
Degree Project in Technology

Second cycle, 30 credits

Exploring Inefficiencies in
Implementations Utilizing GPUs for
Novel View Synthesis of Dynamic

Scenes
Limitations of Modern Computer Vision Models and Possible

Enhancements

LUKAS S. BEINLICH

Exploring Inefficiencies in
Implementations Utilizing GPUs for
Novel View Synthesis of Dynamic
Scenes

Limitations of Modern Computer Vision Models and
Possible Enhancements

LUKAS S. BEINLICH

Date: March 25, 2025

Supervisors: Mårten Björkman, Marcel Büsching, Simon Matern
Examiner: Patrick Jensfelt

School of Electrical Engineering and Computer Science
Swedish title: Utforskning av ineffektivitet i GPU-baserade implementationer för
syntes av tidigare osedda vyer i dynamiska scener
Swedish subtitle: Begränsningar i Moderna Datorseendemodeller och Möjliga
Förbättringar

© 2025 Lukas S. Beinlich

Abstract | i

Abstract
This thesis investigates the computational inefficiencies in existing machine
learning models for novel view synthesis, which is the task of generating
images of observed scenes from new view points. Modern models are
analyzed, and three models are selected for a detailed examination of their
implementation. The goal is to identify factors that limit the efficiency
of these models during both inference and training phases and to optimize
them. Inefficiencies can arise from poor implementations or suboptimal
resource usage, especially when memory is not properly reused across training
iterations or when hardware, particularly Graphics Processing Units (GPUs),
are not fully utilized.

The thesis addresses the question: What are the limiting factors in current
implementations of dynamic scene novel view synthesis, and how can they be
mitigated? While many studies present unoptimized models to demonstrate
capabilities, this research focuses on improving computational efficiency
without altering the underlying model architecture, which would require
extensive retraining and benchmarking—beyond the scope of this project.

This problem was addressed by utilizing tools such as the PyTorch
profiler to measure the time spent in various functions, helping to identify
performance bottlenecks. Additionally, custom kernels were analyzed using
the NVIDIA Nsight suite to uncover inefficiencies in their execution. These
insights allowed for targeted optimizations that significantly improved runtime
performance.

The findings indicate substantial improvements when tensor operations,
typically written in PyTorch, are translated into custom CUDA kernels,
yielding up to an 80% reduction in runtime. However, implementing a
backward function for integration with PyTorch’s automatic differentiation
engine presents a challenge. Additionally, the optimization of a specific
CUDA kernel resulted in a 75% reduction in its runtime, translating into
a nearly 20% reduction in total training time for the model. These results
highlight that even modest efforts to optimize existing models can yield
significant improvements, underscoring the importance of GPU programming
knowledge for developers aiming to build more efficient machine learning
systems.

ii | Abstract

Keywords
Novel View Synthesis, Machine Learning optimization, GPU efficiency,
Custom CUDA kernels, Performance profiling

Sammanfattning | iii

Sammanfattning
Denna avhandling undersöker de beräkningsmässiga ineffektiviteteterna i
befintliga maskininlärningsmodeller för ny vy-syntes, vilket är uppgiften
att generera bilder av observerade scener från nya vyer. Moderna modeller
analyseras, och tre modeller väljs ut för en detaljerad granskning av
deras implementation. Målet är att identifiera faktorer som begränsar
effektiviteten hos dessa modeller under både inferens- och träningsfaser och
att optimera dem. Ineffektivitet kan uppstå från bristfälliga implementationer
eller suboptimal resursanvändning, särskilt när minne inte återanvänds på ett
effektivt sätt mellan träningsiterationer eller när hårdvaran, särskilt grafikkort
(GPU:er), inte utnyttjas fullt ut.

Uppsatsen behandlar frågan: Vilka är de begränsande faktorerna i
nuvarande implementeringar av ny vy-syntes för dynamiska scener, och hur
kan de åtgärdas? Även om många studier presenterar ooptimerade modeller
för att demonstrera kapabiliteter, fokuserar denna forskning på att förbättra
beräkningsmässig effektivitet utan att ändra den underliggande modellarki-
tekturen, vilket skulle kräva omfattande omträning och benchmarking—utöver
detta projekts omfattning.

Problemet adresserades genom att använda verktyg som PyTorch profiler
för att mäta den tid som spenderades i olika funktioner, vilket hjälpte till
att identifiera prestandaflaskhalsar. Dessutom analyserades anpassade kärnor
med hjälp av NVIDIA Nsight-sviten för att avslöja ineffektivitet i deras
körning. Dessa insikter gjorde det möjligt att genomföra riktade optimeringar
som avsevärt förbättrade körtidsresultaten.

Resultaten visar på betydande förbättringar när tensoroperationer, van-
ligtvis skrivna i PyTorch, översätts till anpassade CUDA-kärnor, vilket
ger en upp till 80% minskning av körtid. Att implementera en bakåt
funktion för integration med PyTorchs automatiska differentiationsmotor
är dock en utmaning. Dessutom resulterade optimeringen av en specifik
CUDA-kärna i en 75% minskning av dess körtid, vilket resulterade i en
nästan 20% minskning av den totala träningstiden för modellen. Dessa
resultat belyser att även blygsamma ansträngningar för att optimera befintliga
modeller kan ge betydande förbättringar, vilket understryker vikten av
GPU-programmeringskunskaper för utvecklare som vill bygga mer effektiva
maskininlärningssystem.

iv | Sammanfattning

Nyckelord
Ny synsättsynthes, Maskininlärningsoptimering, GPU-effektivitet, Anpassade
CUDA-kärnor, Prestandaprofilering

Zusammenfassung | v

Zusammenfassung
Diese Masterarbeit untersucht die rechnerischen Ineffizienzen in bestehenden
maschinellen Lernmodellen für die Synthese neuer Ansichten, also die
Aufgabe, Bilder beobachteter Szenen aus neuen Blickwinkeln zu generieren.
Moderne Modelle werden analysiert, und drei Modelle werden für eine
detaillierte Untersuchung ihrer Implementierung ausgewählt. Das Ziel ist
es, Faktoren zu identifizieren, die die Effizienz dieser Modelle sowohl
in der Inferenz- als auch in der Trainingsphase begrenzen, und diese zu
optimieren. Ineffizienzen können durch schlechte Implementierungen oder
eine suboptimale Ressourcennutzung entstehen, insbesondere wenn Speicher
nicht effizient über Trainingsiterationen hinweg wiederverwendet wird oder
wenn die Hardware, insbesondere Grafikkarten (GPUs), nicht vollständig
ausgelastet sind.

Die Arbeit behandelt die Frage: Was sind die begrenzenden Faktoren
in aktuellen Implementierungen der Synthese neuer Ansichten dynamischer
Szenen und wie können sie gemildert werden? Während viele Studien
unoptimierte Modelle präsentieren, um deren Fähigkeiten zu demonstrieren,
konzentriert sich diese Arbeit auf die Verbesserung der Recheneffizienz
ohne die zugrunde liegende Modellarchitektur zu verändern, da dies ein
umfangreiches Retraining und Benchmarking erfordern würde, was über den
Rahmen dieses Projekts hinausgeht.

Das Problem wurde durch den Einsatz von Werkzeugen wie dem PyTorch
Profiler angegangen, um die Zeit, die in verschiedenen Funktionen verbracht
wird, zu messen und Engpässe in der Leistung zu identifizieren. Zusätzlich
wurden benutzerdefinierte Kernel mit der NVIDIA Nsight Suite analysiert,
um Ineffizienzen in ihrer Ausführung aufzudecken. Diese Erkenntnisse
ermöglichten gezielte Optimierungen, die die Laufzeitleistung erheblich
verbesserten.

Die Ergebnisse zeigen erhebliche Verbesserungen, wenn Tensoroperatio-
nen, die üblicherweise in PyTorch geschrieben werden, in benutzerdefinierte
CUDA-Kernel übersetzt werden, was zu einer Reduzierung der Laufzeit
um bis zu 80% führt. Die Implementierung einer Rückwärtsfunktion für
die Integration mit PyTorchs automatischer Differenzierungs-Engine stellt
jedoch eine Herausforderung dar. Darüber hinaus führte die Optimierung eines
spezifischen CUDA-Kernels zu einer Reduzierung der Laufzeit um 75%, was
zu einer fast 20%-igen Reduzierung der gesamten Trainingszeit des Modells
führte. Diese Ergebnisse verdeutlichen, dass selbst bescheidene Anstrengun-
gen zur Optimierung bestehender Modelle erhebliche Verbesserungen bringen

vi | Zusammenfassung

können und unterstreichen die Bedeutung von GPU-Programmierkenntnissen
für Entwickler, die effizientere maschinelle Lernsysteme entwickeln möchten.

Schlüsselwörter
Synthese neuartiger Ansichten, Optimierung des maschinellen Lernens, GPU-
Effizienz, benutzerdefinierte CUDA-Kernel, Performanzanalyse

Acknowledgments | vii

Acknowledgments
I would like to express my gratitude to my supervisors at KTH, Mårten
Björkman and Marcel Büsching, for their guidance and support throughout
this thesis.

I am also deeply thankful to my mother, Gabriele Beinlich, for her
unwavering support and for enduring countless sleepless nights proofreading
and checking my work.

Berlin, Germany, March 2025
Lukas S. Beinlich

viii | Acknowledgments

Contents | ix

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Related Work . 3
1.4 Purpose . 3
1.5 Scope and Research Methodology 4
1.6 Structure of the Thesis . 4

2 Novel View Synthesis 7
2.1 Mathematical Background 8

2.1.1 Volumetric Rendering 8
2.1.2 Positional Encodings 9
2.1.3 Gaussian Splatting 9
2.1.4 Spherical Harmonics 10

2.2 Static Scenes . 12
2.2.1 NeRF: Radiance Fields based on MLPs 12
2.2.2 Extensions of NeRF 13
2.2.3 Representation through Voxel Grids and other Data

Structures . 15
2.2.4 Representation of a scene using Gaussians 18

2.3 Dynamic scenes . 19
2.3.1 Expanding Implicit Models to Dynamic Scenes 19
2.3.2 Explicit and Hybrid Approaches to Dynamic Scenes . 21
2.3.3 Hash-table based approach 24
2.3.4 Gaussian Splatting and Point Based Methods for

Dynamic Scenes . 24
2.4 Summary . 26

x | Contents

3 GPU Architecture 27
3.1 Modern GPU-architecture 29

3.1.1 Core Layout . 29
3.1.2 Tensor Cores . 30
3.1.3 Memory Layout . 30
3.1.4 Execution and Best Practices 31

3.2 Interfacing with a GPU . 34

4 Methods 35
4.1 Benchmarking Python Code 36

4.1.1 Using cProfile . 36
4.2 Benchmarking and Analyzing Code with CUDA-kernels . . . 39

4.2.1 The PyTorch profiler 39
4.3 Using NVIDIA Nsight to Analyze Memory Access Patterns . . 44
4.4 GPU Traces . 47
4.5 System Documentation . 49

5 Model Selection 51
5.1 Model selection . 52
5.2 HexPlane . 54

5.2.1 Mathematical Background 54
5.2.2 Implementation Details 56

5.3 DynIBaR . 57
5.3.1 Mathematical Background 57
5.3.2 Implementation Details 59

5.4 4D Gaussian Splatting . 62
5.4.1 Mathematical Background 62
5.4.2 Implementation Details 64

6 Analysis and Optimizations 67
6.1 HexPlane . 68

6.1.1 Performance Analysis 68
6.1.2 Possible Optimizations 71
6.1.3 Conclusion . 72

6.2 DynIBaR . 73
6.2.1 Performance Analysis 74
6.2.2 Improvements . 80
6.2.3 Conclusion . 84

6.3 4D Gaussian Splatting . 85
6.3.1 Performance Analysis 85

Contents | xi

6.3.2 Improving the Gaussian Rasterizer Backward Kernel . 88
6.3.3 Conclusion . 92

6.4 Summary . 93

7 Conclusion and Future Works 95
7.1 Conclusions . 95
7.2 Limitations . 96
7.3 Future work . 97
7.4 Reflections . 97

References 99

xii | Contents

List of Figures | xiii

List of Figures

4.1 Output of code in listing 4.1 38
4.2 Chrome trace for the code in listing 4.2 after warm-up. 48

6.1 Trace of a single iteration of HexPlane. 69
6.2 Trace of a single iteration during training of DynIBaR with no

synchronization. 75
6.3 Trace of a single iteration during training of DynIBaR with a

single synchronization at the end of the iteration. 76
6.4 Trace of a single iteration during training of DynIBaR with a

single synchronization at the end of each major step in a single
iteration. 77

6.5 Partial trace of the render function in DynIBaR. 81
6.6 Trace of a single training iteration of 4D Gaussian Splatting

(4DGS). 87

xiv | List of Figures

List of Tables | xv

List of Tables

4.1 Performance metrics of the model in listing 4.2 using the
PyTorch profiler. 41

4.2 Performance profiling results with CPU and GPU metrics of
the model in listing 4.2. 42

6.1 Time spent in each section in a single training iteration of
HexPlane. 70

6.2 Performance comparison of the original Python implementa-
tion and a custom CUDA kernel for calculating the motion
trajectory field in DynIBaR. 84

6.3 Section breakdown of a single training iteration in 4DGS. . . . 85
6.4 Performance results of the backward kernel of the Gaussian

Rasterizer comparing central processing unit (CPU) and
CUDA times across different versions. 90

6.5 Selected performance metrics measured by NVIDIA Nsight
for the original and improved Gaussian Rasterizer backward
kernel. 91

xvi | List of Tables

Listings | xvii

Listings

4.1 A simple Python script that calculates the sum of the first
10000 primes. 37

4.2 A simple neural network model implemented in PyTorch
demonstrating the PyTorch profiler capabilities. 40

4.3 Simple CUDA kernel with inefficient memory accesss pattern
that adds two matrices together. 45

6.1 DynIBaR’s original Python code to multiply the motion
coefficients to the motion basis to form the motion trajectory. . 82

6.2 The same code as in listing 6.1 implemented as a single
efficient forward CUDA kernel. 83

xviii | Listings

List of acronyms and abbreviations | xix

List of acronyms and abbreviations

3DGS 3D Gaussian Splatting
4DGS 4D Gaussian Splatting

AI artificial intelligence
API application programming interface

CPU central processing unit

DynIBaR Neural Dynamic Image-based Rendering

FPS frames per second

GAN generative adversarial network
GB gigabyte
GPU graphics processing unit

KB kilobyte

MAD multiply-add
MB megabyte
MLP multilayer perceptron

NeRF Neural Radiance Fields
NVS novel view synthesis

RAM random-access memory

SH spherical harmonics
SM Streaming Multiprocessor

TPU tensor processing unit

VRAM video RAM

xx | List of acronyms and abbreviations

List of Symbols Used | xxi

List of Symbols Used

The following symbols are commonly used within the body of the thesis.

α Accumulated transparency along a ray during volumetric rendering.

∆G The deformation applied to a Gaussian at a given time-step.

γ Positional encoding function that maps inputs to a higher-dimensional
space.

Ĉ(r) The rendered color for a ray r using discrete volumetric rendering.

c The predicted color at a point x.

C(r) The expected color for a ray r.

d The viewing direction, defined by angles (θ, ϕ) or as a 3D unit vector.

r(t) A ray parameterized by origin o and direction d.

x A 3D point in space.

F A radiance field mapping (x, d) to (c, σ).

L The objective function in a machine learning model.

X Position of a Gaussian in space.

Σ Covariance matrix of a Gaussian, defining its shape and orientation.

σ The density of a point or a Gaussian.

Σ′ Covariance matrix of the Gaussian projected onto the image plane.

f Features used as input to an multilayer perceptron (MLP).

G(x) The Gaussian distribution function at a point x.

xxii | List of Symbols Used

J Jacobian of the affine projection matrix.

R Rotationmatrix of a Gaussian, typically stored as a unit quaternion.

S Scalematrix of a Gaussian, stored as a 3D vector.

W Viewing transformation matrix.

T Transmittance of a ray between two points.

Introduction | 1

Chapter 1

Introduction

This chapter introduces the general problem that this thesis addresses. First of
all, a short background of the context of novel view synthesis (NVS) will be
outlined. Moreover, a description of the problem the thesis addresses follows,
as well as related work on the problem. The purpose of this thesis, as well as
the scope and methodology, will then be described, too. Finally, the structure
of the thesis will be outlined.

1.1 Background
The task of generating novel views from a sparse set of input images is a core
problem in computer vision and computer graphics.

Applications of NVS span various fields. In medical imaging, NVS can
be used to reduce the number of required images, which in turn reduces
the amount of radiation a patient receives and also enables freely viewable
visualizations of medical points of interest [7, 8]. In interactive media, such
as movies or games, NVS allows viewers to freely navigate a scene on their
own instead of being bound to a given viewpoint. This could be interesting
for virtual reality environments, where a user takes a few pictures of an object,
which can then be seamlessly inserted into the virtual environment as a full 3D
object. This would help create realistic experiences, especially when sharing
the environment with other people.

Modern work is based on various methods. The first optimizes a radiance
field from which an image can be recovered using volumetric rendering,
as outlined in Neural Radiance Fields (NeRF) [38]. A different method
is to model a scene using primitives, such as Gaussians, which can be

2 | Introduction

projected onto a 2D plane, constructing an image, as described in 3D Gaussian
Splatting (3DGS) [25]. Another approach is to use image-based rendering,
where information from the source images is aggregated and combined to
form a novel view, as described in Neural Dynamic Image-based Rendering
(DynIBaR) [30].

Extending NVS models to dynamic scenes is a difficult task, as the
additional dimension vastly increases the complexity of the task. Oftentimes,
existing models are simply extended by mapping the dynamic scene to a static
scene, which is then referenced for rendering. This can be seen in various
publications based on the NeRF model [28, 46], and also for models based on
3DGS [35, 59].

1.2 Problem
To achieve high performance of learning-based methods, accelerators like
graphics processing units (GPUs) are often used, but also more specialized
hardware like tensor processing units (TPUs) are used. A multitude
of interfaces exist to program these accelerators, leveraging their highly
parallelized processing capabilities optimized for linear algebra to accelerate
training massively.

However, popular frameworks like PyTorch [1] highly abstract the usage of
such accelerators, simplifying it to a single function call to transfer the model
and data to the memory of such a device. This enables execution on these
devices, leveraging them without requiring any knowledge of best practices to
code efficiently on these devices. On the other hand, the push to utilize models
that can render novel views in real time for static and dynamic scenes requires
a highly efficient approach and implementation. This is unlikely to be done
when using frameworks like PyTorch to implement complex data structures
instead of developing these in custom C++ CUDA kernels. Therefore, this
project aims to analyze three-state-of-the-art models, HexPlane [9], a simple
but fast model utilizing six planes to store a dynamic scene, DynIBaR [30],
a very complex and computationally intensive model based on image-based
rendering, that produces very high-quality results, and 4D Gaussian Splatting
[59], a model utilizing Gaussian Splatting extending a similar model for static
scenes. The aim is to unveil inefficiencies in their implementations while
attempting to improve them, thus answering the question:
Research Question What are the limiting factors in current implementations
of novel view synthesis for dynamic scenes, and how can they be mitigated?

Introduction | 3

1.3 Related Work
Most machine learning models utilize CUDA kernels for their implementa-
tions, either directly or through frameworks like PyTorch. Past research has
shown that combining kernels together improves speed significantly, showing
a speedup of over 50x in compute patterns often used in machine learning
models [2]. Another attempt at improving performance of kernels is through
better scheduling of kernels utilizing different cores on the GPU and fusing
kernels together utilizing multiple types of cores at the same time [65].

For NVS various attempts have already been made to implement highly
efficient models. One such work was made by researchers from NVIDIA,
which focused on building a model that utilizes NVIDIA GPUs to their full
extent, capable of rendering novel views of a scene in seconds [39]. Their code
is specifically crafted for the GPU in use, ensuring high performance.

Other work on static scenes is also done, when scientists optimize an
already published model, as seen in [56]. There, the authors revisited their
model and optimized it by writing custom kernels to better utilize the GPU,
achieving a 2-3x speed increase.

However, only very limited work has been done on dynamic scenes, as
models in this domain often extend existing models. A good example for
this is 4D Gaussian Splatting (4DGS) [59]. There, the Gaussians are first
transformed to fit the given time of the dynamic scene. Subsequently, the
renderer from the static model from 3DGS is used to render a novel view. The
challenge here is that the new transformation code might be inefficient, and
the model also inherits inefficiencies from the underlying static model.

1.4 Purpose
The purpose of this thesis is to explore and improve implementations of
modern artificial intelligence (AI) models. Specifically, the focus will be on
reducing the computational power required to train, deploy, and maintain these
models. This will make AI technology more available to the public, lowering
the barriers of time and cost associated with their use.

Furthermore, increasing the efficiency of AI models will also decrease
their energy consumption, addressing global challenges such as sustainability
and climate change. As AI technology becomes an increasingly significant
contributor to global energy demands, such optimizations are important to
limit the environmental impact of such technology.

4 | Introduction

However, making this technology easily available also comes with risks, as
it can also be misused. This can already be seen today in deepfakes, depicting
persons in unwanted or even incriminating situations. Therefore, special care
has to be taken when improving these models, although, this is ultimately the
responsibility of lawmakers regulating the use of AI.

1.5 Scope and Research Methodology
In this work, three state-of-the-art implementations provided by the authors
in the field of novel view generation for dynamic scenes will be analyzed and
benchmarked. For this, profilers, which measure the time various components
of the model take, will be used. After identifying potential bottlenecks, an
attempt will be made to understand the limitations of these bottlenecks. If
possible, solutions to these will be provided and implemented, while making
sure the results are consistent to those of the original implementation. A
further comparison of the developed improvements will be made to the original
implementation, showing how researchers can benefit from investing time in
developing efficient models. However, changes to the model architectures,
such as reducing the neural network size to improve the speed, will not be
explored, as this would require a quality evaluation.

1.6 Structure of the Thesis
In this project, the development of various approaches to novel view
synthesis will be discussed in chapter 2, introducing the necessary background
knowledge of the topic. The evolution of models for static scenes will be
shown, outlining the strengths and weaknesses in the quality of early models.
An extension to dynamic scenes is presented, too. There it becomes obvious
that models often employ approaches from static models, featuring additional
components to model the time dependence.

