitions the design in a hierarchical manner, which
may introduce minor inaccuracies in highly irregular placements. Further
optimizations, such as dynamic binning strategies or parallel processing, could
further enhance both accuracy and speed.

6.2 Limitations of Traditional Wire Length
Estimation Methods

In the past, classical models such as Donath’s and Davis’ methods have been
widely used to predict interconnect distributions. However, when applied to
modern ARM-based designs, these models exhibit significant discrepancies
from actual wire length distributions, highlighting their limitations in the
context of advanced CMOS nodes.

6.2.1 Discrepancies in Donath’s Model
The implementation of Donath’s model for the analyzed ARM designs
revealed a major mismatch between the theoretical and actual wire length
distributions. As shown in Figure 5.4 , there is no significant overlap
between the predicted and observed distributions, with the slopes differing
significantly. More critically, the implemented model did not adhere to the
theoretical relation proposed by Donath, where the slope γ of the wire length
distribution is given by:

γ = 3− 2p (6.1)
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This deviation suggests several potential sources of error. One key factor is
that Donath’s model assumes a hierarchical placement of cells from a netlist,
iteratively cutting them into smaller modules. However, in this study, wire
length estimation was performed on an already placed design, where the
placement was dictated by a PnR flow rather than a hierarchical partitioning
approach. This fundamental difference likely led to uneven module sizes
across hierarchical levels, which could have distorted the distribution.

In hierarchical placement, the lowest-level module ideally contains a single
cell, minimizing the number of nets being cut into subnets. In contrast, PnR
prioritizes minimizing wire lengths and optimizing routing efficiency, which
may alter the subnet distribution. Additionally, it is possible that Donath’s
probability density function is outdated or less accurate for newer designs with
modern routing methodologies. The observed mismatch could be a result of
one or a combination of these factors, making Donath’s model less suitable for
contemporary CMOS designs.

6.2.2 Inaccuracies in Davis’ Model
Davis’ stochastic wire length model showed better agreement with actual
distributions for longer interconnects, but significant deviations were observed
for shorter interconnects. In certain regions, the predicted number of shorter
interconnects was off by a factor of 102, leading to a substantial overestimation
of total net counts. This suggests that the underlying assumptions about short
interconnect distribution do not align with modern physical design practices.

One possible explanation is that Davis’ model assumes a linearly
increasing probability distribution (on a log scale) for interconnects at shorter
distances, whereas real designs are constrained by placement density, routing
congestion, and pin access limitations, which alter the actual interconnect
distribution. The model inherently predicts a much higher number of short
interconnects than observed, suggesting that adjustments to the probability
function are necessary. An additional challenge affecting the accuracy of wire
length estimation is the binning problem, which is further elaborated in the
next section, as it plays a crucial role in the observed discrepancies between
theoretical predictions and experimental results.

6.3 The Binning Problem
In the literature on wire length distribution modeling, probability density
functions (PDFs) are the standard approach. From Donath to Davis, most
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implementations focus on modeling wire length distributions through PDFs.
However, a critical issue arises—there is little to no discussion on how binning
is performed in these models. Key questions such as whether the binning
is linear or logarithmic, how bin sizes are chosen, and what effect different
binning strategies have on the results remain unanswered.

This lack of clarity is problematic because theoretical models have
no dependency on experimental binning, whereas empirical data must be
processed through a binning scheme to generate a PDF. This discrepancy
introduces a potential source of error when comparing theoretical predictions
with real-world data. One possible way to address this issue would be
to extract the structural distribution experimentally, as demonstrated in the
subsection 5.3.2.1, and separately extract the probability distribution from
the physical architecture. However, there is currently no known method
for experimentally deriving the probability distribution. This is because
the probability distribution is theoretically derived based on the law of
conservation of terminals [5] and Rent’s Rule, rather than being directly
observable in the structure. As a result, the validity of the occupation
probability function for new designs and process nodes remains uncertain.

Another major concern is that the choice of binning parameters—such as
the number of bins and their scaling—can significantly impact the computed
slope and the maximum number of nets in the PDF. In extreme cases, a poorly
fitting model could be artificially corrected by adjusting the binning scheme to
match the expected slope. This raises concerns about the reliability of PDF-
basedmethods. As an example, Figure 6.1 shows PDFs computed for theARM
M0 design using different numbers of bins. The substantial variations in slope
highlight the sensitivity of results to binning choices.

To mitigate this issue, the focus was shifted from PDFs to cumulative
distribution functions (CDFs). Unlike PDFs, CDFs do not require binning,
making them a more robust alternative for comparing experimental and
theoretical results. Starting from the next section, all wire length distribution
models will be analyzed using CDFs instead of PDFs.

6.4 Evaluation of the Proposed Wire Length
Model

The proposedwire lengthmodel introduces a two-part optimization to improve
the accuracy of interconnect length distribution predictions for advanced
CMOS nodes. The first approach refines Davis’ model by modifying the
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Figure 6.1: Net count vs length for M0 design with 16k instances and multiple
number of bins

exponent to better fit empirical data for longer interconnects. The second
approach, namely Variable Cell Size Model addresses the shortcomings of
Davis’ model for very short interconnects, where it is no longer valid,
by employing Monte Carlo simulations to capture short-range interconnect
distributions more accurately.

6.4.1 Performance of the Improved Davis Model
For longer interconnects, the adjusted exponent significantly improved the
agreement between the theoretical and observed distributions. As shown
in the Figure 5.10, the fitted model performs exceptionally well for cell
pitches greater than 2, aligning closely with the empirical data. However, a
fundamental limitation remains—Davis’ model is inherently valid only for cell
pitches greater than 1.