In chapter 3, the architecture of modern GPUs is outlined, representing an
overview of how cores and memory are organized and used in order to execute
a function. There will also be a short section demonstrating best practices
regarding memory transfers and how to interface with a GPU.

In chapter 4, the necessary tools to analyze the performance of code will
be outlined. Aspects like simple profiling on the central processing unit (CPU)
side, as well as a more complex timing of code on multiple processing units,
are of importance. Also, a visualization of executions of models in the form

Introduction | 5

of traces is shown.
Another important tool is the NVIDIA Nsight suite, which provides

various programs to analyze individual kernels. A short introduction to
analyzing memory transfers will also be given in chapter 4.

In chapter 6 three selected models will be described in detail, their
implementations analyzed and if possible improvements made. There will
also be a comparison of the performance between the improved and original
models.

Finally, chapter 7 summarizes the conducted thesis.

6 | Introduction

Novel View Synthesis | 7

Chapter 2

Novel View Synthesis

NVS is the task of creating images of an observed scene from novel view
points. Usually, the given source images are only available from a few
sparse view points for a select scene. These images are then used to
create a representation from which new images from unseen perspectives are
generated.

Traditionally, this problem has been approached geometrically, estimating
the relationship between points in two images [34]. Over time, methods
combined geometric priors with image-based rendering (IBR) to recover
3D structures or modeled scenes using 4D implicit functions representing
radiance fields in free space [12, 19, 26]. Neural networks, like generative
adversarial networks (GANs), later enabled NVS by generating 3D shapes
in voxel grids or learning dense volumetric scene representations for
reconstructing novel views [18, 33, 60].

Nowadays, methods often rely on machine learning based methods in order
to generate an internal representation of the scene. This is done either through
feed forward neural networks such as multilayer perceptrons (MLPs) [3, 38],
through data structures, such as voxels [14, 56], or through collections of
primitives modelling the scene, such as points or Gaussians [25, 61]. These
internal representations are then optimized to fit the given images and are used
to produce novel views.

This chapter introduces current methods of novel view generation. Firstly,
static scenes and their various representations will be described. Secondly,
the challenges posed in dynamic environments will be discussed, where the
addition of a temporal dimension will add further complexity.

8 | Novel View Synthesis

2.1 Mathematical Background
There are two major ways of generating novel views. The first is through
volumetric rendering, which uses a radiance field to produce an image. This
radiance field can be modeled as an MLP, where the inputs are often encoded
harmonically, to ensure a better representation of high frequency variation
[47].

The other major method to produce novel views is splatting, where
primitives are simply transformed and projected to an image plane, then
blended together, which also produces an image.

2.1.1 Volumetric Rendering
A radiance field of color c and density σ is usually modeled as a 5D vector-
valued function:

F : (x, d) −→ (c, σ) (2.1)

The input to this function is a position x and a viewing direction d, defined by
the angles d = (θ, ϕ). In practice, the viewing direction is often expressed as
a 3D unit vector.

To synthesize an image, a ray is cast through each pixel of the desired
view. The process of rendering the color of a ray C is achieved through volume
rendering [24]. The expected color C(r) for a ray r(t) = o+ td originating at
o and traveling in direction d is given by:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt , where T (t) = exp
(
−
∫ t

tn

σ(r(s))ds
)

(2.2)

Here tn and tf describe the near and far limits of the ray, and T (t) corresponds
to the transmittance from tn to t, i.e. the fraction of light that travels through
space without being absorbed.

In practice, rather than evaluating the continuous integral, color ci and
density σi are sampled at N discrete points along the ray. There are various
sampling strategies, ranging from uniform sampling in NeRF [38] up to the
use of a learned predictor in order to determine at which points to query for ci

Novel View Synthesis | 9

and σ [40]. This results in the discrete volumetric rendering equation [37]:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci,where Ti = exp(−
i−1∑
j=1

σjδj) (2.3)

Here, δi = ti+1 − ti is the distance between consecutive samples. This
equation is easily differentiable, enabling machine learning methods to be
applied through gradient descent.

2.1.2 Positional Encodings
When an MLP is used to model a radiance field, the inputs are often
encoded because neural networks usually struggle to represent high-frequency
variations [47]. To overcome this, the inputs are usually mapped from R to
a higher dimensional space R2L, before passed to the network. Usually, sine
and cosine functions are used for this mapping, with varying frequency factors
from 1 up to 2L−1. The encoding γ could then be described as, with the input
p normalized to p ∈ [−1, 1]:

γ(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp)) (2.4)

For the MLP used to represent a radiance field, usually both input, the position
x and the viewing direction d is encoded.

2.1.3 Gaussian Splatting
When the scene is modeled using primitives, they usually have a position, color
and some form of translucency, either modeled as density or transparency.

In Gaussian Splatting methods [25, 35, 59, 62] each Gaussian G =

{X , R, S, σ, C} is described by several attributes, such as position X , scale S

and rotation R. They define the Gaussian in space. They also have a density σ

and color coefficients C for the spherical harmonics, which are used to generate
a view-dependent color. A single Gaussian in 3D space is centered around a
center point X with a covariance Σ.

The distribution of a single Gaussian can then be modeled as the following:

G(x) = e−
1
2
(x−µ)TΣ(x−X) (2.5)

To ease computation, the covariance matrix is split into a rotation, stored as a
unit quaternion and a scale, stored as a 3D vector, which can be combined to

10 | Novel View Synthesis

form the covariance matrix Σ as follows:

Σ = RSS−1R−1 (2.6)

A Gaussian can then be projected to the image plane by applying the
viewing transformation W as well as the Jacobian of the affine projection
matrix J :

Σ′ = JWΣW−1J−1 (2.7)

As this matrix now represents the Gaussian on a 2D plane, only the upper
left 2× 2 matrix is needed, when calculating gradients for optimization in the
backward pass.

All Gaussian are blended together by being rendered from front to back, i.e.
the Gaussians closest to the image plane are splatted first using their respective
transparency αi, reducing the remaining transmittance Ti:

αi = (1− exp(−σiδi)) (2.8)

Ti =
i−1∏
j=1

(1− αj) (2.9)

The final color Ĉ can then be calculated using the following equation:

Ĉ =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) (2.10)

When the remaining transmittance falls below a threshold the splatting for the
given pixel stops. Alternatively, if all Gaussians are rendered, the remaining
transmittance is multiplied by the background color and added to the image.
This process is also differentiable, which enables the application of gradient
descent for machine learning.

2.1.4 Spherical Harmonics
Another difficult aspect of NVS is the use of view-dependent color. To realize
this, color is often represented by spherical harmonics (SH) coefficients. SH
are a set of functions that form an orthogonal basis of degree lmax over a sphere.
Low degree harmonics can then represent smooth transitions in color over
the sphere, to represent Lambertian surfaces [5, 48], while higher frequency

Novel View Synthesis | 11

harmonics encode high frequency changes, such as specular highlights [54].
Evaluating these harmonic functions Y m

l for a given viewing direction d then
sums to the specific color c. For RGB color, each color channel ci has its
own SH coefficients and can be expressed as the following with the given
coefficients k = (km

l) with m ∈ {−l, ..., l}:

c(d, k) = S
(lmax∑

l=0

l∑
m=−l

km
l Y

m
l (d)

)
(2.11)

S is used to normalize the colors, which could be a sigmoid function S(x) =

(1 + exp(−x))−1. For a detailed explanation of SH, refer to the appendix of
PlenOctrees [63].

12 | Novel View Synthesis

2.2 Static Scenes
NVS for static scenes aims to generate novel views of a static object or scene.
The data usually consists of multiple images taken from various viewpoints
or even video footage. From the input data, a representation is then created,
which is used to generate novel views.

Traditionally, methods focused on generating explicit 3D models, such
as triangle meshes, use multiview geometry [21], which triangulates points
from multiple views to reconstruct the scene. However, such methods require
at least two source images for each triangulated point, a condition that
cannot always be met, especially in occluded regions. A frequently used
implementation of this approach is COLMAP [52, 53], which first estimates
camera poses using structure from motion and then reconstructs the scene
using a sparse point cloud, which is then refined to a dense point cloud and
possibly converted to a triangular mesh.

Other methods attempt to reconstruct 3D models from either silhouettes
[50] or by refining a mesh from simple shapes like ellipsoids into complex 3D
models, leveraging neural networks to refine the geometry [58].

Some approaches also rely on depth information which have to be captured
through specialized camera equipment. However, modern techniques using
machine learning can infer depth maps from 2D images[29, 31, 49] nullifying
the need for expensive hardware.

2.2.1 NeRF: Radiance Fields based on MLPs
Modern approaches represent the scene using radiance fields. In 2020
Mildenhall et al. introduced NeRF [38], a groundbreaking approach to novel
view synthesis. NeRFs represent the radiance field of a scene using a large
MLP as described in eq. (2.1). This representation ensures a smooth transition
of c and σ across space and viewing directions, which can then be used to infer
the color of a camera ray r via volumetric rendering (eq. (2.3)). The neural
network is queried multiple times along each ray, once for each sampled point
to compute the pixel’s final color. In this formulation, the scene is implicitly
encoded within the parameters of the MLP FΘ.

NeRF incorporates several optimizations to improve efficiency and
quality. They use a coarse-to-fine sampling strategy, which involves a faster
”coarse” neural network, that is used first to query density and therefore
filter out queries to the large MLP FΘ in empty space. In addition to that,
another optimization is the usage of a positional encoding of the input in

Novel View Synthesis | 13

order to increase the network’s capacity, and to capture high-frequency details
increasing rendering quality.

2.2.2 Extensions of NeRF
NeRF revolutionized the field by producing high-quality results were
unprecedented at the time. However, there were limitations, such as quality
issues like blurry results when rendering at different resolutions. Super-
sampling (casting multiple rays per pixel) could have mitigated this issue, but it
significantly increases computational cost, too. The high computational costs
present another issue, as rendering a single novel view involves querying the
large MLP hundreds of times per ray to produce only a single pixel of an image.
This results in training times lasting approximately 1-2 days on an NVIDIA
V100 GPU for a single scene.

The simplest way to speed up NeRF was to use more computational
resources. JaxNeRF [13] is a NeRF reimplementation in Jax [6, 16], a
Python library for high-performance computation with support for execution
across multiple accelerators. This reimplementation achieved modest
speed improvements per used accelerator unit and demonstrated scalability,
rendering a single image in 0.35 seconds using 128 TPUv2 units from Google.

While such brute-force solutions highlight the potential for hardware-
accelerated optimizations, they do not scale well economically or ecologically.
Thus, more sophisticated methods are needed to address NeRF’s computa-
tional bottlenecks. Several other methods have also been proposed so far
to enhance NeRF’s efficiency by reducing the number of queries to its large
MLP. These strategies generally fall into two categories, better sampling along
the ray and precomputing and storing intermediate representations for faster
interpolation. An overview of these methods will now be given.

First of all, DONeRF [40] replaces NeRF’s coarse MLP with a depth oracle
prediction network. This network predicts the points along the ray where
the MLP should be queried, effectively minimizing evaluations of empty
space. By reducing the number of MLP queries to a fraction of the original,
DONeRF achieves speed improvements of up to 48x, reaching near real-time
performance on a single GPU at 20 frames per second when rendering a fully
trained model. This is achieved without increasing the memory footprint,
keeping it similar to NeRF.

Another approach to improve speed is to evaluate a NeRF model over a
bounded volume and storing the results in a matrix, allowing computationally

14 | Novel View Synthesis

efficient trilinear interpolation to recover c and σ instead of repeated MLP
queries during rendering. Storing a full 5D matrix, however, is infeasible due
to memory constraints. Some methods split the MLPs into separate networks
to manage memory requirements efficiently and to use caching [17].

SNeRG [22] stores a radiance field produced by NeRF in a sparse neural
radiance grid. It ”bakes” a trained NeRF by evaluating its output across
a sparse voxel grid and by storing the results as features for density and
view-dependent color. A small MLP then uses these precomputed features
in order to recover the final view-dependent color for NVS. To keep model
size manageable, this approach uses modern image and video compression
techniques when storing the model on disk. SNeRG achieves significant
performance gains while incurring a slight drop in rendering quality compared
to the original NeRF, effectively trading stored model size for speed.

Similarly, PlenOctrees [63] adopt a hierarchical octree structure to store
SH instead of raw color and density values. This allows the recovery of
view-dependent color from view direction and SH coefficients while reducing
computational costs. After training a modified NeRF which outputs SH,
the authors of PlenOctrees further optimize the stored PlenOctrees using the
source images. This secondary optimization allows the NeRF training to be
stopped early, reducing training time, as it is faster to optimize a PlenOctree.
By rendering novel views from the prepared PlenOctree, this model achieves
extraordinary speed-ups, rendering novel views 3000x faster than the original
NeRF implementation, with frame rates exceeding 150 frames per second.
However, these benefit comes with a significant model size increase to nearly
2 GB. Additionally, PlenOctrees enable unique features like rendering cross-
sections and combining multiple scenes into one.

All these methods work well when rendering at given resolutions.
However, when new images are synthesized at resolutions not used during
training, the results are often blurry. This can be countered by using
supersampling, but that increases the computational resources needed
massively. Mip-NeRF [3] enables rendering at arbitrary resolutions without
blurry artifacts or the need for super sampling. This is achieved by casting
cones instead of rays for each pixel. The cone’s geometry is modeled as
a Gaussian, which is then used to query the NeRF-like MLP for density
and color. This approach reduces aliasing artifacts and allows rendering at
any resolution while halving the model size and slightly increasing rendering
speed. However, Mip-NeRF still requires several seconds to render a single
image, thus being far from real-time performance.

Novel View Synthesis | 15

While many improvements to NeRF focus on speed for bounded scenes,
all these approaches face significant challenges when applied to unbounded
environments. Such scenes require specialized representations to handle
objects at varying distances as near objects dominate the source images,
leaving far objects underrepresented. This imbalance results in slower training
and inadequate reconstruction for distant parts of the scene, creating blurry
backgrounds or artifacts.

One approach to unbounded scenes is to transform the scene into a
bounded representation, allocating more capacity to objects near the camera
and less to distant objects. NeRF++ [64] addresses unbounded scenes
by partitioning the scene into two volumes, a foreground represented as a
spherical volume and a background represented as an inverted sphere. Objects
in the background are then reparameterized into inverted sphere coordinates
before being processed by a separate MLP. This approach improves training
efficiency and reconstructs details in distant regions more adequately.

Building on Mip-NeRF and NeRF++, Mip-NeRF 360 [4] enhances results
for unbounded scenes by introducing a new ray parametrization in view
space, increasing quality, while also requiring less computational resources
compared to NeRF++.

With all these methods improving quality, the underlying problem of the
need to query a large MLP multiple times per pixel limits the performance
of this approach. Some tricks, like separating the density and color outputs
into independent MLPs, as proposed in FastNeRF [17] or caching the results
to provide faster rendering can help improve performance. However, these
are only treating the symptoms, while the reliance on large MLPs remains the
fundamental limitation.

To achieve real-time performance for both training and rendering, a shift
away from MLPs towards hybrid models or explicit models is essential.
Hybrid models combine data structures with usually small supportive neural
networks to decode the stored data. In contrast, explicit models rely solely
on the scene being represented in data structures. The following section now
outlines several important advances using those approaches.

2.2.3 Representation through Voxel Grids and other
Data Structures

One promising direction of improving the speed of NVS is to replace
the implicit encoding of density and color in an MLP with a voxel grid

16 | Novel View Synthesis

representation instead of using an MLP. These hybrid and explicit methods
either store density and color directly in the grid or adopt a hybrid approach
where intermediate features are stored in the grid, and a tiny MLP, often only
consisting of two layers, is used to extract the final density and color. In this
section several hybrid methods will be presented.

First, in NSVF [32] the authors propose a sparse voxel grid to represent the
scene. Instead of directly storing the scene in an MLP, features are stored in
the grid focusing on occupied regions of space. These features are trilinearly
interpolated and fed into an MLP which computes color and density being
used in volumetric rendering (eq. (2.3)). This grid structure enables the model
to skip empty space and significantly reduces the number of MLP queries.
Despite a similar-sized MLP as NeRF’s, NSVF achieves a 10x-20x speedup
while maintaining comparable or a slightly better quality. The usage of a
supporting data structure, namely the voxel grid storing features, classifies
this method as a hybrid method, combining explicit methods with implicit
methods.

Plenoxels [51], builds on the ideas of PlenOctrees [63] while eliminating
the need for a trained NeRF. Instead, a framework for training a model from
scratch is being provided, which dramatically reduces training time. For
bounded scenes, Plenoxels store density and spherical harmonic coefficients
in a voxel grid which directly represents the scene. For unbounded scenes,
the grid is replaced with progressively larger spheres. This approach reduces
training time down to 10-30 minutes compared to the days required for NeRF.
This is because the reliance on a large MLP is removed.

Another model, proposed in DVGO [55, 56], adopts a coarse-to-fine voxel
grid in order to represent density and color features, which are decoded
using a small MLP to regress the final c and σ. This approach achieves
comparable results to NeRF in a fraction of the training time, but it is currently
limited to bounded scenes, unlike methods such as Mip-NeRF360 that handle
unbounded environments.

In a follow-up technical report [56], the authors implemented key
components as a CUDA kernel, achieving a further 2x-3x speedup compared to
their earlier version. This demonstrates the significant gains being achievable
by using custom GPU kernels to fully utilize the available hardware.

Another novel approach, NVIDIA’s Instant-NGP [39], replaces the dense
voxel grid with multiple hash tables at varying resolutions accessed by
a pseudo random function that maps 3D coordinates to indices. The
distinguishing feature of this model is that hash collisions are not handled at

Novel View Synthesis | 17

all. Instead, the model is solely relying on the training process to optimize and
ensure that only relevant features are encoded. This way, the hash table serves
as a memory-efficient representation of the scene.

A key advantage is the hardware-conscious design, showing the expertise
of the developers regarding NVIDIA hardware. The hash table sizes are
carefully tuned to fit entirely within the L2 cache of the GPU, minimizing
memory access latency. Additionally, the model processes all inputs for each
resolution level in a batch, avoiding reloading of hash tables and thus further
improving efficiency.

Because of these design choices, Instant-NGP achieves exceptional
performance, producing results comparable to NeRF after only 15 seconds
of training time and reaches the quality of Mip-NeRF within a few minutes.
These advances show the importance of optimizing data structures to available
hardware combined with efficient memory management, which leads to
drastically accelerated training times while maintaining high-quality results.

An alternative to representing a scene using voxel grids is to store the
necessary data in point clouds. In Point-NeRF [61], the authors propose a
model that encodes the scene as a point cloud where each point is described
by its position, a feature vector, and a confidence value indicating its likelihood
of being near a surface in the scene. To compute c and σ for a queried
point x, first, a k-nearest neighbors search is done to determine the closest
points (x1, ..., xk). Afterward, the features of those points are combined using
a weighted average based on distance to the queried point x, while being
processed by multiple MLPs to produce the final c and σ. Applying the
volumetric rendering equation 2.3 can then generate novel views.

Training the model involves two steps, the first initializes a point cloud
using depth maps and sets an initial confidence value for each point.
Depth maps can be created either by using specialized hardware to capture
training images or by using techniques to estimate depth through multi-
view stereo techniques such as COLMAP [53]. In the second step, the
point cloud undergoes refinement through pruning, attribute optimization, and
addition or removal of points to improve scene representation. Point-based
representations are inherently unbounded and require only short optimization
phases rather than the full training of a model from scratch.

All these proposed models have shown how hybrid models using data
structures such as voxel grids, sometimes in combination with small MLPs,
can benefit computational performance leading to accelerated training and

18 | Novel View Synthesis

rendering times. However, their reliance on structured grids imposes
limitations, particularly when dealing with unbounded scenes. The following
section presents another approach based on point based models.

2.2.4 Representation of a scene using Gaussians
Another approach, namely 3D Gaussian Splatting (3DGS) [25], builds on
a similar principle as Point-NeRF [61] but replaces discrete points with
Gaussian primitives. In this approach each Gaussian is represented by its
position, covariance, opacity, and SH coefficients for view-independent color
description. To render a novel view, the Gaussians are first transformed
into canonical view space by applying perspective transformation and then
ordered based on distance to the image plane. Then, the Gaussians are blended
together using their opacity and color evaluated from the SH coefficients. This
technique is called splatting (cf. section 2.1.3).

For this model, the authors implemented a custom CUDA kernel which
handles the creation of a new image based on the Gaussians. Part of this
implementation is also a complex backward kernel, which propagates the
derivatives from the loss function back to the input parameters.

The initialization of the Gaussians can start with point clouds generated
through structure-from-motion techniques, such as COLMAP [52]. Initial
values can also be chosen completely at random. To optimize the scene
representation, the model jointly refines the attributes of each Gaussian—
including position, covariance (stored as separate rotation and scale matrices),
spherical harmonics, and translucency, which fulfills a similar role as density.
To improve coverage of underrepresented regions of the scene, a densification
process handles cloning, pruning, and splitting of Gaussians.

This approach achieves remarkable quality for indoor and unbounded
outdoor scenes, outperforming state-of-the-art methods like Mip-NeRF360,
Instant-NGP, and Plenoxels at the time. Training times are relatively short,
around 40 minutes for their high-quality model, while rendering far over 100
frames per second (FPS)—all without the reliance on neural networks.

Novel View Synthesis | 19

2.3 Dynamic scenes
As seen in the previous chapter, various methods have been developed to
render novel views of static scenes, with the fastest approaches using tiny
neural networks, if any at all. However, extending these methods to dynamic
scenes is not trivial, as incorporating the time dimension introduces additional
complexity. This is especially true when using monocular video, where only
a single source image is available at each time step. Each image in such a
video features only small changes over time in perspective. Some methods
address this by transforming a static scene representation into a dynamic one
(or vice versa) [20, 28, 46], while others optimize a compressed discrete 4D
space-time continuum and interpolate novel views from the compressed data
[9, 15].

On the whole, training a model for dynamic scenes is inherently ill-posed
and requires strong assumptions realized through various loss functions to
achieve a good representation, especially for monocular video. Additionally,
the inclusion of time as a dimension increases the storage demands for
the trained models—sometimes substantially. For instance, storing a
dynamic scene representation as a dense 4D voxel grid requires significantly
more storage than a 3D voxel grid for a static scene, with the additional
storage demand depending on the duration and number of frames. This
becomes impractical for long duration and large scenes, due to the curse of
dimensionality.

Most models for dynamic scenes also inherit their abilities from similar
approaches for static scenes, only augmented with specialized mechanisms to
account for temporal dependencies. This allows these models to build upon
and to benefit from the optimizations made in static scene modeling.

2.3.1 Expanding Implicit Models to Dynamic Scenes
Early efforts to extend NeRF to dynamic scenes focused on adding time as an
additional input to the MLP, which regresses color and density from position
and viewing direction. This straightforward approach, referred to as T-NeRF
[46], serves as a baseline for many subsequent models.

D-NeRF [46] improves on this baseline by dividing the task into two
distinct stages. The first stage employs a deformation network that maps scene
deformations to a canonical configuration. The second stage is a canonical
NeRF model that regresses position and viewing direction to color and density
to be used in volumetric rendering eq. (2.3). This decomposition enhances

20 | Novel View Synthesis

performance compared to T-NeRF for monocular video.
A related approach to D-NeRF is presented in NSFF [28] which adds

additional outputs to the first stage for forward and backward scene flow as
well as disocclusion weights. These outputs are used for the computation of
additional losses that enforce scene flow to be consistent between adjacent
time frames and help the model learn the various weights in an unsupervised
way, like the disocclusion and blending weights used for blending the output
from both a static and a dynamic model. NSFF was in general one of the first
to render novel views for monocular dynamic scenes, but struggles with longer
scenes or scenes with significant motion, while achieving similar training and
rendering times to NeRF.

Similarly, in Nerfies [44], a deformation network that maps points from a
dynamic scene to a static scene using latent encodings has been introduced.
Here, instead of using time as an input, a latent vector modulates the output to
handle appearance variations between frames. After transforming a point to
static coordinates, a conventional NeRF model is used to render a novel view.

Despite being proposed largely to combine multiple casually captured
photos from mobile phones (”selfies”) into a single 3D representation, Nerfies
is able to interpolate and synthesize novel views for dynamic scenes. By
linearly combining latents, Nerfies can interpolate motion between two input
images. It struggles, however, when faced with topological changes, such
as opening mouths. Another downside is that the model requires extensive
training, that is training time reaching up to a week on multiple NVIDIA V100
GPUs when training for Full HD images.

To address the limitation of changes in topology, HyperNeRF [43], a
follow-up model to Nerfies, splits the deformation network into two separate
MLPs. One is used to generate warped coordinates as before. The other is a
slicing network that yields an additional coordinate, effectively elevating the
canonical representation into a higher-dimensional space. A modified NeRF
model then takes both coordinates and viewing direction as an input to regress
c and σ, which in conjunction with volumetric rendering, is used to produce
novel views. This representation enables HyperNeRF to capture topological
changes, while being able to interpolate between them, by changing only the
input to the slicing network. However, the reliance on a NeRF model still
results in high computational costs for training and rendering.

DyNeRF) [27] takes a different approach, discarding deformation networks
in favor of custom learnable latent encoding as temporal inputs. Here a single
MLP regresses color and density from position, viewing direction, and these
temporal latents. While the model performs well for moderately dynamic

Novel View Synthesis | 21

scenes, it struggles with rapid or large-scale motions and requires multiple
static cameras for training. However, its hierarchical training strategy, which
focuses on keyframes and ray importance sampling, encouraging training on
pixels with high color variance, significantly accelerates convergence. Due
to this, training times are reduced by a factor of 10 compared to previously
published NeRF-based methods, but it still requires thousands of GPU-hours.

Despite the qualitative improvements achieved by these models, their
training and inference times remain high due to the reliance on slow, large
MLP. Rendering still requires evaluating millions of rays at multiple points,
compounding the computational burden, similar to their static counterparts.
One way to increase speed is to replace the MLP with more efficient
mechanisms, leading to hybrid models that combine an MLP with an
underlying explicit representation, like a voxel grid.

2.3.2 Explicit and Hybrid Approaches to Dynamic
Scenes

All the methods introduced in the last chapter, as well as many others, achieve
qualitatively decent results for NVS for dynamic scenes. However, their
dependence on NeRF results in long training and rendering times, due to the
high number of evaluations of the MLP to produce the color of a single pixel.
When optimizing on multiple high-resolution images, the process can take
days to train a NeRF model on a single scene. To address this bottleneck a
different architecture needs to be employed. One promising direction includes
hybrid methods applied to dynamic scenes, which in turn are inspired by
methods for static scenes.

While explicit methods could store density and color, usually in the
form of view-independent SH coefficients directly in a 4D voxel grid, the
size requirements quickly exceed the storage capacity of modern computing
machines when stored in the necessary resolution. Hybrid methods offer a
tradeoff, storing only intermediate features in a lower resolution voxel grid,
which are then decoded and refined using small MLPs.

In TiNeuVox [14], the authors propose a fast and efficient extension of
NeRF that combines a 3D voxel grid with multiple small MLPs. Their
approach begins with a deformation network that maps point coordinates and
embedded time representations to time-dependent positions, thus eliminating
the need to store features in the voxel grid across the time dimension.

22 | Novel View Synthesis

These deformed coordinates query voxel features at various resolutions using
trilinear interpolation. The resulting features are then combined with the
time embedding and the undeformed coordinates and form the input to a
radiance network—a small MLP that predicts color and density to be used
with volumetric rendering (eq. (2.3)).

A key advantage of this method is the compactness of the MLPs, typically
comprising only two to four layers, enabling much faster training speeds while
achieving comparable quality to prior methods. At the time of the publication
of this model, it delivered state-of-the-art performance for NVS for dynamic
scenes. However, it also struggles with scenes involving long-range motions
or reflections, where reconstruction quality degrades.

To address the scaling issues of high-dimensional voxel grids, K-Planes
[15] introduces a factorized representation that breaks down 3D, 3.5D, 4D, or
even higher-dimensional spaces into collections of 2D planes. Specifically
for dynamic scenes, six 2D planes are used: three for spatial information
and three for spatiotemporal variations. Each plane stores features that
are interpolated using bilinear sampling based on the relevant coordinates.
Features from planes that do not share a dimension are combined using the
Hadamard product to increase spatial smoothness and coherence, which are
then concatenated from all three plane pairs. These features are then processed
using either a learned color basis or a small MLP to predict c and σ for
volumetric rendering (eq. (2.3)).

The authors employ several optimizations, such as a total variation loss that
enforces smoothness and sparsity of gradients in a plane. Furthermore, they
use a sampling strategy to reduce the number of points needed for volumetric
rendering. While K-Planes is neither the fastest nor does it belong to the
highest quality methods, it achieves competitive performance. Moreover,
relatively low training times for dynamic scenes are required, demonstrating
the power of its simple yet efficient design.

A concurrent approach, HexPlane [9], similarly factorizes 4D spaces into
planes but also uses a learned basis vector when combining features from
planes that do not share a dimension. This approach maintains simplicity
while achieving results on par with state-of-the-art methods—all with reduced
training times. Both K-Planes and HexPlane highlight efficient and memory-
conscious ways of handling high-dimensional data not limited to NVS.

An alternative approach to dynamic scenes is to use points to represent
a dynamic scene, as described in Point-NeRF [61] for static scenes. Point-
DynRF [42] extends this model to dynamic scenes with a monocular video

Novel View Synthesis | 23

source. Point-DynRF encodes features using points, each defined by a
position, time step, feature vector, and a rigidity value, indicating whether
the point is part of the static background or dynamic foreground. To render a
novel view, a subset of points comprising either the background or matching
the current time step has to be selected, then volumetric rendering eq. (2.3)
is to be applied. Similarly to in Point-NeRF, a k-nearest-neighbor search is
employed on the time-dependent subset of points, which are then combined
using MLPs and distance-based weights to predict color and density for that
point.

Point-DynRF demonstrates robust results. It especially avoids the
production of artifacts in distant spatio-temporal regions, which is a problem in
wide-range camera trajectories. Despite optimizations to reduce ray-marching
through empty space, rendering times remain high due to the computational
overhead of the k-nearest neighbor searches for each point, resulting in high
rendering and therefore also in high training times.

Another different approach that does not use an explicit representation is
DynIBaR [30]. This model adopts an image-based rendering framework rather
than voxel grids to store intermediate features. Due to the learned parameters
stored in various components, DynIBaR can still be classified as a Hybrid
model, utilizing explicit features recovered from the input images with implicit
features stored in a motion basis and MLPs in the model.

DynIBaR utilizes information from multiple source images in a neighbor-
hood from the desired time step. To correct for motion, they also utilize a
motion trajectory field, using a learned motion basis and coefficients. Motion-
corrected details from the source images are then aggregated into a single
feature vector for each ray point. An MLP then transforms these features into
density and color, enabling volumetric rendering eq. (2.3) to generate novel
views.

This model features a static and dynamic component, capturing back-
ground and moving objects separately, while a learned mask combines the
output of both components. To prevent overfitting on single input images,
DynIBaR uses multiple losses, most importantly a loss term that uses cross-
time rendering, which renders images based on temporally adjacent frames
transformed by the motion trajectory field. Despite requiring days of training
on high-end hardware, i.e., eight NVIDIA A100 GPUs, to train reconstruction
for a 10-second scene, DynIBaR achieves unparalleled quality, especially for
long videos with complex motion, setting a new benchmark for dynamic scene
synthesis.

24 | Novel View Synthesis

2.3.3 Hash-table based approach
An alternative representation for NVS on dynamic scenes builds upon
hash-table-based encoding methods inspired by Instant-NGP [39]. While
straightforward extensions to a 4D hash encoding might seem intuitive, this
approach either suffers from a high number of hash collisions, not manageable
by the optimization, or requires an unfeasibly large model size due to storing
data of the added temporal dimension. To address these challenges, MSTH
[57] introduces two separate hash tables, one time-variant 4D hash encoding
for the dynamic parts of the scene and one time-invariant 3D hash encoding
for the static part. A learnable mask indicates whether a position is part of the
static or dynamic part of the scene and is guided by an uncertainty voxel field.

One advantage of the model is the rendering speed. For example, for
rendering videos from a static viewpoint, the static parts of the model need
to be computed only once and can then be reused, accelerating rendering.
This approach produces high-quality novel views while maintaining a compact
model size while only needing 20 minutes of training time per scene. However,
the method has limitations. It struggles to reconstruct novel views from
monocular video sources due to the absence of auxiliary losses to help train
it. This results in artifacts when objects are not fully visible or lack sufficient
viewpoint diversity in the input data.

2.3.4 Gaussian Splatting and Point Based Methods
for Dynamic Scenes

Building on the success of 3DGS [25], various methods have been proposed
to adapt this approach to dynamic scenes.

In Dynamic 3D Gaussians [35], the authors extended the position and
rotation attributes of the Gaussians to be time-dependent while keeping the
other attributes, such as scale, color, and an opacity and background logit,
time-invariant. To render an image at a specific time, the model chooses
position and rotation according to the input time and proceeds with rendering
as in the 3D Gaussian Splatting model, allowing for very fast rendering
speeds. To counteract the ill-posed problem of dynamic scene reconstruction,
the authors introduce several loss functions. A rigidity loss enforces local
rigidity, i.e., neighboring Gaussians maintain the same rotation and position
relative to each other at each time step, stopping Gaussians from freely moving
through the scene. Another loss, namely a rotational loss, explicitly enforces
neighboring Gaussians to have the same relative rotations at every time step,

Novel View Synthesis | 25

whereas a long-term isotropy loss maintains consistent distances between
nearby Gaussians. The model itself is optimized sequentially, starting with
an initialization based solely on the first frame, while only the time-dependent
attributes are optimized frame by frame successively.

Although this method achieves impressive speed and quality, it has
limitations. As the Gaussians are initialized using only the first frame, this
model completely fails to capture objects that are not visible in the first frame.
Additionally, the method requires a multi-camera setup and cannot work with
monocular video.

Another approach, 4D Gaussian Splatting (4DGS) [59], opts to transform
position, rotation, and scale through small time-dependent MLPs. The inputs
for these deformation networks are stored in six multi-resolution 2D planes,
similar to HexPlane [9] and K-Planes [15]. To address challenges posed
by monocular video sparsity, the authors incorporate a total variational loss
to smooth features across these planes in addition to standard L1 color
loss. Although the model achieves slightly lower quality than state-of-the-
art models like DynIBaR and slightly lower speed than 3D-Gaussian splatting
[25] and Dynamic 3D Gaussians [35], it still offers real-time rendering speed
at over 30 FPS and short training times of under an hour per scene while still
providing good quality without the limitations of Dynamic 3D Gaussians.

A more recent work, namely Deformable 3D Gaussians [62], employs a
larger MLP as a deformation network. This network estimates the temporal
changes in position, rotation, and scale of the Gaussians. Once the Gaussians
are transformed, the rendering process is identical to 3DGS. While this
model achieves quality comparable to other methods, it struggles with short
monocular sequences. The use of a large MLP also slows rendering and
training speed compared to approaches with smaller neural networks like
4DGS.

26 | Novel View Synthesis

2.4 Summary
This section provided a brief history and background of the various methods
for novel view synthesis. Some approaches rely on neural networks to model
an implicit function of a scene; others leverage diverse data structures or even
leverage the input data directly.

The most complex task—rendering novel views from monocular video of
a dynamic scene—requires sophisticated solutions. These range from high-
quality but computationally expensive models, that is to say DynIBaR [30],
to faster approaches that extend techniques for static scenes [57, 59] or use
efficient lower-dimensional scene representations [9, 15].

To explore the efficiency of these diverse approaches and potentially to
improve them, three models, HexPlane [9], DynIBaR [30] and 4DGS [59],
were selected in this work for further analysis in chapter 6.

These models cover a wide spectrum of approaches, with the aim of
showing best practices, uncovering inefficiencies when adapting existing
models to dynamic scenes, and exploring opportunities for optimizing
complex architectures like DynIBaR.

GPU Architecture | 27

Chapter 3

GPU Architecture

Historically, GPUs emerged as specialized hardware to alleviate the
computational cost of processing 2D and 3D computer graphics on the CPU.
Initially, GPUs only took over basic tasks, such as drawing sprites, rendering
geometric primitives, and managing the video signal output to the monitor.
They operated as coprocessors, offloading specific repetitive tasks to free up
the CPU for other computations.

Over time, GPUs became a lot more sophisticated, taking over more and
more tasks. Nowadays, they are used in a wide array of tasks and are not just
used for computer graphics anymore, instead they have become a cornerstone
of high-performance computing, excelling in workloads that benefit from their
massive parallelism. Examples include scientific simulation, deep learning,
and other applications that require large-scale parallel execution.

While CPUs were developed to be able to interact with large amounts
of different components and to handle all kinds of processing, GPUs were
mainly developed to handle mathematical operations. However, they are only
able to access local memory, so data has to be first transferred to the GPU
global memory, called video RAM (VRAM). This enabled them to focus on
optimizing those operations, especially the important multiply-add (MAD)
operation. MAD operations compute the product of two numbers b and c and
add that product to an accumulator a, which is performed in a single clock
cycle:

a←− a+ (b · c) (3.1)

The simplicity of each single core allows GPUs to scale up core counts to
massive numbers; thus, modern GPUs often have more than 10,000 processing
units. In the last few years, specialized tensor cores and even TPUs have

28 | GPU Architecture

emerged that support entire matrix MAD operations in a single clock cycle,
boosting performance even higher. Due to this specialization, however, these
specialized devices have lost their capabilities in rendering computer graphics
and are therefore often classified under the broader term accelerator units.

There are two established providers of GPUs that are used in compute
tasks, namely NVIDIA and AMD, with the former being the dominant
manufacturer. In consequence of this, this chapter generally focuses on the
terminology dedicated to NVIDIA’s general-purpose compute technology,
CUDA.

GPU Architecture | 29

3.1 Modern GPU-architecture
Today, GPUs are made up of a number of different accelerator units.
CUDA Cores are used for general computation for parallel workloads such
as rendering, physics simulations, and compute tasks. Tensor Cores are
specialized processing units for matrix multiplications, which are often
found in machine learning workloads. Ray Tracing Cores are dedicated to
ray tracing, a rendering technique that simulates the physical behavior of
light. There are other specialized processing units, such as texture mapping
units, render output units, and video encode/decode units. However, these
specialized units are mainly used in their respective tasks in the graphical
rendering pipeline and have limited uses in compute tasks and machine
learning.

3.1.1 Core Layout
CUDA Cores are generally grouped into Streaming Multiprocessors (SMs).
Here, each SM has its own fast and dedicated memory, called L1 cache,
while the GPU core has a much larger L2 cache, accessible to all SMs. The
physically separate VRAM is connected to the GPU cores through the L2
cache and is much slower, taking multiple clock cycles to transfer data from
VRAM into the L2 cache. However, its large capacity can store vast quantities
of data.

Each SM thereby shares resources such as registers, L1 cache, as well as
Tensor Cores. Each of those SMs has 128 simple CUDA Cores, which execute
threads in blocks of 32, being called a warp. All cores in a warp execute
the same instruction simultaneously, a paradigm known as Single Instruction,
Multiple Threads (SIMT).

In general, warps are designed to switch execution to a different block
without latency when execution stalls, for example, when waiting for data to
be loaded from global memory (VRAM). As each thread in a warp executes
the same instruction, special care has to be taken when they diverge, i.e., they
need to execute different instructions in a warp due to, for example, a branch
instruction. The warp scheduler then disables all diverging threads in a warp,
which are then executed in a second pass on the diverging execution path. This
means processing speed is the highest when there are no divergences within a
warp, as otherwise parallel processing capabilities are reduced.

30 | GPU Architecture

3.1.2 Tensor Cores
With the introduction of the Volta architecture by NVIDIA, they added a new
type of core to their GPUs, Tensor Cores. These cores can multiply two full 4×
4 matrices together and add them to a third 4×4 matrix in a single clock cycle.
This increases the throughput of these GPUs massively. Over the last few
years, NVIDIA has improved their Tensor Cores, now on the 4th generation,
adding support for many different data types and increasing performance even
further.

3.1.3 Memory Layout
The memory hierarchy of a modern GPU consists of several levels, with each
level consisting of different capacities and latencies, similar to that of a CPU.
In the following list, the different memory levels are defined, sorted from
generally the fastest accessible memory to the slowest, with cache sizes for
an NVIDIA RTX 4090 shown in brackets [11]:

• Registers (256 KB per SM, maximum of 256 registers of 4 bytes each
per thread): The registers are the fastest memory level. They are private
to each thread and are used for temporary values, similar to registers
in a CPU. As the registers are shared for all threads scheduled on an
SM, executing many threads with heavy usage of registers means fewer
threads can be scheduled, which reduces occupancy.

• L1 Cache (128 KB per SM): A slightly slower memory level can be
seen in the form of an L1 level cache, which caches data recently read
or written to. It also serves as an overflow region when the amount of
active data exceeds the available registers, called a register spill. Each
core also has its own L1 cache.

• Shared Memory: Shared memory, generally, resides in L1 cache. The
difference to L1 cache is that it can be read by all threads in a single
thread block. For that, data needs to be explicitly declared as shared to
make use of this feature. This enables threads to work together on the
same data.

• Constant Cache: These are specialized caches that can only be read
during execution but can be read by any thread in a thread block.

• L2 Cache (72 MB): A slower cache that is shared by all SMs. It retains
recent read and write operations between SMs and VRAM in order to

GPU Architecture | 31

speed up subsequent reloads. Its size is significantly larger than L1
cache. However, due to its shared nature, each SM is only assigned a
fraction of it when the GPU is fully utilized. L2 cache is also used when
using multiple GPUs together with NV-Link to quickly synchronize
and share data between distinct GPUs or when transferring data from
random-access memory (RAM) to the GPU.

• Global Memory (VRAM, 24 GB): Global memory is the bulk of the
memory of a GPU, similar to RAM for a CPU.

• Local Memory: This refers to the specific part of global memory
reserved for each SM.

• Texture and Constant Memory: Specific regions of global memory that
can be filled with data marked as texture or constant data. These are then
cached in a constant cache or in the shared memory and can be read by
any thread in a thread block.

Data stored in memory itself is organized in memory lines, with each
read operation reading 128 bytes of data from a single memory line in L1
cache. This is exactly the size needed to supply a full warp with a single 32-
bit datatype at once.

Ideally, a program has all the necessary data in the registers. If that is not
possible, data overspills into the slower L1 cache, then into the L2 cache, and
finally into global memory. The by far slowest operation involving memory is
the transfer between main memory (RAM) and global memory (VRAM). For
that, the data is transferred through the L2 cache, from where it can be copied
into the faster memory levels when used or transferred to global memory if it
does not fit into the L2 cache.

3.1.4 Execution and Best Practices
When writing a kernel, i.e., code that is executed on the GPU, one has to take
into concern the core layout and the memory management, as bad practices
can degrade performance massively.

A CUDA kernel is launched using two predefined parameters, the first
defining how many thread blocks are to be launched and the other defining
the size of each thread block. A single thread block is executed on a single
SM and can consist of up to 1024 threads. These are then executed in groups
of 32, called warps.

32 | GPU Architecture

This already shows the first important detail, namely that the number of
threads per thread block should be divisible by 32 to fully saturate all warps.
Multiple thread blocks are then distributed over the SMs, utilizing the GPU
while being able to flexibly run on various models.

The second important detail is control flow divergence. When some
threads in a warp take a different execution path than others, both execution
paths have to be taken by all threads. In this case, only the relevant threads are
active for their respective execution paths. This leads to degraded performance
when control divergences happen, as the same code has to be executed multiple
times. Ideally, all threads in a warp should follow the same execution path,
which would not incur any additional computational cost.

A different important aspect is coalesced memory access. Here, data is
loaded in memory lines with a size of 128 consecutive bytes for L1 cache and
32 consecutive bytes for L2 cache, being called sectors. To fully utilize this
parallel loading of data, the developer should structure their data in such a
way that as few loads as possible supply all 32 threads in a warp with good
data, i.e., the data is accessed in a coalesced way and memory transfers are
fully used. This becomes especially apparent when data is stored in slower
memory, such as L2 cache or global memory, as each line read incurs a large
amount of waiting cycles. If no other warp is ready for execution, the GPU is
effectively idle during that time.