One primary reason for this limitation is the set of assumptions underlying
Davis’ model. It assumes a rigid Manhattan grid where all cells are
equidistant, have uniform height and width, and always have pins located
at their centers. In practical applications, these assumptions do not hold, as
real-world physical designs exhibit variability in cell dimensions, placement
density, and pin locations. This discrepancy leads to deviations between
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the theoretical predictions and actual wire length distributions. Despite this
limitation, the optimized model provides a significant improvement over the
original formulation.

6.4.2 Effectiveness of Variable Cell Size Model
To address the inaccuracy for short interconnects, a Monte Carlo simulation
was implemented to model short-range interconnect distributions more
precisely. Figure 5.16 indicates that this method significantly improved the
overall fit in the short interconnect region. However, visible discrepancies in
this region suggest that certain assumptions in theMonte Carlo setupmay have
been overly idealized.

One possible explanation for this deviation is the assumed distribu-
tions of cell widths and pin locations. While these assumptions were
reasonable approximations, it is possible that an unaccounted-for variable
or an overlooked distribution parameter significantly influences short-range
interconnect behavior. Additionally, increasing the number of Monte Carlo
iterations beyond 10,000 did not yield noticeable improvements in the
distribution, suggesting that the limiting factor lies in the model assumptions
rather than statistical noise.

6.4.3 Overall Model Fit and Potential Refinements
The combined model, incorporating both the improved Davis model for
long interconnects and the Monte Carlo simulation for short interconnects,
demonstrated a high degree of accuracy. The final fit achieved an R2

value of 0.984, indicating strong correlation with empirical data. However,
one noticeable issue was the transition point between the short and long
interconnect models. A visible interchange exists where the Monte Carlo-
based distribution merges with the Davis-based model at cell pitch 2.

One potential refinement could involve applying a smoothing function to
seamlessly blend the two models and eliminate the discontinuity. However,
such an adjustment may compromise the validity of the model, as it would
introduce an artificial modification rather than being derived from first
principles.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the key findings, sheds light on key insights gained,
and outlines potential future directions.

7.1 Conclusions
The results demonstrated that traditional wire length estimation models, such
as those proposed by Donath and Davis, exhibit significant discrepancies
when applied to modern physical designs. Donath’s model, in particular,
showed no overlap between theoretical and observed distributions, largely
due to differences in placement methodology—hierarchical placement versus
physical design-optimized placement. Davis’ model performed better but was
limited to interconnects with lengths greater than one gate pitch, leading to
substantial deviations in the short interconnect region.

The results showed that the proposed model significantly improved wire
length estimation accuracy, achieving an R2 value of 0.984. The model
successfully captured the trends observed in real designs and corrected for
the systematic errors seen in classical methods. However, minor discrepancies
remained, particularly in the transition between the short and long interconnect
models. A possible refinement could involve applying a smoothing function
to ensure a seamless transition, but this would need to be done cautiously to
preserve the model’s validity.

7.2 Insights and Lessons Learned
Throughout this research, several key insights were gained:
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• Rent’s rule remains a powerful tool for wire length estimation, but the
way Rent’s exponent is extracted significantly impacts model accuracy.
The growing box and recursive splitting methods provided similar
results, but the recursive approach was computationally more efficient.

• The assumptions in classical models, such as uniform cell size,
equidistant placement, and centered pin locations, do not hold in
advanced CMOS nodes. This highlights the need for updated modeling
approaches that account for placement density, variable cell sizes, and
realistic pin distributions.

• Binning in PDFs introduces significant variability in the estimated wire
length distributions. Shifting to CDFs eliminated this issue, leading to
a more stable and reliable model.

• The Monte Carlo approach effectively captured short interconnect
behavior, but further refinements are needed to address minor
discrepancies, potentially by refining the assumed distributions of cell
widths and pin locations.

7.3 Future Work
While this research significantly improves wire length estimation for advanced
CMOS nodes, several avenues remain open for future work.

7.3.1 Developing a Purely Theoretical Wire Length
Estimation Model

One of the major limitations of this study is that it relies on post-placement
data, making it a posteriori in nature. A significant step forward would be
to develop a purely theoretical, a priori wire length estimation model. This
could be achieved by starting from the circuit graph instead of the post-
placement data. Partitioning techniques for the circuit, like ratio cut [21]
and hMeTis [22] can be explored for this purpose.

7.3.2 Refining Short Interconnect Modeling
While theMonte Carlo simulation improved accuracy in the short interconnect
region, further refinements are needed. Future research could explore:
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• More realistic cell width and pin location distributions based on
empirical data from real cell libraries.

• Machine learning-based approaches to predict short interconnect
distributions more efficiently.

7.3.3 Improving the Transition Between Short and
Long Interconnect Models

The current model shows a visible transition point between the short and long
interconnect models at a gate pitch of 2. Future work could:

• Explore smoothing techniques to ensure a seamless transition while
preserving model accuracy.

• Investigate hybrid statistical models that blend Monte Carlo simulations
with analytical models more smoothly.

7.3.4 Generalization to Other Architectures
This study was conducted on ARM-based designs, but the methodology could
be extended to:

• Other processor architectures, such as RISC-V or customASIC designs.

• Different technology nodes.

• Heterogeneous integration scenarios.

7.4 Final Remarks
This research successfully enhanced wire length estimation for advanced
CMOS nodes by addressing the limitations of classical models and
incorporating empirical refinements. The proposed hybrid approach provides
a more accurate representation of interconnect distributions, with strong
validation against real-world ARM-based designs. While there are still
areas for improvement, the insights gained lay the foundation for further
advancements in theoretical interconnect modeling, bridging the gap between
early-stage estimation and modern physical design constraints. Future work
in this area could lead to more predictive and efficient design methodologies,
ultimately benefiting the semiconductor industry as it continues to push the
boundaries of scaling and integration.
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