Another effect occurs when the GPU is underutilized due to not executing
enough threads in parallel. This can either happen when there are not
enough thread blocks to fully saturate all SMs or when an individual SM
is not saturated with enough warps, i.e., the thread blocks do not contain
enough threads. In this case, parts of the GPU are idle, which also hinders
performance. Similarly, when executing a function on the GPU, the number
of thread blocks should be several times larger than the number of available
SMs. Each SM is equipped to handle multiple thread blocks at the same time,
which can be advantageous if a thread block has to wait for results from other
thread blocks or are stalled while loading memory from global memory. A
sufficiently large number of thread blocks thus ensures good utilization of the
GPU.

A related aspect is the tail effect, where at the end of a function execution,
only a few active thread blocks remain. These can then no longer saturate
the GPU, reducing efficiency. However, there is no limit to the number of
kernels being launched simultaneously. Multiple kernels could be launched
on different data, which can then be used to fully saturate the GPU. Due to this
modular structure, one should consider whether their program fully utilizes

GPU Architecture | 33

the largest GPU available to them, as varying models have different amounts
of cores and SMs. The hardware then handles code execution on the GPU
automatically.

A useful metric that measures the utilization of a GPU is the occupancy
defined by the ratio of active warps per SM to the maximum number of
warps per SM. A low occupancy indicates poor utilization of the GPU, while
an extremely high occupancy could lead to resource contention, which also
reduces efficiency.

34 | GPU Architecture

3.2 Interfacing with a GPU
The code that is to be run on the GPU has to be compiled using a special C++
compiler provided by NVIDIA, nvcc. nvcc generates, similar to other C++
compilers, executable code but can handle precisely defined functions named
kernels as code to be run on the GPU. These kernels are then launched using
a user-defined number of threads per block and thread blocks.

Typically, and first of all, one has to declare and transfer data to the GPU.
Then one has to call a function that utilizes this data. Finally, one has to transfer
the data back to the main memory (RAM) so that evaluation can happen and
the results can be displayed or saved to disk.

There are also low-level application programming interfaces (APIs) that
provide support and optimized implementations for various basic functions,
especially for linear algebra. Some examples, among others, are cuBLAS,
cuFFT, cuSPARSE, cuRAND, Thrust, and NPP.

Using these, it is also possible to build specific Python modules that call
C++ code which executes a kernel on the GPU. However, this requires that the
data is present on the GPU.

Most developers, however, use even higher-level APIs, such as TensorFlow
[36] or PyTorch [1], where data transfers and function calls are handled by
the API and efficiently dispatched to the available GPUs or accelerator units.
However, this also abstracts the contact with the GPU away, therefore tempting
one to ignore best practices discussed above, despite these APIs being able to
optimize utilization of the GPU.

Today, most machine learning models are developed using PyTorch,
although some include their own kernels to efficiently implement a desired
function tailored specifically to their problem.

Methods | 35

Chapter 4

Methods

Analyzing code is not a trivial task, as there are many aspects that determine
whether code is good or bad. Especially given that there are different targets
code can be optimized for, from memory-efficient design minimizing memory
footprint to code that focuses on execution speed, running as quickly as
possible.

In this section, various methods of code analysis will be introduced,
ranging from using simple tools, like simply measuring the time different tasks
take, up to more sophisticated tools graphically visualizing which functions a
program is executing on what kind of computing devices.

There are some limitations to code analysis, as not all qualities of good
code can be easily seen. One such example would be the memory layout
or kernel launch parameters, which are heavily specific to the device it is
optimized for. These are difficult to analyze, but can have a major influence
on the execution speed. For these things, testing different configurations is
necessary.

36 | Methods

4.1 Benchmarking Python Code
Today, most machine learning models are implemented in Python. They
often use a machine learning framework such as PyTorch [1] to implement
the algorithms. Even though Python is an interpreted language in its native
form, which is quite slow compared to compiled languages like C++, many
frameworks like PyTorch and NumPy call compiled C++ code from Python in
order to efficiently run mathematical operations. PyTorch specifically uses the
CUDA stream mechanism to execute CUDA kernels parallel to the execution
of code on the CPU. This ensures that the GPU is fully utilized, even with a
slow interpreted programming language like Python [45].

There are various tools to time the runtime of sections of code. One module
in Python, cProfile, is written in C++ and offers a lightweight profiler
without much overhead. It works well for code run exclusively on the CPU,
but falls short when analyzing code that also runs on accelerator devices. For
this one should use the profiler offered by PyTorch to analyze one’s code. In
this way, the code executed on the GPU can be analyzed as well, which helps
to show inefficiencies clearly.

The NVIDIA Nsight software suite also provides a plethora of tools for
benchmarking, debugging, and developing efficient code. But these tools are
better suited to analyze individual kernels instead of entire machine learning
models.

Another large area—besides timing the duration of code, which is
equally important—is the management of memory, specifically the amount
of necessary and unnecessary memory transfers.

By using only the minimum amount of transfers and developing a machine
learning model in such a way that data is optimized to stay in the fast caches
instead of needing to be reloaded often from slow global memory, the speed
can be drastically increased. The limiting factor nowadays is often memory
speed instead of computational power. This is due to the very high amount of
cores available in modern accelerator devices, which all need to be supplied
with data, sharing the available memory bandwidth. The actual available
bandwidth to each core is therefore quite small.

4.1.1 Using cProfile
The simplest way to benchmark Python code is to use an efficient and native
profiler like cProfile. Its usage is simple by just including the module
cProfile. Afterward, a cProfile.Profile object can be enabled and

Methods | 37

import c P r o f i l e , p s t a t s

def i s _ p r i m e (pr ime) :
i f pr ime <= 1 :

re turn F a l s e
f o r i in range (2 , i n t (pr ime ∗ ∗ 0 . 5) + 1) :

i f pr ime % i == 0 :
re turn F a l s e

re turn True

def sum_primes (n) :
sum = 0
f o r i in range (2 , n + 1) :

i f i s _ p r i m e (i) :
sum += i

re turn sum

p r o f i l e r = c P r o f i l e . P r o f i l e ()
p r o f i l e r . e n a b l e ()
n = 10000
pr in t (f ”Sum␣ of ␣ f i r s t ␣{n}␣ p r imes ␣ i s ␣{ sum_primes (n) } . ”)
p r o f i l e r . d i s a b l e ()
s t a t s = p s t a t s . S t a t s (p r o f i l e r)
s t a t s . s o r t _ s t a t s (' c u m u l a t i v e ') . p r i n t _ s t a t s (1 0)

Listing 4.1: A simple Python script that calculates the sum of the first 10000
primes by checking each number if they are prime. The code is profiled using
cProfile and the output can be seen in fig. 4.1.

disabled for varying regions of code. Then, the data can be processed further
or printed using a helper module like pstats. An example considering this
can be in listing 4.1. This script calculates the sum of the first 10000 primes
and is immediately benchmarked there using cProfile.

The output of this code can be seen in fig. 4.1, which lists the following
information described below.

1. Number of calls (ncalls): The number of times this function was called.

2. Total time (tottime): The total amount of time spent inside this function.

3. Time per call (percall): The average amount of time spent inside this
function per single call.

4. Cumulative time (cumtime): The cumulative time spent inside the
function plus all functions that this function called.

38 | Methods

Sum of first 10000 primes is 5736396.
10002 function calls in 0.046 seconds

Ordered by: cumulative time
ncalls tottime percall cumtime filename:lineno(function)

1 0.005 0.005 0.046 main.py:11(sum_primes)
9999 0.041 0.000 0.041 main.py:3(is_prime)

1 0.000 0.000 0.000 {built-in method builtin
s.print}

Figure 4.1: Output of the code seen in listing 4.1. Here, the time spent in the
two functions can be seen.

5. Filename, line number, and function name (filename:lineno(function)):
The filename, line number, and name of the function.

In this example, the three functions called can be seen. The first is the print
function, which is a built-in method. This one takes an insignificant amount
of time.

The next one is the function is_prime, which is called 9999 times. Each
individual call only takes a small amount of time. However, due to the high
number of calls, it adds up to the majority of the time the program takes.

Last but not least, the function sum_primes is called exactly once, and it
takes around 5ms. This function is the one that calls is_prime 9999 times.
For this reason, its cumulative time is very high, making up almost the total
runtime of the program.

By using this information, one could focus on improving the method
is_prime, as that function is called many times, and therefore efficiency
gains are very useful. But also the method sum_primes could be targeted for
optimization. And despite being called only once, it still makes up a significant
portion of the total computation time.

Methods | 39

4.2 Benchmarking and Analyzing Code with
CUDA-kernels

Profiling the memory and compute usage of code run on a single CPU core
is usually straightforward. However, in machine learning, often code is run in
parallel on accelerator devices, such as GPUs. When using those, profiling
is often quite difficult, as timing is not always reported accurately on the
CPU side. This is due to non-blocking function calls that just queue up a
kernel and return immediately, without the kernel having fully run at that
point. A solution could be the usage of synchronization after queuing a
kernel. However, that could also impact performance negatively regarding
total runtime, as the CPU would be idle whenever a kernel is being run.

The profiler provided by PyTorch does also have the capability to collect
information about runtime on the GPU. So using that instead of cProfile is
often simpler when facing complex models implemented in PyTorch. One
could also use NVIDIA’s Nsight tools. However, PyTorch launches a kernel
for basically every operation on a tensor that is stored on the GPU, which the
NVIDIA tools were not built to handle. Instead, they are made for analyzing
a small amount of kernels, which is important when writing more complex
custom kernels.

4.2.1 The PyTorch profiler
The PyTorch profiler behaves similarly to the cProfile profiler, but it can
also natively measure the time spent in kernel execution and the amount of
memory transfers between CPU memory and GPU memory, as well as being
able to record traces (see section 4.4). Using the profiler, one can quickly
establish an understanding of the bottlenecks and identify the slowest parts of
the implementation to either improve them or to make architectural changes
by replacing them.

To demonstrate the functions of the PyTorch profiler, the script
seen in listing 4.2 implements a simple neural network model in Py-
Torch. It features a convolutional layer, as well as multiple fully
connected layers, besides some reshaping and activation functions. The
profiler profiles the activity on the CPU, indicated by the parameter
activities=[ProfilerActivity.CPU]. Additionally, a warm-up
phase is needed, as otherwise, the CPU and GPU are not prepared. During
the warm-up phase, code is usually executed in a much slower way than after a
few loops, as the branch predictors inside the CPU and GPU are not optimized

40 | Methods

import t o r c h
import t o r c h . nn as nn
import t o r c h . nn . f u n c t i o n a l a s F
from t o r c h . p r o f i l e r import p r o f i l e , r e c o r d _ f u n c t i o n
from t o r c h . p r o f i l e r import P r o f i l e r A c t i v i t y

c l a s s Simple (nn . Module) :
def _ _ i n i t _ _ (s e l f , i n p u t _ s i z e , h i d d en_ s i z e , o u t p u t _ s i z e) :

super (Simple , s e l f) . _ _ i n i t _ _ ()
s e l f . conv1 = nn . Conv1d (1 , 5 , 5)
s e l f . f c1 = nn . L i n e a r ((i n p u t _ s i z e −4)∗5 , h i d d e n _ s i z e)
s e l f . f c2 = nn . L i n e a r (h i d d en_ s i z e , h i d d e n _ s i z e)
s e l f . f c3 = nn . L i n e a r (h i d d en_ s i z e , o u t p u t _ s i z e)

def f o rwa rd (s e l f , x) :
x = x . unsqueeze (1)
x = F . r e l u (s e l f . conv1 (x))
x = x . f l a t t e n (s t a r t _ d i m =1)
x = F . r e l u (s e l f . f c1 (x))
x = F . r e l u (s e l f . f c2 (x))
re turn F . so f tmax (s e l f . f c3 (x) , dim =1)

i n _ s i z e = 100
h i dd en_channe l = 5
h i d d e n _ s i z e = 1000
o u t _ s i z e = 20
model = Simple (i n _ s i z e , h i dden_channe l , h i d d en_ s i z e , o u t _ s i z e)
i n p u t s = t o r c h . r and ([5 0 , 1 0 0])

w i th p r o f i l e (a c t i v i t i e s =[P r o f i l e r A c t i v i t y .CPU]) as p r o f :
w i th r e c o r d _ f u n c t i o n (” m o d e l _ i n f e r e n c e ”) :

model (i n p u t s)
t o r c h . cuda . s y n c h r o n i z e ()

P r i n t r e s u l t s o rde red by t o t a l CPU t ime
pr in t (p r o f . k ey_ave r ag e s () . t a b l e (s o r t _ b y =” c p u _ t i m e _ t o t a l ”))

Listing 4.2: A simple neural network model implemented in PyTorch demon-
strating the PyTorch profiler capabilities.

Methods | 41

Name Self CPU Self CPU CPU total CPU total

model_inference 8.77 % 475.000 µs 99.22 % 5.375 ms
aten::conv1d 0.31 % 17.000 µs 61.38 % 3.325 ms
aten::convolution 1.38 % 75.000 µs 61.07 % 3.308 ms
aten::_convolution 0.57 % 31.000 µs 59.68 % 3.233 ms
aten::mkldnn_convolution 58.69 % 3.179 ms 58.89 % 3.190 ms
aten::linear 0.35 % 19.000 µs 23.04 % 1.248 ms
aten::addmm 20.45 % 1.108 ms 21.99 % 1.191 ms
aten::relu 0.68 % 37.000 µs 3.66 % 198.000 µs
aten::clamp_min 2.97 % 161.000 µs 2.97 % 161.000 µs
aten::copy_ 1.31 % 71.000 µs 1.31 % 71.000 µs
aten::unsqueeze 0.72 % 39.000 µs 0.96 % 52.000 µs
aten::softmax 0.17 % 9.000 µs 0.87 % 47.000 µs
aten::zeros 0.59 % 32.000 µs 0.78 % 42.000 µs
aten::t 0.42 % 23.000 µs 0.70 % 38.000 µs
aten::_softmax 0.70 % 38.000 µs 0.70 % 38.000 µs
aten::flatten 0.30 % 16.000 µs 0.63 % 34.000 µs
aten::as_strided 0.41 % 22.000 µs 0.41 % 22.000 µs
aten::_reshape_alias 0.33 % 18.000 µs 0.33 % 18.000 µs
aten::empty 0.31 % 17.000 µs 0.31 % 17.000 µs
aten::transpose 0.17 % 9.000 µs 0.28 % 15.000 µs
aten::expand 0.13 % 7.000 µs 0.17 % 9.000 µs
aten::squeeze 0.07 % 4.000µs 0.09 % 5.000 µs
aten::zero_ 0.07 % 4.000µs 0.07 % 4.000 µs
aten::as_strided_ 0.06 % 3.000 µs 0.06 % 3.000 µs
aten::resolve_conj 0.06 % 3.000 µs 0.06 % 3.000 µs

Table 4.1: Performance metrics of the model in listing 4.2 using the PyTorch
profiler, ”CPU time avg %” and ”# of Calls” omitted. The function calls
in yellow in the forward function of the model defined in listing 4.2 are
highlighted in yellow.

for the code yet. In the code shown in listing 4.2, the profiler executes the code
for wait=1 loops but is inactive. Then, warmup=2 loops follow, where the
profiler is active but discards the recorded data. Finally, active=1 loops are
run, where the profiler records and saves performance metrics.

Running this short Python script produces the output seen in table 4.1. It
details the time spent in each function, similarly to how cProfile did in the
previous chapter. The yellow lines highlight the different layers and top level
functions used in the model.

It is clear that the 1D convolutional layer, as well as the functions in the
implementation of PyTorch that are called indirectly, take roughly 60% of
the total time, while the dense layers take only 23% of the total time. It is
interesting to see that the forward call of the model itself takes around 8.7% of

42 | Methods

Name CPU total CPU total (%) GPU total GPU total (%)

model_inference 335.554 µs 100.00 % 124.735 µs 100.00 %
aten::linear 87.785 µs 26.16 % 107.103 µs 85.86 %
aten::conv1d 70.644 µs 21.05 % 7.648 µs 6.13 %
aten::relu 43.081 µs 12.84 % 7.424 µs 5.95 %
aten::softmax 12.584 µs 3.75 % 2.560 µs 2.05 %
aten::unsqueeze 10.670 µs 3.18 % 0.000 µs 0.00 %
aten::flatten 3.446 µs 1.03 % 0.000 µs 0.00 %

Table 4.2: Performance profiling results with CPU and GPU metrics of
the model in listing 4.2. Percentage results are normalized in a way
where ”model_inference” equals 100%. As the model does not incorporate
synchronization after every function call, the results on the CPU are distorted,
capturing only the total time in ”model_inference.” Only the highlighted
functions in table 4.1 are shown here.

the total time, despite only calling PyTorch operations on the input parameters.
That is likely due to the small model and input data size making the time spent
in this function noticeable. However, when increasing input size, then this will
become less significant.

A disadvantage of using the PyTorch profiler in this form is that the
ordering is slightly confusing, because it is not always obvious which
functions are called by others. To counteract that, multiple labels
could be introduced by wrapping the appropriate code in a with
record_function(”step_xxx”): block in the code. This helps to
group larger sections of code into a single label, of which the cumulative time
can be used for comparison as well.

To execute the same model on the GPU, the code for the model has to
be slightly changed in a way that allows the transfer of the model and input
data to the GPU prior to calling the forward function. The transfer is done
by calling the cuda() function on the model and input data tensor, which
transfers them to global memory. Additionally, the profiler also needs to record
activity on the GPU at this point. This is done by appending the array provided
to activities with ProfilerActivity.CUDA, resulting in the timings
in table 4.2 showing a much lower total runtime.

These results show that actually only four functions utilize the GPU,
namely the linear and convolutional layers as well as the activation functions.
The other two operations are merely implemented by changing the view of the
underlying data.

Methods | 43

Looking at the timings, it is also noticeable that the linear layers now
take the majority of the time, hinting at a very efficient implementation of
the convolution on the GPU.

One problem that might not be obvious at first sight is that the time spent
on the CPU in the various functions does not add up to 100%. This is likely due
to the functions simply calling a CUDA kernel, which is executed in parallel,
and then waiting for the results to be ready, which then is not recorded. As
already mentioned, this issue can be circumvented by synchronization, i.e., by
waiting for all currently queued kernels to finish execution. If this is done
in combination with custom labels from record_function after every
important operation, the reported results in the output are accurate. However,
this disables the advantages of parallel execution.

Another way that depicts the time spent in various parts of the script much
better is to use GPU traces, as described in section 4.4.

Memory and the allocation and deallocation of it are oftentimes also
important aspects of code. Especially when a loop is executed hundreds of
times when training a model, it is beneficial not to allocate and free memory
every iteration. Instead, already reserved memory should just be reused. To
measure memory usage, the PyTorch profiler has the capability to show the
amount of memory allocated and freed in each function. This can be done by
setting the parameter profile_memory=True when creating it. This can
uncover inefficiencies when parts of the code allocate and free large amounts
of memory instead of reusing already prepared memory. However, optimizing
memory management likely only leads to small performance improvements,
as PyTorch already manages and reuses memory, reducing the overhead of
repeated reserving and freeing memory.

44 | Methods

4.3 Using NVIDIA Nsight to Analyze Memory
Access Patterns

The NVIDIA Nsight suite offers a plethora of tools for benchmarking,
debugging, and developing efficient code. NVIDIA Nsight is better suited
to analyze individual kernels compared to the PyTorch profiler, which can
be used to analyze entire models written in Python. NVIDIA Nsight records
various statistics for every kernel run in the measured program, albeit at a
significant overhead for each kernel. This in turn makes it unsuitable to
analyze entire AI models written in PyTorch, but it works very well when
said models incorporate custom kernels that can be analyzed in an isolated
environment. These custom kernels are often not limited by processing power,
as modern GPUs feature thousands of individual cores. Instead, they are often
limited by memory throughput.

Even though there exists high-bandwidth memory on modern GPUs, that
bandwidth is shared by all cores, with each core only having a fraction of
the total bandwidth available. Different levels of caches somewhat attenuate
this problem. However, the faster caches have only a very limited memory
capacity. To fully utilize those caches and the available memory bandwidth,
special care has to be taken. For example, preventing frequent reloading of
data from global memory. This can be achieved by dividing datasets into
chunks of memory that fit into the L2 cache and then doing work on the
different chunks of data consecutively. This way, the needed data resides in
L2 cache and is only being fetched from global memory when working on a
new chunk of data.

When benchmarking kernels with the tools available in the NVIDIA
Nsight software suite, one important metric to measure is the cache hit rate,
i.e., the amount of data accesses that are present in cache and that do not have to
be reloaded. A low hit rate indicates inefficient memory accesses that fetches
data often from slower memory. To demonstrate this, an example is shown
in listing 4.3. It is a 2D matrix add kernel that simply adds two matrices
elementwise, as published in the NVIDIA blog [41]. It is run with 32 × 32

blocks and 32× 32 threads per block.
At first glance, there appears to be no problems within this kernel.

However, when taking the memory layout of arrays and the order in which
threadIdx is counted into account, it becomes obvious that memory access
is not coalesced.

In a warp, threadIdx.x is increased first, while threadIdx.y is

Methods | 45

c o n s t s i z e _ t s i ze_w = 1024 ;
c o n s t s i z e _ t s i z e _ h = 1024 ;
t y p e d e f un s i gned mytype ;
t y p e d e f mytype a r r _ t [s i ze_w] ;

__g l oba l __ vo id matr ix_add_2D (
c o n s t a r r _ t ∗ _ _ r e s t r i c t _ _ A,
c o n s t a r r _ t ∗ _ _ r e s t r i c t _ _ B ,
a r r _ t ∗ _ _ r e s t r i c t _ _ C ,
c o n s t s i z e _ t width , c o n s t s i z e _ t h e i g h t)

{
s i z e _ t i dx = t h r e a d I d x . x+blockDim . x ∗(s i z e _ t) b l o ck I dx . x ;
s i z e _ t i dy = t h r e a d I d x . y+blockDim . y ∗(s i z e _ t) b l o ck I dx . y ;

i f ((i dx < h e i g h t) && (idy < wid th))
C[i dx] [i dy] = A[idx] [i dy] + B[i dx] [i dy] ;

}
. . .

Listing 4.3: Simple CUDA kernel that adds two matrices together. Here, the
memory access pattern is inefficient, as each load instruction fetches an entire
memory line that only supplies a single thread. It would be better to only
increase the second index in a single warp.

constant in a warp in this launch configuration. As each warp contains 32
threads, ideally memory accessed by these 32 threads is consecutive, so that
each loaded memory line can supply multiple threads. This leads to a quick
execution of all relevant code in the warp, taking only eight loads and four
store instructions per warp, as each memory line loaded has a size of 32 bytes
when fetched from L2 cache.

However, here memory access is not coalesced, resulting in uncoalesced
memory access and therefore in inefficiencies. In this specific case, each warp
would need to two load instructions and one store instruction for each thread,
resulting in 64 loads and 32 stores per warp. This can also be seen when using
tools like NVIDIAs Nsight Compute, which show various statistics when they
are used to analyze the program. Relevant statistics in this case would be:

1. l1tex__t_requests_pipe_lsu_mem_global_op_ld.sum:
The number of memory load requests made when running the profiled
function.

2. l1tex__t_sectors_pipe_lsu_mem_global_op_ld.sum:
The actual number of sectors transferred necessary to run the profiled
function.

46 | Methods

Here, a sector describes 32 bytes of memory. Dividing the number of actual
transfers by the number of requests made shows the necessary number of
memory transfers per request. In this case, there are 65, 536 requests and
2, 097, 152 actual transfers, resulting in 32 transfers per request. This means
that in each warp, 64 sectors have to be loaded to execute all threads. This
is highly inefficient, as each sector contains 32 bytes, of which only four are
used.

Changing the access pattern in order to coalesce memory access requires
changing the way the arrays are accessed. In the kernel above, threadIdx.x
is increased first in a thread block, advancing threadIdx.y only when
threadIdx.x resets. This means that each warp has a constant
threadIdx.y, while threadIdx.x ranges from 0 to 31. Now, when
accessing the array, the first index is not constant in an array, which results
in memory access with a stride of 1024 · 4 Bytes. In this case, it would be
much more efficient if neighboring threads would access neighboring values
in the memory, making each sector supply multiple threads. Changing the
indexing would result in each warp accessing a continuous block of memory
of 32 · 4 Bytes, which is the size of exactly four sectors of L2 cache. This can
be achieved by changing the following line:

C[idx][idy] = A[idx][idy] + B[idx][idy];

to:

C[idy][idx] = A[idy][idx] + B[idy][idx];

This reduces the number of actual transfers from 2, 097, 152 to 262, 144, one-
eighth of the original value. Each sector can now supply eight threads instead
of just one.

This optimization does not just reduce the amount of necessary memory
transfers massively, but it also increases execution speed. In the NVIDIA
blog [41], they report a 68% decrease in runtime. However, on the available
NVIDIA RTX 3070Ti Laptop GPU, it only resulted in an 8% decrease in
runtime. This could be due to improvements of the compiler since publication
or better hardware due to hardware improvements, such as better thread
scheduling, faster memory transfers—or simply due to improved hardware
with larger caches.

Methods | 47

4.4 GPU Traces
Another very powerful tool is to visualize the runtime of various parts of
the code. This can be done by using GPU traces, created by either NVIDIA
Nsight or by using the PyTorch profiler by saving a trace using the function
export_chrome_trace(filename) on a PyTorch profiler object. These
are similar to the tables created by cProfile by the PyTorch profiler.
However, they are graphical and interactive, showing most individual function
calls and their duration among multiple threads and devices.

An example trace of the code in listing 4.2 after warm-up viewed in the
Chrome trace viewer (chrome://tracing) can be seen in fig. 4.2.

At the top, activities on the CPU can be seen in column ”thread 5024.” At
the bottom, activities on the GPU can be seen in column ”stream 7.” In this
case, it becomes clear that the convolution layer executes two very fast kernels
on the GPU while taking much longer on the CPU. In contrast to that, the three
linear layers each launch a more computationally intensive kernel, which takes
longer to execute on the GPU than on the CPU, making the entire process wait
slightly at the end for these kernels to finish execution. This can be seen by
the last function on the CPU, which is cudaDeviceSynchronize, which
waits for all active kernels.

More generally, this trace also shows the limitations of the model. The
first half with the convolution is limited by the CPU, while the latter half is
limited by the GPU. This means improvements in the first half would have to
target the code of the convolutional layer on the CPU, as improvements on the
GPU would not increase the speed, as the CPU is the slower part. Similarly,
the second half would have to implement a faster matrix multiply operation on
the GPU to further increase execution speed. However, from the name of the
kernel, it can already be seen that the kernel is a specific implementation from
PyTorch targeting the available GPU architecture for optimal performance.

48 | Methods

Figure
4.2:

Chrom
e

trace
forthe

code
in

listing
4.2

afterw
arm

-up.
A

tthe
top,activitieson

the
CPU

can
be

seen
in

colum
n

”thread
5024,”

and
atthe

bottom
,activitieson

the
G

PU
can

be
seen

in
colum

n
”stream

7.”

Methods | 49

4.5 System Documentation
The available hardware for this project features an AMD Ryzen 7 6800H CPU,
64 gigabyte (GB) of RAM, and an NVIDIA GeForce RTX 3070 Ti laptop GPU
featuring 8 GB of dedicated memory. All projects in this work were conducted
on a system running Manjaro Linux with kernel version 6.6.

The software environment included Python versions 3.8 and 3.11, CUDA
versions 12.4 and 12.5, and appropriate versions of PyTorch. These versions
were chosen to be compatible with the projects analyzed and to ensure
compatibility with the hardware.

Experiments were conducted within isolated virtual environments to
ensure reproducibility and avoid software conflicts.

50 | Methods

Model Selection | 51

Chapter 5

Model Selection

This chapter introduces the three selected models for an analysis. First, the
selection process is outlined. Then, the three models selected for a thorough
analysis are described in detail. For this, each model is first introduced,
followed by an explanation of their mathematical background, and finally their
implementation is presented.

52 | Model Selection

5.1 Model selection
In this thesis, various models have been presented in chapter 2. A superficial
analysis of a subset of these models has revealed that many of these models
use similar components in their respective implementations.

Almost all models utilize neural networks in the form of MLPs in their
implementation. These rely on PyTorch, which has a highly optimized
implementation for these neural networks. Therefore, short of architectural
changes, which are not covered in this thesis, there is only minimal potential
for improvement regarding these.

A different function that is utilized by many models that use 2D, 3D, or 4D
data structures is PyTorch’s torch.nn.functional.grid_sample.
This function is used to interpolate the values for a given position in such a data
structure. Methods that utilize this function are HexPlane [9] and K-Planes
[15] to bilinearly interpolate in their 2D planes. MSTH [57] and TiNeuVox
[14] also utilize grid_sample to interpolate values in their 3D and 4D
data structures. Similarly to MLPs, this function is implemented very well
in PyTorch, launching different kernels that are optimized for various GPU
architectures.

However, many of these models make heavy use of masking, indexing,
reshaping, and concatenation of tensors in their implementation. While
PyTorch offers fast solutions to these operations in the form of views, these
operations often result in non-contiguous tensors, which means that the data
of the tensor is no longer stored in a single easily accessible chunk but can
potentially be at distinct memory addresses. This becomes a problem when
kernels that expect a continuous array of data are called on these tensors, as
they have to be made continuous again prior to execution. This can lead to
inefficiencies.

Custom CUDA kernels are another interesting component to analyze.
They are utilized in InstantNGP [39] and 4DGS [59], which inherits the
rendering kernels from 3DGS [25]. Due to the already very high level of
optimization in Instant-NGP, there is very little reason for an analysis, except
to show why the model is so fast. It is much more interesting to analyze a
model like 4DGS that also utilizes custom CUDA kernels, but that is not yet
fully optimized.

Due to these reasons, three models that cover many of the mentioned
aspects above were chosen for a detailed analysis. The three models are:

• HexPlane [9], chosen for its fast model and usage in other models, such

Model Selection | 53

as 4DGS.

• DynIBaR [30], selected for its high-quality results but complex and slow
architecture.

• 4D Gaussian Splatting [59], an extension to the fast 3D Gaussian
Splatting [25], to understand how the change from static to dynamic
scenes influences efficiency and to analyze a complex custom kernel.

54 | Model Selection

5.2 HexPlane
HexPlane [9] has been published in 2023 and represents a dynamic 3D
scene by using six 2D planes instead of storing data in a 4D matrix. It
introduces a good way of storing high-dimensional sparse data factorized as
lower-dimensional data. Despite using small neural networks in the form of
MLPs, the model is relatively simple and fast, making it suitable for analysis
to demonstrate a good implementation to solve the problem of novel view
synthesis.

In this section, first the mathematical fundamentals are described, followed
by a description of the authors’ implementation. The next step is an analysis
of the code, using a profiler. Then, possible improvements are discussed,
followed by a final section summarizing the analysis on HexPlane.

5.2.1 Mathematical Background
HexPlane [9] is a hybrid model that features an explicit 4D representation
storing features of a dynamic scene and a small MLP to decode said features
into color c and density σ at any given point x. A novel view of the scene
can then be rendered using volumetric rendering eq. (2.3), as described in
section 2.1.

The explicit volume can be described as a 4D matrix V4D ∈ RN3×T×F ,
whereN is the amount of points for each spatial dimension, T is the amount of
temporal time steps, andF is the amount of features per point. Instead of using
a single matrix, HexPlane uses factorization and utilizes six 2D planes, one for
each combination of spatial dimensions MXY ,MXZ ,MY Z ∈ RN2×F and three
spatio-temporal planes MXT ,MXT ,MXT ∈ RN×T×F . This factorization
reduces memory requirements massively and allows for a higher spatial and
temporal resolution. Additionally, the model employs learned feature basis
vectors v1, v2, v3 ∈ RF .

The 4D volume D can then be recovered by combining these attributes in
the following way:

D =
R1∑
r=1

MXY
r ◦MZT

r ◦ v1
r +

R2∑
r=1

MXZ
r ◦MY T

r ◦ v2
r +

R3∑
r=1

MXT
r ◦MY Z

r ◦ v3
r

(5.1)

Here, ◦ is the outer product.
To allow a better representation, there are multiple matrices and feature

Model Selection | 55

vectors for each plane, specifically R1, R2, R3 many.
To now query a HexPlane, one could also formulate D as a function that

maps a position x = (x, y, z) and time t to a feature vector:

D :R4 −→ RF ,

D(x, y, z, t) =(PXY R1
x,y,• ⊙ PZTR1

z,t,•)VR1F+

(PXZR2
x,z,• ⊙ PY TR2

y,t,•)VR2F+ (5.2)
(PXTR3

x,t,• ⊙ PY ZR3
y,z,•)VR3F

Here, PXY R1 are all MXY
i matrices stacked to a 3D tensor, while VR1F stacks

all v1
i vectors to a 2D tensor; the other terms are defined analogously. The ⊙

operator defines an elementwise product, while the subscript x, y, • describes a
splicing operation using bilinear interpolation. For example, PXY R1

x,y,• describes
the vector interpolated from neighbors at index x and y, resulting in a vector
of dimension RR1.

In total, querying a HexPlane consists of bilinearly interpolating each plane
at the given position, resulting in a vector, which is elementwise multiplied to
the plane with orthogonal axes. These vectors are then multiplied with the
feature vector matrix and added together, resulting in the final feature vector.

This formulation allows density σ to be regressed from one HexPlane Dσ

using a small MLP Fσ, while color is regressed from another HexPlane Dc
using a different small MLP Fc with features vector and viewing direction d
as input:

σ = Fσ(Dσ(x, y, z, t)) (5.3)
c = Fc(Dc(x, y, z, t), d) (5.4)

The objective to optimize a HexPlane is stated as follows:

L =
1

|R|
∑
r∈R

||C(r)− Ĉ(r)||22 + λregLreg (5.5)

Here, Lreg describes a combination of a total variational loss, enforcing
smooth gradients in each plane, and a depth smoothness loss, enforcing
smoothness in depth. λreg is a simple scaling coefficient for the regularization
loss.

Other optimizations to speed up training are a coarse-to-fine training
scheme, which starts training with low-resolution planes, increasing their
resolution gradually over training, and a tiny, time-independent emptiness

56 | Model Selection

voxel, crafted by querying densities in its respective area and saving the
maximum to skip evaluations in empty space.

5.2.2 Implementation Details
In the provided implementation by the authors of HexPlane, they implemented
their model in PyTorch using six tensors for the six planes. Interpolation of the
plane is achieved by using the torch.nn.functional.grid_sample
function, which bilinearly interpolates values on a grid using input positions
and supports handling of entire batches in a single function call. In their model,
they make heavy use of the torch.cat and torch.stack functions,
though mostly for combining small vectors such as coordinate inputs. They
also use a binary mask to mask out invalid ray positions for training, either
through the emptiness voxel or by encountering a low-density point.

Training is handled by a dedicated Trainer class that follows a typical
scheme for machine learning consisting of the following steps:

1. Data sampling: A random batch of rays is chosen from all available rays.

2. Rendering: The colors of the selected rays are calculated using the
HexPlane model.

3. Loss: All necessary losses are calculated from the rendered rays and the
expected outcome.

4. Optimization: Backpropagation is applied using PyTorch, and the
weights of the model are updated accordingly.

5. Statistics: The current training state is calculated and feedback is given
to the user. At predetermined steps, images are rendered and recorded
to disk.

The model can be customized using a multitude of configuration options,
which can turn on certain extra features and losses, for example, using SH from
which color is regressed instead of using an MLP or activating/deactivating
certain losses.

Model Selection | 57

5.3 DynIBaR
DynIBaR [30] was published in 2023 and tackles the disability of NeRF-
based approaches to reconstruct novel views from longer videos with shaky
monocular viewpoints, producing blurry results and failing to capture motion
from faraway times. DynIBaR is a model that utilizes image-based rendering,
using the input images directly to reconstruct novel views, instead of relying
solely on a learned inherent representation.

To handle the dynamics of a scene, the authors propose a motion trajectory
field, which is used to project a ray at the requested time into multiple
neighboring frames while correcting for the motion of the ray over these
frames. This way, features from multiple source images can be combined. In a
second step, these extracted features, along with an encoded time embedding,
are fed into a complex neural ray transformer network. This network outputs
a color and a density, which are used in volumetric rendering to generate a
novel view. These two steps are jointly optimized using cross-time rendering
for temporal consistency. Additionally, DynIBaR also features a static model,
which is combined using segmentation masks using Bayesian learning. All
these features make DynIBaR a computationally intensive model that is very
demanding to train, often taking multiple days to optimize the model for a
given scene.

Despite its high training time, researchers use it as a benchmark because
of the high reconstruction quality the model offers. Its ability to use shaky, 30-
second-long, monocular videos while providing good results is unachieved by
many other methods. This makes it a state-of-the-art benchmark for NVS from
long monocular videos.

5.3.1 Mathematical Background
DynIBaR uses monocular video withN images of a given scene (I1, I2, ..., IN)
with camera parameters (P1, P2, ..., PN). To render a frame at time i, it uses
the neighboring frames N (i) in a temporal range r, such that the total source
frames are N (i) = {Ii−r, ..., Ii+r}. For each source view Ij , a convolutional
neural network extracts features Fj which are used together with the camera
parameters Pj and the image Ij to form a tuple (Ij, Pj, Fj). To now render a
ray, all tuples in the temporal radius r can be used.

To calculate the motion trajectory field, coefficients are encoded in an MLP

58 | Model Selection

GMT , which uses position x and time in the form of frame number i as input:

(ϕ1
i , ..., ϕ

L
i) = GMT (γ(x), γ(i)) (5.6)

Here, γ denotes a positional encoding. The output of GMT at time i are L

coefficients ϕl
i ∈ R3.

Separately from the coefficients, a motion trajectory basis (h1
i , ..., h

L
i) is

also learned. Both combined form the motion trajectory:

Γx,i(j) =
L∑
l=1

hl
jϕ

l
i(x) (5.7)

The displacement of a point x from time i to j can now be calculated as the
following:

∆x,i(j) = Γx,i(j)− Γx,i(i) (5.8)

Transforming a query position to a neighboring input requires only a single
evaluation of the MLP GMT in this way. Each point x of a ray at time i is then
calculated for each input image in the neighborhood N(i) at time j as xi−→j =

x + ∆x,i(j). Each warped point xi−→j is then projected to the corresponding
2D source view Ij plane using the camera parameters at that time Pj to extract
the features fj for that pixel location. The features are then combined and used
as input along with a time embedding γ(j) to the ray transformer MLP, which
infers color c and density σ to be used with volumetric rendering (eq. (2.3)) to
produce the final pixel color Ĉi for the ray.

To prevent overfitting of the model and to properly learn the motion
trajectory field, the authors use cross-time rendering, i.e., first transforming
a straight ray from time i to a motion-adjusted ray at time j, from which an
image is rendered using the above-described procedure, producing the final
color Ĉj−→i. This pixel color is then used to produce a motion-disocclusion-
aware RGB reconstruction loss:

Lpho =
∑

r

∑
j∈N (i)

Wj−→i(r)ρ(Ci(r), Ĉj−→i(r) (5.9)

Here, ρ is a generalized Charbonnier loss [10] and Wj−→i(r) describes a
motion disocclusion weight, which is calculated by the difference of the
accumulated transparency α between time i and j of the ray, with Wi−→i(r) =
1.

Model Selection | 59

To render static scenes in high quality, DynIBaR uses a separate static
model for the static part of the scene. This static model renders the scene
similarly but skips the motion adjustment and simply uses the perspective
transformation between input images. The resulting colors of the static model
Ĉst and the color of the dynamic model Ĉdy

i are then combined to the full color
Ĉfull

j−→i, which rewrites eq. (5.9) as the following:

Lpho =
∑

r

∑
j∈N (i)

Wj−→i(r)ρ(Ci(r), Ĉfull
j−→i(r)) (5.10)

When initializing the model, the motion mask Mi is estimated using a
lightweight model based on Bayesian learning techniques. Using the mask,
a separate color loss can then be applied to regions with motion rendered by
the dynamic model and static regions rendered by the static model:

Lmask =
∑

r
(1−Mi(r))ρ(Ĉst(r),Ci(r)) +

∑
r

Mi(r)ρ(Ĉdy
i (r),Ci(r))

(5.11)

The authors use multiple additional losses as additional regularization.
The first loss is a data-driven loss based on depth and optical flow. A
second loss is a motion trajectory term that enforces trajectory fields to be
cycle-consistent and spatial-temporally smooth. Finally, a compactness loss
prevents floaters—low density points near the origin of a ray that have no
corresponding object in the scene.

5.3.2 Implementation Details
The implementation of the model provided is mainly done in the class
DynibarMono, which encapsulates the model. It has several important
attributes, which are used to render an image. First, the feature_net is
a simple residual convolutional network, which calculates the features fi of
a source image. Secondly, the motion_mlp GMT is an MLP, which infers
the motion coefficients of the input points. This is used in conjunction with
the learnable motion trajectory basis trajectory_basis. Lastly, the ray
transformer network consists of several torch.nn.Linear layers as well
as periodic embeddings and multiple matrix operations.

The feature_net is a convolutional neural network implemented using
PyTorch in its default state. It consists of two convolutional layers and three
blocks of two convolutional layers, each with a residual connection. It also

60 | Model Selection

features instance normalization as well as a ReLU activation function.
The motion_mlp is an MLP implemented in PyTorch, which generates

the coefficients for the motion trajectories. In its default state, it consists of an
embedding function that generates a periodic embedding of the input and nine
linear layers that are activated using the ReLU function, making it quite deep.
There also exists a single skip connection, which concatenates the input to the
output of the fourth layer again.

The ray transformer MP also features a periodic embedding for time and
several fully connected layers, also implemented using PyTorch.

The majority of the rendering process is handled by the auxiliary function
render_rays_mono. This complex function performs all the necessary
steps to produce a color for a ray. It also provides additional parameters for
the loss functions in the learning process.

To derive the color of a given pixel, points are first sampled along the ray
cast by the pixel to be rendered. For each of these points, the density and
color need to be calculated to be used in volumetric rendering. Using the
motion_mlp of the model, the motion trajectory coefficients of the points in
time are calculated, which are multiplied on the trajectory_basis inside
the compute_traj_pts function. Using the motion trajectory, the position
of the points on nearby input frames is then computed. These calculations all
use simple matrix operations.

Using the Project class, the points are projected to the source images
in order to aggregate the features extracted by the feature_net. These
combined features and an embedding of the current time are then used as input
to the dynamic and static ray transformer network together. This is done with
the help of PyTorch’s torch.nn.functional.grid_sample function,
which takes a two- or three-dimensional grid and interpolates the values at the
given positions.

In the following, the static and dynamic ray transformer network is applied
to extract the raw RGB colors and density features. These outputs of both
models are then combined according to the dynamic and static masks and form
the actual colors and density values. In a last step, the optical flow is calculated
from the outputs using simple matrix operations.

During training, however, one of the algorithm’s losses involves cross-time
rendering. Large parts of the procedure above are repeated, in this case using
only the dynamic ray transformer network to calculate colors and densities
from which the occlusion weights can then be generated.

The losses are calculated using various matrix operations. PyTorch’s
automatic differentiation engine is then used to propagate the loss backwards

Model Selection | 61

to the learnable parameters, optimizing them to fit the target images better.
In summary, the implementation features multiple neural networks that

are implemented using PyTorch. In addition, it also uses functions for
sampling like the torch.nn.functional.grid_sample function, as
well as various matrix operations, which are all already executed on the GPU
using CUDA kernels. Also, the implementation makes heavy use of the
torch.cat function, which combines multiple tensors by allocating a new
one and copying the two tensors into it.

62 | Model Selection

5.4 4D Gaussian Splatting
4D Gaussian Splatting [59] is an extension of 3D Gaussian Splatting
[25], where the scene is represented by a set of Gaussian distributions.
Each Gaussian is represented by different properties, such as position and
covariance. To derive an image from the set of Gaussians, they are simply
projected onto the 2D image plane via a custom Gaussian Rasterizer kernel
inherited from the 3DGS approach. During optimization, several mechanisms
prune or create additional Gaussians to represent the given scene in a better
way.

To model dynamic scenes, a time-dependent deformation field is
introduced, explained in section 5.4.1, which computes a time-dependent
offset to the Gaussian’s positions and covariance while leaving the other
parameters like color or density untouched. The deformation field is based on
a K-Planes [15] or HexPlane [9] approach, where out of six multi-resolution
planes, deformation features are extracted, which are then decoded using small
MLPs to the actual deformations of the Gaussian.

This model is interesting as it achieves good results while keeping training
times and memory footprints low. The biggest advantage of 4DGS is that a
trained scene can be rendered in real time, with the authors claiming to achieve
more than 30 FPS. This was not achieved at the time for dynamic scenes with
high-quality reconstructions.

5.4.1 Mathematical Background
The foundations of Gaussian Splatting have been covered in section 2.1.3.
4DGS extends Gaussian splatting to dynamic scenes by introducing a
Gaussian deformation fieldF , which calculates deformed Gaussians using the
deformation ∆G at that time-step:

G ′ = G +∆G (5.12)

The Gaussian deformation ∆G is calculated in two steps.
First, a spatial-temporal structure encoderH encodes both the spatial and

temporal features of the Gaussians:

fd = H(G, t) (5.13)

This is achieved by using an approach based on HexPlane [9] (see
sections 2.3.2 and 5.2) where six planes Rl(i, j) at two different resolutions

Model Selection | 63

and a tiny MLP ϕd are used to interpolate intermediate features fh from the
current Gaussians position and time:

fh =
∪
l

∏
interp(Rl(i, j)),

(i, j) ∈ {(x, y), (x, z), (y, z), (x, t), (y, t), (z, t)}
(5.14)

”interp” here describes the bilinear interpolation given the current position in
the HexPlane. The small MLP ϕd is applied to these features to get the actual
spatial and temporal features of the Gaussians:

fd = ϕd(fh) (5.15)

Secondly, a multi-head Gaussian deformation decoder D = {ϕX , ϕr, ϕs}
generates the deformations of position ∆X , rotation ∆R, and scale ∆S using
three separate MLPs:

∆X = ϕX (fd) (5.16)
∆R = ϕr(fd) (5.17)
∆S = ϕs(fd) (5.18)

Having all the deformations, the time-aware Gaussians can then be recovered
as:

G ′ = {X +∆X , R +∆R,S +∆S, σ, C} (5.19)

The model is initialized using a random point cloud first, trained for 3000
iterations as a static model, and then further optimized using the dynamic
model. The optimization uses a simple L1 color loss function and an additional
total-variation loss to smooth out the features on the planes of the HexPlane
model.

During optimization, Gaussians can be removed if their density decreases
below a threshold. To better reconstruct underrepresented areas, Gaussians
are split and shrunk when they cover a large portion of the rendered image.
Similarly, Gaussians are cloned when they are small and underrepresent the
given geometry.

64 | Model Selection

5.4.2 Implementation Details
The model and training procedure are implemented using Python and PyTorch
but also feature a custom-written kernel from the 3D Gaussian implementation
[25] for the forward and backward rendering pass. The training procedure
consists of two training loops. The first one is a coarse training for a small
number of iterations, which does not use time-dependent Gaussians, i.e., no
deformation is used, followed by a fine training using the full model.

A single training iteration can be further characterized by multiple steps:

1. Data sampling: The current training batch is sampled, either by
using PyTorch’s torch.utils.data.DataLoader class or by
constructing the batch manually, when the whole dataset can fit into
memory.

2. Rendering: An image is rendered in two parts, first by calculating and
applying the deformation, followed by calling the Gaussian Rasterizer,
which actually renders the image from the deformed Gaussians.

3. Loss calculation: Using the rendered image, the L1 color loss is
calculated, as well as the total variation loss of the planes of the
HexPlane model.

4. Backpropagation: Using the loss, PyTorch calculates the gradients of
each variable in the call graph.

5. Densification and pruning: Gaussians that have a low density are
removed. Large Gaussians in view space are split into multiple smaller
ones, and Gaussians in regions where the image is not reconstructed
well are cloned and moved slightly in the direction of their gradient.

6. Optimization: The optimizer changes the model’s parameters to fit the
target image in a better way.

7. Statistics and logging: Over several steps during training, the model is
saved to disk, depending on the configuration, and the model’s fitness is
saved and displayed.

The deformation network’s first step to extract the hidden features
is implemented similarly to HexPlane in section 5.2 and also makes
use of PyTorch’s torch.nn.functional.grid_sample function to
interpolate the features of the planes, followed by a small two-layer MLP with
a single ReLU activation function. Afterward, the multi-head deformation

Model Selection | 65

decoder, another set of small MLPs, is applied to get the deformations ∆X ,
∆r, and ∆s for each Gaussian. Each of those small MLP also consists of only
two linear layers, with a ReLU activation function before each layer.

The Gaussian Rasterizer is implemented using the PyTorch class
torch.autograd.Function, which invokes a custom CUDA kernel for
the forward and backward pass. For the kernel, the image to be rendered is split
into 16× 16 pixels large tiles, with each tile representing a thread block. Each
thread then operates on a single pixel, calculating the final color and depth.

The forward call of the Gaussian Rasterizer first prepares all the variables,
such as calculating the covariance in 2D screen coordinates, the colors from
the SH coefficients, and assigning only the needed Gaussians to each pixel
using frustum culling. The main kernel then first collects all the needed values
into a shared memory. Afterward it iterates through the relevant Gaussians, by
which transparency, color, and depth of each single Gaussian are calculated.
Then at last the final color and depth are calculated. The backward call of the
kernel works similarly, but in reverse, calculating the gradients for every input
variable.

In the backpropagation step, PyTorch’s automatic differentiation engine is
used. It propagates the loss back through the call graph, executing the above-
described Gaussian Rasterizers backward kernel.

Before calling the optimizer, the densification process is executed.
Afterward, the optimizer updates the model. In a final step, progress is saved
to disk, depending on the configuration.

66 | Model Selection

Analysis and Optimizations | 67

Chapter 6

Analysis and Optimizations

This section will present the analysis conducted on various models for
NVS. First, the experimental setup is explained for each model, where
potential changes to the recommended launch options and used frameworks
are explained and their effects on each model’s performance are explained.
In the next step, the computational performance is analyzed. After this,
possible optimizations are suggested, implemented, and evaluated. Finally,
the improvements are summarized.

68 | Analysis and Optimizations

6.1 HexPlane
HexPlane is profiled on the available hardware, as described in section 4.5.
All tests were run using Python 3.8.19 and PyTorch 1.12.1. The default
dnerf_slim.yaml configuration is used to train the model. However, the
number of training iterations is reduced to 250. This reduction does not have
any influence on the measured computational performance of the model, as
the training process is static and does not change over the training process.

Performance metrics are collected during training after a warm-up phase.
Performance was measured while training because training includes the
rendering process. Thus, inefficiencies during the rendering process still
appear during training.

To actually collect performance data, first, the training process runs for ten
iterations without the profiler being active. This is followed by five iterations
where the profiler is active but discards measured performance data. Finally,
performance metrics are collected during a single iteration.

6.1.1 Performance Analysis
The training process is measured in the following five sections, already
described above, namely data sampling, rendering, loss, optimization, and
statistics. In this iteration, no expensive computations are done in the statistics
section, such as rendering a progress image, updating the progress bar,
upsampling the model, or updating the emptiness voxel. Upsampling and
updating the emptiness voxel are rare events, usually only happening three
times during full training. Therefore, they do not represent the average training
iteration well and are not chosen for profiling.

The rendering of an image as well as updating the progress bar are optional.
They are only used to share information with the users. When concerned with
speed, one would reduce these to a minimum. In consequence, they are not
chosen for analysis.

In table 6.1 the time each section takes is shown, including waiting for all
kernels to have finished execution by calling torch.cuda.synchronize.
It is apparent that the total CPU time recorded by the PyTorch profiler is not
equal to the sum of all five sections named before, even though there are no
extra commands or function calls inside the section being profiled. However,
this is likely either due to the implementation of the profiler or due to some
intricacies of the Python programming language, such as being an interpreted
language, causing slight delays.

Analysis and Optimizations | 69

Fi
gu

re
6.

1:
G

PU
tra

ce
of

a
sin

gl
e

ite
ra

tio
n

of
H

ex
Pl

an
e.

Th
e

gr
ee

n
lin

es
sh

ow
th

e
as

so
ci

at
io

n
be

tw
ee

n
th

e
la

un
ch

of
a

ke
rn

el
on

th
e

CP
U

an
d

th
e

tim
e

of
ac

tu
al

ex
ec

ut
io

n
of

th
e

ke
rn

el
on

th
e

G
PU

.H
er

e,
th

e
ba

ck
pr

op
ag

at
io

n
ta

ke
s

th
e

m
aj

or
ity

of
th

e
tim

e,
du

e
to

th
e

ex
pe

ns
iv

e
ca

lc
ul

at
io

ns
to

ca
lc

ul
at

e
th

e
gr

ad
ie

nt
s

of
th

e
gr

id
_s

am
pl

e
fu

nc
tio

n,
w

hi
ch

al
on

e
ta

ke
ro

ug
hl

y
50

%
of

th
e

tim
e

of
th

e
en

tir
e

ite
ra

tio
n.

70 | Analysis and Optimizations

CPU time CPU time %

Total time 47.426 ms 100.00 %
Data sampling 1.958 ms 4.13 %
Rendering 8.195 ms 17.28 %
Loss 4.365 ms 9.20 %
Optimization 31.775 ms 67.00 %
Statistics 0.731 ms 1.54 %

Table 6.1: Time spent in each section in a single training iteration of
HexPlane. At the end of each section, synchronization is enforced through
the torch.cuda.synchronize function.

Looking at the actual durations of each section, it is obvious that the
optimization and the rendering steps are the two most computationally
intensive tasks, with the optimization step taking almost two-thirds of the total
time. The data sampling and the statistics section are almost irrelevant, making
up barely more than five percent together.

Checking the trace of a single iteration in fig. 6.1 reveals that the majority
of the time is spent in the optimization step. However, a close look shows
that the majority of this step is actually spent in the backward pass of the
grid_sample function. This is visible in the trace by the three sets of long
kernels in the render pass, which take roughly 4.8 ms. Three corresponding
sets of kernels can be seen during the backward pass in the optimize section,
which take almost 17 ms. Together, the grid_sample function makes up
almost 50% of the time of a single iteration. All these kernels are limited by
the GPU.

In contrast to the grid_sample function, the loss calculation is mostly
limited by the CPU. In the provided implementation, a majority of the loss
calculation features loops and operations on small tensors. As PyTorch queues
a kernel for each operation, the small overhead from launching a kernel adds
up, which limits the speed of this section. This can be seen in the trace as
well, where the loss calculation in the forward and backward pass together
takes around 15 ms, a third of the total time.

The small MLPs employed by HexPlane take in comparison almost no
time, mainly due to their small size.

The remaining time is spent in the sampling process, the evaluation and
statistics, as well as some preparations in the rendering process. The timings
measured by the profiler also show a significant time for functions such as
aten:to, aten::copy_, aten::zeros, and aten::fill_, which are
memory allocation operations or operations that transfer memory between

Analysis and Optimizations | 71

CPU memory and GPU memory. However, inspecting the trace closer
indicates that these functions often require more time because they have to
wait for the results of previously queued kernels instead of taking the time for
themselves.

6.1.2 Possible Optimizations
A large part of HexPlane relies on very efficiently implemented functions in
PyTorch, such as torch.nn.functional.grid_sample, and neural
networks, such as MLPs.

A possible optimization for the grid_sample function would be to look
at the cache usage and input data. For example, one could sort the list of
coordinates where to sample in such a way that the relevant data of the grid
in cache is used multiple times, reducing the amount of data fetched from
slower caches. On the other hand, sorting also takes a significant amount of
computing power. When attempting this, one has to consider the added time
of the sorting in contrast to a possible time reduction of the grid_sample
kernel, especially in the backward kernel, as the majority of the time is spent in
it. Attempting this optimization promises very little reward for a large amount
of effort, which is why this is not attempted in this project.

A simpler way of improving the speed of HexPlane would be to make
architectural changes to reduce the computational demands of the model. An
example of this could be to not use the emptiness voxel, which saves one
out of three expensive grid_sample() calls. However, the purpose of the
emptiness voxel is to skip evaluations of regions in empty space, which saves
time. Again, one has to compare these two aspects when making architectural
changes. One also has to ensure the quality of HexPlane stays the same with
these changes. This requires extensive validation, which is why architectural
changes are not in the scope of this project.

This leaves the loss calculation, which is CPU limited, an indication that
the available resources are not used to their full extent. The loss calculation
relies on a high amount of basic tensor operations, implemented by PyTorch.
Each operation adds a small overhead when the respective kernel for that
operation is launched. To reduce this overhead, one could combine them into a
single custom CUDA kernel, which is attempted for the larger model DynIBaR
in section 6.2.2.

HexPlane’s implementation also features heavy use of tensor concatena-
tions and accesses of tensors using a mask. Usually, PyTorch simply uses
new views, which redirect accesses to the tensor to the specific positions of

72 | Analysis and Optimizations

the data in memory. This minimizes the need to allocate and copy tensors
combined using the e.g., torch.cat function. However, this also creates
discontiguous tensors, which are not suited as parameters for kernels, so they
have to be made contiguous again before being passed as a parameter. This
necessitates the allocation of new memory and the copying of all tensors that
were combined into the new memory.

For small tensors, these operations might not add significant overhead,
but HexPlane features six large 2D planes that are stored in a tensor. These
are combined into a single entry prior to being passed to the grid_sample
function using the torch.cat function. This necessitates the rearrangement
of the data of these tensors in memory, as outlined above. To prevent this issue,
a developer could create these 2D planes initially as a 3D tensor, featuring
six 2D planes in an array. This would ensure that the data is contiguous
in memory. The individual planes could then be saved as a view, which
simply changes the bounds this tensor is accessed for each plane and prevents
reorganization of the memory. This could then increase the speed of the
grid_sample function when the stacked planes are used as an input, as
the memory is already contiguous.

6.1.3 Conclusion
All in all, HexPlane is already a small and efficient model, benefitting heavily
from its simple architecture. As seen in section 6.1.1, a large portion of the
time is spent in various functions implemented efficiently by PyTorch.

There is some potential in optimizations, such as sorting the sampling
coordinates to improve cache locality or creating internal data structures in a
contiguous way. However, they are offset by the increased cost of the sorting
operation or might not increase efficiency. This could be due to optimizations
for masked tensor accesses already in place and PyTorch simply keeping
the memory of the data structures already internally contiguous for future
iterations. One optimization, writing a custom kernel to consolidate operations
for the loss calculation, will be described in section 6.2.2.

Analysis and Optimizations | 73

6.2 DynIBaR
DynIBaR is a very computationally and memory-intensive model, which is
usually run on multiple NVIDIA A100 GPUs. In this project, only an NVIDIA
RTX3070 Ti Laptop GPU is available, as described in section 4.5. The
RTX 3070 Ti is obviously vastly outperformed by multiple GPUs specifically
designed for developing AI models. The most important difference is that the
available GPU only features 8 GB of dedicated video card memory instead of
the 80 GB offered by an A100. This necessitates adjustments to the following
two training parameters:

• Batch size: The batch size needs to be reduced greatly so that the current
data batch, in addition to the model, fits into the much smaller dedicated
GPU memory. Reducing the batch size could affect performance,
making overheads in various operations more pronounced.

• Number of training iterations: Due to the reduced amount of computing
power available, the number of training iterations has to be reduced
massively. However, this does not affect performance, as each iteration
follows the same optimization process independent of how often it was
already run.

A smaller batch size could affect model performance since smaller batches
lead to less efficient kernel execution due to a higher relative overhead
of launching and managing the kernels. This change could also lead to
underutilization of the GPU, as it might lack the data necessary to fully saturate
its parallel processing capabilities. The model can not even perform multiple
steps in parallel, as the individual steps usually depend on the current step’s
results.

It is also remarkable that a solution to performance bottlenecks in this
analysis could be hardware specific. Adjustments on the available hardware
may lead to increased performance, but the same adjustments could have
less—or even detrimental—effect when using the recommended hardware
configuration.

The second parameter that can be greatly reduced is the number of
iterations to train the model, as this project is not interested in achieving
or validating good results. Instead, it is mainly focused on analyzing the
performance of the model and identifying potential improvements. This is
possible as the training process is static and does not change over time.
Consequently, to get good performance readings, only a short warm-up period

74 | Analysis and Optimizations

is needed. Performance measurements can take place afterward and the results
are representative for longer training runs, as the training algorithm does not
change.

Despite these changes, inefficiencies can still be identified, although they
might be less relevant when training on the recommended hardware.

From a software perspective, the model is executed using Python 3.8.19,
with PyTorch 2.4.0 and CUDA 12.4. Everything else is as described by the
authors of DynIBaR.

6.2.1 Performance Analysis
Training the model consists of two loops executed one after another. In the
first loop, only a lightweight model is used to initialize the motion mask Mi

using just the static RGB loss, which compares the predicted color with the
target color. This also means that all the calculations for cross-time rendering
are not taking place, as it is only used in the loss function of the main model.
This coarse training solely serves the purpose of bootstrapping the model and
is only run for a short amount of iterations in the beginning.

The main training loop has similar characteristics but enables all features
of the model and computes all losses for optimization. On the other hand, the
first loop is simply a subset of operations of the second loop. This report will
only benchmark the main training of the model in the second loop.

In general, one training iteration can be divided into five major steps:

1. Sampling: A new batch is being loaded and transferred to GPU memory.

2. Feature: Using the model.feature_net MLP, the static and
dynamic features from the current and adjacent frames are extracted.

3. Rendering: Using the input data and calculated features, a color for each
ray is determined, and cross-time rendering is performed.

4. Loss: All different losses are calculated from the rendering results and
combined into a final single loss.

5. Backward: The backpropagation handled by PyTorch takes place, and
the weights are updated according to the optimizer.

6. (Optionally) Logging: Periodically a complete image is rendered to log
the training progress, and different metrics are written to disk. For
optimal performance, this step can be skipped and is not included in
this analysis.

Analysis and Optimizations | 75

Fi
gu

re
6.

2:
Tr

ac
eo

fa
sin

gl
ei

te
ra

tio
n

du
rin

g
tra

in
in

g
of

D
yn

IB
aR

w
ith

no
sy

nc
hr

on
iz

at
io

n.
In

th
eb

eg
in

ni
ng

,t
he

ke
rn

el
sf

ro
m

th
e

la
st

ite
ra

tio
n

sti
ll

ne
ed

to
fin

ish
be

fo
re

th
e

ne
xt

ba
tc

h
is

tra
ns

fe
rr

ed
in

to
G

PU
m

em
or

y.

76 | Analysis and Optimizations

Figure
6.3:

Trace
ofa

single
iteration

during
training

ofD
ynIBaR

w
ith

a
single

synchronization
atthe

end
ofthe

iteration.
Thisshow

sthe
execution

ofthe
kernelslagging

behind
the

CPU
and

thatthe
m

odelisG
PU

lim
ited

atthe
end

ofthe
iteration.

Analysis and Optimizations | 77

Fi
gu

re
6.

4:
Tr

ac
e

of
a

sin
gl

e
ite

ra
tio

n
du

rin
g

tra
in

in
g

of
D

yn
IB

aR
w

ith
a

sin
gl

e
sy

nc
hr

on
iz

at
io

n
at

th
e

en
d

of
ea

ch
m

aj
or

ste
p

in
a

sin
gl

e
ite

ra
tio

n.
H

er
e,

it
ca

n
be

se
en

th
at

th
e

fir
st

fo
ur

ste
ps

ar
e

no
tl

im
ite

d
by

th
e

G
PU

,a
st

he
re

is
no

ne
ed

to
w

ai
tf

or
th

e
sy

nc
hr

on
iz

at
io

n
at

ea
ch

ste
p.

Th
is

in
di

ca
te

si
ne

ffi
ci

en
ci

es
an

d
un

de
ru

til
iz

at
io

n
of

th
e

G
PU

.

78 | Analysis and Optimizations

As can be seen in the stack trace depicted in fig. 6.2, some steps are
deceptively large, like the sampling step. However, this is due to the last
iteration not having finished execution on the GPU, i.e., some kernels are still
queued from the last step.

Synchronizing the GPU using torch.cuda.synchronize() after
each step as seen in fig. 6.4 shows that most time is actually spent computing
the gradients through the backpropagation and updating the model’s learnable
parameters in the optimizer.step() function. This takes roughly two-
thirds of the entire iteration. Introducing synchronization could lead to less
efficient execution. However, the difference in total execution time when only
using one synchronization at the end of the loop (46.584ms), compared to
synchronizing after every step (46.232ms), is not even one percent.

This indicates that the code before the backward step is either well-
balanced or limited by the CPU, the latter hinting at an underutilization of
the GPU due to inefficient programming.

This can also be seen when inspecting the GPU utilization, as denoted in
fig. 6.4 in the rows ”GPU 0 Est. SM Efficiency” and ”GPU 0 Utilization.”
There, only the feature net evaluation, the final part of the backpropagation,
and the optimizer.step() function achieve high utilization.

For large parts of the backpropagation process and during the entire
rendering and loss calculation, the occupancy and utilization of the GPU are
near zero, meaning the processing power of the CPU is the limiting factor. As
already mentioned, this could be due to the small batch size, which might not
take advantage of the high parallel processing capabilities of the GPU.

Similar to HexPlane in the previous section, DynIBaR also utilizes
numerous memory operations, such as allocations and copies, which could
indicate a potential memory throughput bottleneck. However, since these
operations are executed directly on the GPU, such a bottleneck is unlikely,
as the GPU would be fully utilized in such a case. It is much more likely
that the high amount of operations on small tensors that cannot achieve high
occupancy and thus good efficiency are throttling the model. Many of these
tensors are too small to fill even a single warp.

When examining specific steps, the sampling step mainly involves memory
allocations, memory copies, and setting up the data on the GPU so that it can
be used in the subsequent steps. This accounts for approximately 6% of the
total iteration time.

The second step uses the model.feature_net to calculate input
features for the rendering process from the current and nearby frames. For this,

Analysis and Optimizations | 79

it evaluates the convolutional neural network, which is handled by PyTorch. It
takes one-sixth of the total time, achieving high occupancy on the GPU while
only requiring minimal CPU time. As shown in fig. 6.4, a significant block of
CUDA synchronization indicates that the CPU needs to wait for the GPU to
complete its tasks.

Because the rendering step relies on the extracted features, the idle time of
the CPU can not be taken advantage of. This is evident in fig. 6.3, where only
one synchronization is used at the end of the iteration. Here, the first rendering
instruction must wait for the feature extraction to finish, as illustrated by the
long wait during aten::item, which accesses an extracted feature early in
the rendering process.

In contrast to the high GPU utilization observed in the feature extraction
step, the render step is mostly limited by the CPU. This limitation arises from
the extensive calculations performed on small inputs, which results in a high
number of small kernel launches interspersed with some occasional neural
networks invocations, namely the GMT MLP.

Examination of these small kernels reveals that they take roughly 30 µs on
the CPU, while GPU execution time is only around 2 µs. Consequently, the
rendering step does not only achieve low occupancy, due to the small amounts
of data the kernels operate on, but also low utilization, as the GPU is mostly
idle. This is illustrated in fig. 6.4, where the row ”GPU 0 Utilization” is low,
even during the execution of the small neural networks.

The subsequent loss calculation step exhibits similar behavior, achieving
only very low streaming multiprocessor efficiency, as can be seen in the row
”GPU 0 Estimated Streaming Multiprocessor Efficiency” in fig. 6.4.

The final major step is backpropagation, implemented using PyTorch’s
automatic differentiation engine, starting from the loss. During this step, many
small kernels are launched to traverse the computational graph backwards,
propagating the gradients to the learnable parameters. High GPU utilization is
only achieved at the end of this process when the feature networks are traversed
backwards and when the optimizer updates the weights.

This step is bound by both the CPU and GPU at different stages. Initially,
the CPU limits performance. But as execution progresses to the feature
extractor network and weight updates, many kernels are queued quickly. These
kernels take longer to execute, leaving the CPU idle in the final third of this
step, waiting for synchronization, as shown in fig. 6.4.

80 | Analysis and Optimizations

6.2.2 Improvements
As highlighted in the previous analysis, the DynIBaR model faces several
bottlenecks. Some, such as loading of the data from disk in the first step,
are inherently constrained by hardware limitations. A faster hard drive or a
RAM disk, storing the data in memory, could potentially alleviate this issue.
However, the data still has to be transferred to GPU memory, which is limited
by the memory bandwidth between the CPU and GPU.

If all data could fit into the GPU memory, this step could be significantly
accelerated, as it would only involve selecting the batch. On the other hand, the
GPU already needs substantial memory capacity, just to hold the model. Even
with the recommended NVIDIA A100 Tensor Core GPU, which features 80
GB of memory, the authors of the model still chose to load the data at the start
of each iteration from disk rather than keeping the entire dataset in memory.

The second step, feature extraction from the source images, fully saturates
the GPU while leaving the CPU mostly idle. This step utilizes a convolutional
neural network implemented in PyTorch, which already provides a highly
optimized framework for such tasks. Additionally, the large input data ensures
full GPU utilization, leaving little room for further and possible improvements.

The next step, the rendering itself, is clearly CPU limited. A part of the
trace can be seen in fig. 6.5, where the problem becomes apparent. This section
consists of a high amount of small operations, which are all executed on the
GPU. But these operations do not actually saturate the GPU. The overhead
of queuing up kernels and waiting for them to finish executing is much larger
than the actual execution of these kernels. To improve the performance of this
step, one can consolidate multiple steps into one custom kernel to reduce the
overhead.

An example of this optimization could be the computation of the motion
trajectory field. There, the motion coefficients are multiplied on the motion
basis. The steps executed to calculate the motion of the points over time using
the motion coefficients and the learnable motion basis are depicted in the
Python source code in listing 6.1.

This part of the code makes heavy use of slicing and therefore generating
views of the underlying tensors. It also concatenates the sum of the coefficients
multiplied with the basis in all three directions together. All these operations
can be combined into a single kernel, which could look like listing 6.2.

Through clever usage of the size of the thread blocks and the number of
threads per block, the slicing can be achieved through those. In this case,

Analysis and Optimizations | 81

Fi
gu

re
6.

5:
Pa

rti
al

tra
ce

of
th

e
re

nd
er

fu
nc

tio
n

in
D

yn
IB

aR
.I

tb
ec

om
es

ob
vi

ou
st

ha
ta

lo
to

fk
er

ne
ls

ar
e

la
un

ch
ed

.H
ow

ev
er

,
ac

tu
al

ut
ili

za
tio

n
of

th
e

G
PU

is
ve

ry
sm

al
l,

as
ca

n
be

se
en

in
th

e
ro

w
”s

tre
am

7.
”

82 | Analysis and Optimizations

num_bas is = model . t r a j e c t o r y _ b a s i s . shape [1]
r aw_coe f f_x = raw_coe f f_xyz [. . . , 0 : num_bas i s]
r aw_coe f f_y = raw_coe f f_xyz [. . . , num_bas i s : num_bas is ∗2]
r aw_coe f f _ z = raw_coe f f_xyz [. . . , num_bas i s ∗2 : num_bas is ∗3]

r e f _ t r a j _ p t s _ d i c t = {}
a lways use 6 nearby sou r c e v i ews f o r dynamic model .
f o r o f f s e t in [−3 , −2 , −1 , 0 , 1 , 2 , 3] :

t r a j _ b a s i s _ i = model . t r a j e c t o r y _ b a s i s [
None , None , r e f _ f r a m e _ i d x + o f f s e t , :

]
r e f _ t r a j _ p t s _ d i c t [o f f s e t] = t o r c h . c a t (

[
t o r c h . sum (

r aw_coe f f_x ∗ t r a j _ b a s i s _ i , a x i s = −1 , keepdim=True
) ,
t o r c h . sum (

r aw_coe f f_y ∗ t r a j _ b a s i s _ i , a x i s = −1 , keepdim=True
) ,
t o r c h . sum (

r aw_coe f f _ z ∗ t r a j _ b a s i s _ i , a x i s = −1 , keepdim=True
) ,

] ,
dim= −1 ,
)

Listing 6.1: DynIBaR’s original Python code to multiply the motion coeffi-
cients to the motion basis to form the motion trajectory. As can be seen, it
makes use of splicing and concatenating the results together again afterward,
which could be prevented by using a custom kernel.

Analysis and Optimizations | 83

__g l oba l __ void mo t i on _k e r n e l (
cons t f l o a t ∗ _ _ r e s t r i c t _ _ t r a j e c t o r y _ b a s i s ,
cons t f l o a t ∗ _ _ r e s t r i c t _ _ raw_coef f_xyz ,
f l o a t ∗ o f f s e t _ n 3 ,
f l o a t ∗ o f f s e t _ n 2 ,
f l o a t ∗ o f f s e t _ n 1 ,
f l o a t ∗ o f f s e t _ 0 ,
f l o a t ∗ o f f s e t _ p 1 ,
f l o a t ∗ o f f s e t _ p 2 ,
f l o a t ∗ o f f s e t _ p 3 ,
cons t i n t r e f _ f r a m e _ i d x
)

{
f l o a t ∗ o f f s e t s [] =

{ o f f s e t _ n 3 , o f f s e t _ n 2 , o f f s e t _ n 1 , o f f s e t _ 0 ,
o f f s e t _ p 1 , o f f s e t _ p 2 , o f f s e t _ p 3 } ;

f l o a t ∗ o f f s e t = o f f s e t s [b l o ck I dx . x] ;

cons t i n t r e f _ i d x _ o f f s e t =
(r e f _ f r a m e _ i d x + b l o ck I dx . x − 3) ∗ 6 ;

cons t i n t base = (b l o ck I dx . y ∗ 128 + t h r e a d I d x . x) ;

f l o a t sum = 0 . 0 f ;
f o r (i n t i =0 ; i <6 ; i ++)

sum += raw_coe f f_xyz [base ∗18 + t h r e a d I d x . y∗6 + i]
∗ t r a j e c t o r y _ b a s i s [r e f _ i d x _ o f f s e t + i] ;

o f f s e t [ba se ∗3 + t h r e a d I d x . y] = sum ;
}

Listing 6.2: The same code as in listing 6.1 implemented as a single efficient
forward CUDA kernel.

for example, the blocksize.x is defined by the size of the neighborhood,
which is seven by default. This allows assigning the results to the correct array
by using blocksize.x as an index, which are combined into the dict in
the wrapper for the kernel. blocksize.y and threadsize.x are defined
by the number of rays to be rendered, i.e., the batch size, and the number of
points per ray, respectively. threadsize.y is simply set to three for the
three directions in 3D space.

Table 6.2 compares the runtime of the original Python implementation
and the custom CUDA kernel that consolidates all operations into a single
kernel. As shown, reducing the overhead by launching a single kernel instead
of multiple significantly enhances performance, with the custom kernel taking
less than 20% of the original runtime.

84 | Analysis and Optimizations

Type Time (ms) Time (%)

PyTorch + Python 5.511 100 %
Custom kernel + C++ 1.041 18.9 %

Table 6.2: Performance comparison of the original Python implementation and
a custom CUDA kernel for calculating the motion trajectory field in DynIBaR.
The time displayed comprises both the forward and backward pass.

Even combining just a few operations into a single kernel yields substantial
performance improvements. One downside of implementing a custom kernel
is that a backward pass must also be provided to be able to use the function in
PyTorch’s automatic differentiation engine. This can be tricky to implement,
especially for complex functions. That said, grouping only a few operations
together makes this task relatively straightforward.

An important issue, that should not be forgotten, is that the batch size was
drastically lowered in this analysis. It could very well be, that DynIBaR is GPU
limited all the time, when the recommended batch size is used. This would
diminish the advantage of employing a custom CUDA kernel, but might still
lead to a slight improvement.

6.2.3 Conclusion
DynIBaR is a complex model that is often limited by the GPU during training.
This indicates it utilizes the GPU well in most areas, but some areas, such as
the rendering process, are heavily limited by the CPU.

To address such limitations, the use of custom kernels for a complex
function, combining multiple steps into one, can significantly improve
efficiency and can reduce the required computing resources. However, an
increase in batch size could also address this limitation, but this cannot be
verified in this thesis due to the missing hardware.

In spite of that, a well-designed implementation that combines multiple
operations into a single kernel can eliminate unnecessary memory allocations
and improve throughput by better utilizing the GPU. On the other side,
implementing a backward function for such kernels can be challenging.

Reimplementing all of DynIBaR with custom kernels could improve
performance massively, but as DynIBaR is a very complex model, it is out
of the scope of this project but could be studied in a future project.

Analysis and Optimizations | 85

6.3 4D Gaussian Splatting
The hardware used to conduct the experiments on the 4DGS model is the same
as outlined in section 4.5. In addition, Python 3.11.10 was used, as well as
PyTorch 2.5.0 and CUDA 12.5.

The model was run using the unmodified configuration given to train on
the bouncing balls scene from the D-NeRF dataset [46].

6.3.1 Performance Analysis
The measured performance of the training varies greatly depending on the
amount of Gaussians in the model. As the model learns a good representation
of the scene, the amount of Gaussians usually increases quickly at the
beginning. Because of this, a single iteration of the early fine training has
been selected for an analysis, where the system is already warmed up, but the
number of Gaussians is still variable. This means that the impact from the
densification process is still visible and not drowned out by a high amount of
Gaussians.

In table 6.3, the durations of the individual steps are presented. Additional
steps, like network, where data is potentially downloaded from a server,
and steps grouped under the statistics step in the previous chapter, are
also included. Obviously, some sections are not wanted when chasing
performance, like network, progressbar, logging, and saving, and should be
turned off for maximal performance. But these steps only account for only

Task Description Time (ms) Percent (%)

Network Network communication 0.046 0.12 %
Sampling Sampling the current batch 0.152 0.38 %
Rendering Synthesizing novel view 6.495 16.36 %
Loss Calculating all losses 3.080 7.76 %
Backpropagation Calculating gradients 26.155 65.88 %
Progressbar Updating the progress bar 0.347 0.87 %
Logging Save image and metrics 0.308 0.78 %
Densification Adding and removing Gaussians 1.084 2.73 %
Optimization Updating weights 1.998 5.04 %
Saving Saving current model 0.005 0.01 %
Total 39.698 100.00 %

Table 6.3: Section breakdown of a single training iteration in 4DGS. The
rendering, loss and backpropagation sections make up for almost 90% of the
total time.

86 | Analysis and Optimizations

about 2% of the total time per iteration, so the potential time savings are
marginal.

Much more interesting, however, is the backpropagation section, which
makes up a large part of the entire iteration. The largest contributor to it is by
far the Gaussian Rasterizer backward kernel, which alone takes 16.1 ms, that
is about 40% of the total iteration, as can also be seen in the trace in fig. 6.6.

When looking at the rendering section, the small neural networks to
infer the time-dependent deformation also take a significant amount of time,
especially on the CPU. However, they are implemented using the tools offered
by PyTorch, making them already quite efficient. Due to their small size, they
are bottlenecked by the CPU, with each kernel finishing much quicker than the
next one being queued. This is similar to the problem solved in section 6.2.2,
where the overhead of the kernel is larger than the execution of said kernel.

The forward pass of the Gaussian Rasterizer evokes multiple custom
kernels. On the other side, these are not as computationally intensive as the
backward kernel and require only slightly over 2 ms of computation time.

Similarly, the loss section consists simply of PyTorch’s vector operations,
but these are also CPU-bound, indicating inefficient programming as the GPU
is not fully utilized. Calculating the loss in a custom kernel that combines
these instructions might be more efficient, as has been shown in the previous
section 6.2.2.

Almost at the end of the iteration, the densification process splits, clones,
or removes malformed Gaussians. This also does not take a large amount of
time, only around 2.7% of the total time. The final section optimization takes
around 5%, which is again handled by PyTorch’s automatic differentiation
engine.

All in all, the model is not very complex, the different sections being
either simple and efficient or relying on established models, such as HexPlane.
Therefore, they do not require a large amount of computational power, or they
are already optimized by using a customized kernel.

While the dynamic part of 4DGS is handled mostly by an implementation
similar to HexPlane, the custom-written kernel is a target for improvement,
which will be attempted in the next section.

However, there is one important thing to keep in mind when attempting
to improve the backward kernel of the Gaussian Rasterizer: The CPU only
has to wait around 20 ms on it, which means that an improvement reducing
computation time by more than 20 ms makes the code limited by the CPU
CPU-bound again and would not yield further speed improvements on the test
machine.

Analysis and Optimizations | 87

Fi
gu

re
6.

6:
Tr

ac
e

of
a

sin
gl

e
tra

in
in

g
ite

ra
tio

n
of

4D
G

S.
H

er
e,

it
ca

n
be

se
en

th
at

th
e

ba
ck

w
ar

d
G

au
ss

ia
n

Ra
ste

riz
er

ke
rn

el
ta

ke
sa

sig
ni

fic
an

ta
m

ou
nt

of
tim

e
of

th
e

en
tir

e
ite

ra
tio

n
an

d
co

ul
d

be
a

ta
rg

et
fo

ro
pt

im
iz

at
io

n.

88 | Analysis and Optimizations

6.3.2 Improving the Gaussian Rasterizer Backward
Kernel

As discussed in the previous section, the most time-consuming task of the
training process is the backward pass of the Gaussian Rasterizer. This consists
of multiple steps. The most significant step of these is the backward kernel.
Its purpose is to calculate the gradients for all the Gaussians depending on the
input. The mathematical details of it are thoroughly explained in the appendix
of the original paper [25].

To make improvements regarding the backward kernel, tests have to be
done in isolation without the rest of the 4DGS model. For that, during training
of the full model, the inputs and outputs of the kernel have to be recorded and
saved to disk. Then, the kernel can be tested alone using the recorded data as
input when running the kernel. It is also important to check for correctness
after changes are applied to it.

Here, the kernel is tested by using a Python script, which calls the backward
routine of the compiled CUDA kernel. This script is then profiled using either
the PyTorch profiler to measure execution times or NVIDIA Nsight Compute
to measure various metrics. Performance is recorded after a warm-up phase
of ten executions of the kernel, followed by a single execution where data
is recorded. This is repeated 30 times to get a good average and to ensure
representative data. The standard deviation of the measured metrics over the
30 repeats should be low.

In the original implementation of the kernel, each thread handles a pixel.
The image is processed in tiles of 16 by 16 pixels, so that each thread block
consists of 256 threads. Each thread block is executed in warps of 32 threads
per warp.

The kernel itself first calculates some necessary variables, such as the
position of the current pixel and the number of Gaussians affecting it, using
information from the forward pass and the position of the current block and
thread, as well as initializing variables used for calculating the backward pass.
Following that, the main loop of the kernel is started. The main loop consists
of two phases.

In the first phase, all threads in the current block work together to copy
all necessary information regarding the Gaussians into shared arrays. Ideally,
these are located in the fast L1 cache, so that the slow global memory has to
be accessed less during the gradient calculation. The original implementation
uses multiple shared arrays for ID, position, depth, and conic opacity, which is

Analysis and Optimizations | 89

just a wrapper for the covariance and opacity of the Gaussians. Before and after
populating the shared array, all threads in the thread block are synchronized
to ensure that all threads are ready and help create the arrays in the shared
memory without accessing wrong or overwriting still relevant data.

The second phase of the main loop then iterates over all relevant Gaussians
that affect the thread’s pixel and calculates the backward gradients using
simple mathematical operations, such as addition and multiplication, as well
as one exponent. The resulting gradients are then added to an array using
multiple atomicAdd instructions.

After all pixels and Gaussians affecting these gradients are processed, the
kernel finishes executions, and they are accessible in the array populated by
the atomicAdd operations.

There are multiple opportunities to optimize the kernel for improved
efficiency. The first possible improvement concerns the data in the shared
memory. In the original kernel, there are five distinct arrays that hold the
Gaussian data in shared memory. As all five variables are necessary to
calculate the effects of the currently processed Gaussian, they have to be
loaded from five distinct memory positions. As they are stored in separate
arrays, this process needs to load multiple cache lines to access the data. An
idea for improvement is to group the variables into a single struct, storing
the attributes of a single Gaussian consecutively in 32 Bytes of memory.
Ideally, the data for a Gaussian can then be loaded using only a single cache
line for this thread. However, testing this idea only leads to a very small
improvement of 1% reduced execution time.

Another possible improvement is to have each thread process multiple
pixels—such as four—instead of each thread processing exactly one pixel.
This reduces the total number of threads needed by a factor of four. By doing
this, some variables can be reused for multiple pixels. The GPU can also be
utilized in a better way, as most variables can be stored efficiently as float4
instead of as a normal float.

This way, the compiler can optimize the code better and can make use of
vectorized operations, such as parallel loads and stores. But only a few of these
operations exist on the GPU, and the parallelism comes mainly from having
multiple threads execute the same instruction on different data in parallel.

Another large advantage of each thread handling four pixels is the
reduction in AtomicAdd instructions, as each thread can accumulate the
gradients for four pixels before adding them to the gradient arrays storing the
results.

90 | Analysis and Optimizations

Version Mean CPU Mean GPU Min CPU Min GPU CPU σ GPU σ
Time (ms) Time (ms) Time (ms) Time (ms)

original 9.379 12.091 8.805 11.403 0.433 0.578
struct 9.243 11.985 8.704 11.327 0.436 0.573
4 pixel 2.860 3.566 2.525 3.135 0.424 0.555

Table 6.4: Performance results of the backward kernel of the Gaussian
Rasterizer comparing CPU and CUDA times across different versions. The
original version uses the original kernel, as used in 3DGS [25] and 4DGS
[59], the struct version tries to improve memory coalescence by packing the
variables of the Gaussians into a single struct and the 4 pixel version
calculates the gradients of the Gaussians for four pixels in parallel in each
kernel instead of each kernel only handling one pixel, resulting in only one
fourth of the number of necessary threads.

The runtime for each version of the kernels can be seen in table 6.4. The
grouping of the attributes of the Gaussians into a single structure does improve
the code only slightly but consistently, showing an improvement of around
one percent. This makes sense, as, although all attributes of the Gaussians
are needed, they are each only needed once per processed Gaussian, with
the computations using these variables taking the major amount of processing
time. Improving this single load therefore does not really contribute to a major
reduction in computation time.

The second improvement of each thread processing multiple pixels reduces
the runtime of the backward kernel significantly, to slightly above 25% of the
original computation time. This could indicate that each thread processing
four pixels needs roughly the same amount of time as a thread processing one
pixel. Therefore, the reduction in processing time can be attributed to the
reduction of necessary threads that need to be executed.

Looking at the metrics recorded with NVIDIA Nsight Compute in table 6.5
reveals that the improved kernel is not four times as long when counting SASS
instructions, which are comparable to assembly instructions but specific for
NVIDIA CUDA kernel binaries. This indicates that the improved kernel can
reuse a large amount of instructions. A similar indicator is the maximum
registers per thread, which shows that a large amount of variables stored in
those registers are used for supporting calculations. Both of these changes
suggest that the improved kernel is more efficient, as less non-arithmetic
instructions need to be executed per handled pixel.

Analysis and Optimizations | 91

Metric Original version 4 pixel version Change (%)

Block size 256 64 -75.00 %
Registers per thread 64 122 +90.62 %
Duration 5.51 ms 14.66 ms - 62.42 %
Number of SASS instructions 393 920 +134.10 %
Theoretical Occupancy 66.67 % 29.17 % -56.25 %
Achieved Occupancy 65.49 % 25.74 % -60.70 %
Shared memory per block 11.26 Kbyte 12.29 Kbyte +9.09 %
Shared memory config size 65.54 Kbyte 102.40 Kbyte +56.50%
L1 Sector requests 2,492,294 1,032,469 -58.57 %
L1 Sectors transferred 8,311,784 8,744,291 +5.20 %

Table 6.5: Selected performance metrics measured by NVIDIA Nsight
Compute for the original Gaussian Rasterizer backward kernel and the
improved version that handles four pixels per thread. The difference in runtime
compared to table 6.4 can be explained to be the usage of NVIDIA Nsight
Compute adding an overhead to the duration.

Similarly, the number of requested sectors decreased massively, however
the actual amount of sectors transferred increased slightly. The reason
for this is that each kernel needs to request less sectors, as they can be
requested together. At the same time, the higher number of necessary transfers
leaves potential room for further improvements, as the memory has not been
optimized to support the handling of four pixels per thread.

Another interesting finding is that the amount of available shared memory
increased. This could indicate that the available hardware does simply not
have enough memory for a kernel where each thread handles only one pixel.
But due to the lower number of threads per block the actual memory per thread
could be increased leading to efficiency gains.

Finally, the achieved occupancy is close to the theoretical occupancy. This
indicates good utilization of the GPU. The improved version has slightly lower
achieved occupancy compared to the theoretical occupancy, but that can be
explained due to higher branching of the kernel as each of the four pixel can
cause a branch in each thread as opposed to just one.

An interesting observation while testing the backward kernel is, that
execution of the kernel is not deterministic. The results of the original kernel
only match the expected results closely in around two-thirds of the runs. Exact
matches could not be reproduced in either case, neither in the original version
nor in any improved kernel. Using the first improved version, where Gaussian
data is grouped together, the output matches in around 80% of the runs, while

92 | Analysis and Optimizations

in the version that processes four pixels at the same time, it matches the
expected output almost 97% of the time.

To validate the results of the improved kernel, it is used to train the entire
model. For this, it is compiled into a Python module and replaces the original
implementation of the Gaussian Rasterizer from 3DGS.

Full training of the model using the original kernel takes around eight and
a half minutes, while full training using the improved kernel needs only around
seven minutes, an improvement of almost 20%.

The model trained with the improved kernel reaches the same level of
quality when reconstructing views, as indicated by a visual comparison of
the resulting pictures and by similar metrics, such as the L1 loss and the
peak signal-to-noise ratio. There are only slight differences due to the
aforementioned changes in the output of the kernel. This also indicates that the
original kernel’s inconsistent outputs are not a necessary feature when training
the model.

As mentioned before, the massive improvement to the backward kernels
runtime is not fully reflected in the almost 20% improvement in computation
time when training the full model. This is due to the training now being bound
by the CPU of the machine the model was trained on.

6.3.3 Conclusion
4DGS [59] is not a complex model that relies on a complex custom kernel
inherited from 3DGS [25]. The extension to dynamic scenes is done fairly
efficiently, as it relies on another model’s efficient architecture, namely
HexPlane [9].

An analysis of the model revealed that the majority of training time
is consumed by the backward kernel of the Gaussian Rasterizer. Further
investigation into this kernel identified multiple opportunities for optimization.
Implementing these improvements resulted in a 75% reduction in the runtime
of the backward kernel, which in turn lead to an almost 20% decrease in the
overall training time of the model.

The model still holds potential for further optimization. One promising
direction is the optimization of the loss calculation, which could be done in
a custom CUDA kernel. Similar improvements, as discussed in section 6.2.2,
suggest that this approach could yield another significant reduction in training
time and could be a direction for future research.

Analysis and Optimizations | 93

6.4 Summary
The analysis of the three distinct model have revealed interesting properties
when relying on a framework like PyTorch. Certain features and functions,
such as neural networks and operations on structured data, like bilinear
interpolation on grids, are useful and well implemented. They can be used
without spending much thought on the underlying implementation, provided
they operate on sufficiently large data. However, due to the necessity to
execute a kernel for every operation involving tensors that are stored on the
GPU, large amounts of these operations introduce a significant overhead,
reducing the efficiency. In these cases it was demonstrated that combining
these operations into a single custom kernel improves performance greatly.
But when writing large custom kernels special care has to be taken, as
performance there can still not be optimal, as seen on the complex backward
kernel for Gaussian rendering. There, despite following best practices when
necessary, small changes in the organization and the grid layout lead to
remarkable improvements on the available hardware. This shows that notable
performance improvements are still possible in modern machine learning
models for NVS.

94 | Analysis and Optimizations

Conclusion and Future Works | 95

Chapter 7

Conclusion and Future Works

This concluding section summarizes the key insights gained from this project.
It also highlights its limitations and discusses potential extensions and future
directions. Finally, the real-world applicability and implications of the
research are reflected upon.

7.1 Conclusions
This thesis examined various models used for novel view synthesis for
dynamic scenes. Three of those were selected for detailed analysis, resulting
in achieving significant improvements for two of them, while possible
enhancements for the third have been discussed.

The research showed that utilizing functions from frameworks like
PyTorch on data structures or implementing small neural networks, results
in highly efficient models. But oftentimes researchers also need to use large
amounts of operations on tensors directly, for example to implement complex
loss functions or rendering algorithms. These are often inefficient and limited
by the CPU, not fully utilizing the available resources on the GPU, despite the
optimization of frameworks like PyTorch. This highlights the importance of
adhering to best practices when developing code that runs on the GPU.

The high level of abstraction offered by PyTorch, while convenient,
can inadvertently lead to inefficient implementations and slower models.
Nevertheless, tools offered by frameworks like PyTorch are essential for
allowing a broad community of scientists to apply their knowledge to
experiment, to innovate, and to advance their respective fields. Even an
initially inefficient implementation can often serve as a stepping stone for more
advanced and optimized approaches, as exemplified by NeRF’s novel approach

96 | Conclusion and Future Works

to NVS in 2020.
By highlighting bottlenecks and improving prominent NVS models, this

project has successfully achieved the goals. It underlines the importance of
specialized hardware knowledge and the knowledge of best practices when
working with it. An important insight is, as conjectured, that many researchers
do not prioritize an optimized approach in their models but focus instead
on novel ideas. Follow-up work occasionally addresses these inefficiencies.
However, such efforts remain rare, especially as the field of NVS advances
very quickly. In most cases, the core contribution of new projects lies in
the innovation to solve a specific problem, with a provided implementation
only serving as a proof of concept. However, in NVS, the longtime goal of
achieving real-time rendering and training performance, researchers must be
aware of custom, hardware-specific implementations, instead of relying solely
on frameworks like PyTorch.

Reflecting on this work, a future direction could be to solely focus
on a single project, such as DynIBaR. It provides ample opportunities to
address bottlenecks in various components including neural networks and
implementing custom code for, e.g., learnable bases or complex loss functions.

7.2 Limitations
The primary limitation of this project was the available hardware, which
fell short of being able to run complex models—particularly DynIBaR—at
their intended configuration. This constraint potentially skewed results, as
improvements might only be viable for low-end systems and not scale to high-
performance computing environments.

While it would have been possible to dissect DynIBaR and to test
individual components in synthetic environments that provide enough data
to saturate the GPU, this approach was not pursued due to the limited time
available and the focus on three models. The chosen methodology has still
yielded valuable insights, even if some might not apply directly to DynIBaR.
Researchers can still apply these to other projects with data-lean pipelines that
do not fully saturate GPU resources.

However, this problem of not fully saturating a GPU becomes increasingly
relevant because of the rapid development of AI accelerators. For example,
new hardware is set to be released in early 2025 by NVIDIA, projected to
deliver more than double the processing power and memory speed of current
top-of-the-line models.

Conclusion and Future Works | 97

7.3 Future work
Future work could focus on extensively improving only a single complex
project, such as DynIBaR, in order to see how much the rendering and training
speed can be improved upon.

Additionally, several possible improvements have been identified in this
project but could not be tested due to time constraints. They provide a
promising direction for further research. On the other hand, some of these
improvements are model specific. Therefore, they do not offer as much value
as the general improvements as those shown in this project.

7.4 Reflections
Helping to advance the field of AI research, especially when increasing its
efficiency, has significant real-world implications. For instance, it is extremely
relevant for energy consumption, as AI research is a particularly power-
hungry field. AI technology is projected to reach global energy consumption
that equals that of a large country like Sweden or Germany in the year of
2026, according to an analysis of the International Energy Agency in 2024
[23]. Raising awareness about efficient implementation practices can directly
combat the climate crisis by reducing the computational power—and therefore
also the energy demand—necessary when training and deploying AI models.
Especially as the research done in this thesis can also be applied to other AI
models.

Moreover, accelerating training and rendering models for NVS opens up
applications in high-fidelity virtual and augmented reality environments and
enables autonomous systems, such as self-driving cars, to develop a robust
understanding of their environment. However, ethical considerations and risks
might become relevant with advanced technology as well.

Improving NVS models can facilitate the creation of images depicting real
individuals in misleading or harmful situations, such as deepfakes. Therefore,
ensuring the responsible usage of such technologies is crucial. While
researchers need to account for these ethical considerations, it is ultimately the
responsibility of today’s policymakers to establish clear regulations in order
to prevent the misuse of these technologies without restricting innovations in
the field.

98 | Conclusion and Future Works

References | 99

References

[1] J. Ansel et al., “PyTorch 2: Faster Machine Learning Through
Dynamic Python Bytecode Transformation and Graph Compilation,”
in 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS
’24), ACM, Apr. 2024. DOI: 10 . 1145 / 3620665 . 3640366.
[Online]. Available: https://pytorch.org/assets/pyto
rch2-2.pdf.

[2] A. Ashari et al., “On optimizing machine learning workloads via
kernel fusion,” SIGPLAN Not., vol. 50, no. 8, pp. 173–182, Jan. 2015,
ISSN: 0362-1340. DOI: 10.1145/2858788.2688521. [Online].
Available: https://doi.org/10.1145/2858788.2688521.

[3] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla,
and P. P. Srinivasan, “Mip-nerf: A multiscale representation for anti-
aliasing neural radiance fields,” ICCV, 2021.

[4] J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hedman,
“Mip-nerf 360: Unbounded anti-aliased neural radiance fields,” CVPR,
2022.

[5] R. Basri and D. W. Jacobs, “Lambertian reflectance and linear
subspaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 2,
pp. 218–233, Feb. 2003, ISSN: 0162-8828. DOI: 10.1109/TPAMI.2
003.1177153. [Online]. Available: https://doi.org/10.11
09/TPAMI.2003.1177153.

[6] J. Bradbury et al., JAX: Composable transformations of Python+NumPy
programs, version 0.3.13, 2018. [Online]. Available: http://gith
ub.com/jax-ml/jax.

[7] Y. Cai, J. Wang, A. Yuille, Z. Zhou, and A. Wang, “Structure-aware
sparse-view x-ray 3d reconstruction,” in CVPR, 2024.

https://doi.org/10.1145/3620665.3640366
https://pytorch.org/assets/pytorch2-2.pdf
https://pytorch.org/assets/pytorch2-2.pdf
https://doi.org/10.1145/2858788.2688521
https://doi.org/10.1145/2858788.2688521
https://doi.org/10.1109/TPAMI.2003.1177153
https://doi.org/10.1109/TPAMI.2003.1177153
https://doi.org/10.1109/TPAMI.2003.1177153
https://doi.org/10.1109/TPAMI.2003.1177153
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax

100 | References

[8] Y. Cai et al., “Radiative gaussian splatting for efficient x-ray novel view
synthesis,” in ECCV, 2024.

[9] A. Cao and J. Johnson, Hexplane: A fast representation for dynamic
scenes, 2023. arXiv: 2301.09632 [cs.CV].

[10] P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Two
deterministic half-quadratic regularization algorithms for computed
imaging,” Proceedings of 1st International Conference on Image
Processing, vol. 2, 168–172 vol.2, 1994. [Online]. Available: https
://api.semanticscholar.org/CorpusID:38030033.

[11] N. Corporation, “Nvidia ada lovelace architecture,” NVIDIA, Tech.
Rep., 2022. [Online]. Available: https://images.nvidia.c
om/aem-dam/Solutions/Data-Center/l4/nvidia-ada
-gpu-architecture-whitepaper-v2.1.pdf.

[12] P. E. Debevec, C. J. Taylor, and J. Malik, “Modeling and rendering
architecture from photographs: A hybrid geometry- and image-based
approach,” in Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’96, New York,
NY, USA: Association for Computing Machinery, 1996, pp. 11–20,
ISBN: 0897917464. DOI: 10 . 1145 / 237170 . 237191. [Online].
Available: https://doi.org/10.1145/237170.237191.

[13] B. Deng, J. T. Barron, and P. P. Srinivasan, JaxNeRF: An efficient JAX
implementation of NeRF, version 0.0, 2020. [Online]. Available: http
s://github.com/google-research/google-research
/tree/master/jaxnerf.

[14] J. Fang et al., “Fast dynamic radiance fields with time-aware neural
voxels,” in SIGGRAPH Asia 2022 Conference Papers, ser. SA ’22,
ACM, Nov. 2022. DOI: 10.1145/3550469.3555383. [Online].
Available: http://dx.doi.org/10.1145/3550469.35553
83.

[15] S. Fridovich-Keil, G. Meanti, F. Warburg, B. Recht, and A. Kanazawa,
K-planes: Explicit radiance fields in space, time, and appearance, 2023.
arXiv: 2301.10241 [cs.CV].

[16] R. Frostig, M. Johnson, and C. Leary, “Compiling machine learning
programs via high-level tracing,” 2018. [Online]. Available: https:
//mlsys.org/Conferences/doc/2018/146.pdf.

https://arxiv.org/abs/2301.09632
https://api.semanticscholar.org/CorpusID:38030033
https://api.semanticscholar.org/CorpusID:38030033
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-v2.1.pdf
https://doi.org/10.1145/237170.237191
https://doi.org/10.1145/237170.237191
https://github.com/google-research/google-research/tree/master/jaxnerf
https://github.com/google-research/google-research/tree/master/jaxnerf
https://github.com/google-research/google-research/tree/master/jaxnerf
https://doi.org/10.1145/3550469.3555383
http://dx.doi.org/10.1145/3550469.3555383
http://dx.doi.org/10.1145/3550469.3555383
https://arxiv.org/abs/2301.10241
https://mlsys.org/Conferences/doc/2018/146.pdf
https://mlsys.org/Conferences/doc/2018/146.pdf

References | 101

[17] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin,
“ FastNeRF: High-Fidelity Neural Rendering at 200FPS,” in 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Los
Alamitos, CA, USA: IEEE Computer Society, Oct. 2021, pp. 14 326–
14 335. DOI: 10 . 1109 / ICCV48922 . 2021 . 01408. [Online].
Available: https://doi.ieeecomputersociety.org/10
.1109/ICCV48922.2021.01408.

[18] I. Goodfellow et al., “Generative adversarial nets,” in Advances in
Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, Eds., vol. 27, Curran
Associates, Inc., 2014. [Online]. Available: https://proceedi
ngs.neurips.cc/paper_files/paper/2014/file/5ca
3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

[19] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The
lumigraph,” in Proceedings of the 23rd Annual Conference on
Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’96,
New York, NY, USA: Association for Computing Machinery, 1996,
pp. 43–54, ISBN: 0897917464. DOI: 10.1145/237170.237200.
[Online]. Available: https://doi.org/10.1145/237170.23
7200.

[20] X. Guo et al., “Forward flow for novel view synthesis of dynamic
scenes,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), Oct. 2023, pp. 16 022–16 033.

[21] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd. Cambridge University Press, 2003, ISBN: 9780521540513.

[22] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P.
Debevec, “Baking neural radiance fields for real-time view synthesis,”
ICCV, 2021.

[23] International Energy Agency (IEA), Electricity 2024, Licence: CC BY
4.0, Paris, 2024. [Online]. Available: https://www.iea.org/re
ports/electricity-2024.

[24] J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,”
SIGGRAPH Comput. Graph., vol. 18, no. 3, pp. 165–174, Jan. 1984,
ISSN: 0097-8930. DOI: 10 . 1145 / 964965 . 808594. [Online].
Available: https://doi.org/10.1145/964965.808594.

https://doi.org/10.1109/ICCV48922.2021.01408
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.01408
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.01408
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://doi.org/10.1145/237170.237200
https://doi.org/10.1145/237170.237200
https://doi.org/10.1145/237170.237200
https://www.iea.org/reports/electricity-2024
https://www.iea.org/reports/electricity-2024
https://doi.org/10.1145/964965.808594
https://doi.org/10.1145/964965.808594

102 | References

[25] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering,” ACM Transactions on
Graphics, vol. 42, no. 4, Jul. 2023. [Online]. Available: https://re
po-sam.inria.fr/fungraph/3d-gaussian-splatting
/.

[26] M. Levoy and P. Hanrahan, “Light field rendering,” in Proceedings of
the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, ser. SIGGRAPH ’96, New York, NY, USA: Association
for Computing Machinery, 1996, pp. 31–42, ISBN: 0897917464. DOI:
10.1145/237170.237199. [Online]. Available: https://doi
.org/10.1145/237170.237199.

[27] T. Li et al., “Neural 3d video synthesis,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2022.

[28] Z. Li, S. Niklaus, N. Snavely, and O. Wang, “Neural scene flow fields
for space-time view synthesis of dynamic scenes,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2021, pp. 6498–6508.

[29] Z. Li and N. Snavely, “Megadepth: Learning single-view depth
prediction from internet photos,” in Computer Vision and Pattern
Recognition (CVPR), 2018.

[30] Z. Li, Q. Wang, F. Cole, R. Tucker, and N. Snavely, “Dynibar: Neural
dynamic image-based rendering,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2023.

[31] Z. Li et al., “Learning the depths of moving people by watching frozen
people,” 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4516–4525, 2019. [Online]. Available: http
s://api.semanticscholar.org/CorpusID:131775632.

[32] L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt, “Neural sparse
voxel fields,” NeurIPS, 2020.

[33] S. Lombardi, T. Simon, J. Saragih, G. Schwartz, A. Lehrmann, and Y.
Sheikh, “Neural volumes: Learning dynamic renderable volumes from
images,” ACM Trans. Graph., vol. 38, no. 4, Jul. 2019, ISSN: 0730-0301.
DOI: 10.1145/3306346.3323020. [Online]. Available: https:
//doi.org/10.1145/3306346.3323020.

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
https://doi.org/10.1145/237170.237199
https://api.semanticscholar.org/CorpusID:131775632
https://api.semanticscholar.org/CorpusID:131775632
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3306346.3323020

References | 103

[34] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a
scene from two projections,” Nature, vol. 293, pp. 133–135, 1981.
[Online]. Available: https : / / api . semanticscholar . org
/CorpusID:4327732.

[35] J. Luiten, G. Kopanas, B. Leibe, and D. Ramanan, Dynamic 3d
gaussians: Tracking by persistent dynamic view synthesis, 2023. arXiv:
2308.09713 [cs.CV].

[36] Martín Abadi et al., TensorFlow: Large-scale machine learning on
heterogeneous systems, Software available from tensorflow.org, 2015.
[Online]. Available: https://www.tensorflow.org/.

[37] N. Max, “Optical models for direct volume rendering,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–
108, 1995. DOI: 10.1109/2945.468400.

[38] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R.
Ramamoorthi, and R. Ng, Nerf: Representing scenes as neural radiance
fields for view synthesis, 2020. arXiv: 2003.08934 [cs.CV].

[39] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural graphics
primitives with a multiresolution hash encoding,” ACM Transactions
on Graphics, vol. 41, no. 4, pp. 1–15, Jul. 2022, ISSN: 1557-7368. DOI:
10.1145/3528223.3530127. [Online]. Available: http://dx
.doi.org/10.1145/3528223.3530127.

[40] T. Neff et al., “DONeRF: Towards Real-Time Rendering of Compact
Neural Radiance Fields using Depth Oracle Networks,” Computer
Graphics Forum, vol. 40, no. 4, 2021, ISSN: 1467-8659. DOI: 10.11
11/cgf.14340. [Online]. Available: https://doi.org/10.1
111/cgf.14340.

[41] NVIDIA, Using nsight compute to inspect your kernels, https://de
veloper.nvidia.com/blog/using-nsight-compute-t
o-inspect-your-kernels/, Accessed: 2024-12-10, Sep. 2019.

[42] B. Park and C. Kim, “Point-dynrf: Point-based dynamic radiance fields
from a monocular video,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), Jan. 2024,
pp. 3171–3181.

[43] K. Park et al., “Hypernerf: A higher-dimensional representation for
topologically varying neural radiance fields,” ACM Trans. Graph.,
vol. 40, no. 6, Dec. 2021.

https://api.semanticscholar.org/CorpusID:4327732
https://api.semanticscholar.org/CorpusID:4327732
https://arxiv.org/abs/2308.09713
https://www.tensorflow.org/
https://doi.org/10.1109/2945.468400
https://arxiv.org/abs/2003.08934
https://doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
http://dx.doi.org/10.1145/3528223.3530127
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1111/cgf.14340
https://doi.org/10.1111/cgf.14340
https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/
https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/
https://developer.nvidia.com/blog/using-nsight-compute-to-inspect-your-kernels/

104 | References

[44] K. Park et al., “Nerfies: Deformable neural radiance fields,” ICCV,
2021.

[45] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32, Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/pa
per_files/paper/2019/file/bdbca288fee7f92f2bfa
9f7012727740-Paper.pdf.

[46] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-
NeRF: Neural Radiance Fields for Dynamic Scenes,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[47] N. Rahaman et al., “On the spectral bias of neural networks,”
in Proceedings of the 36th International Conference on Machine
Learning, K. Chaudhuri and R. Salakhutdinov, Eds., ser. Proceedings
of Machine Learning Research, vol. 97, PMLR, Jun. 2019, pp. 5301–
5310. [Online]. Available: https://proceedings.mlr.press
/v97/rahaman19a.html.

[48] R. Ramamoorthi and P. Hanrahan, “On the relationship between
radiance and irradiance: Determining the illumination from images of
a convex lambertian object,” Journal of the Optical Society of America
A, vol. 18, pp. 2448–2459, Oct. 2001. DOI: 10.1364/JOSAA.18.0
02448.

[49] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun,
“ Towards Robust Monocular Depth Estimation: Mixing Datasets
for Zero-Shot Cross-Dataset Transfer,” IEEE Transactions on Pattern
Analysis & Machine Intelligence, vol. 44, no. 03, pp. 1623–1637, Mar.
2022, ISSN: 1939-3539. DOI: 10.1109/TPAMI.2020.3019967.
[Online]. Available: https://doi.ieeecomputersociety.o
rg/10.1109/TPAMI.2020.3019967.

[50] A. Rivers, F. Durand, and T. Igarashi, “3d modeling with silhouettes,”
ACM Trans. Graph., vol. 29, no. 4, Jul. 2010, ISSN: 0730-0301. DOI:
10.1145/1778765.1778846. [Online]. Available: https://d
oi.org/10.1145/1778765.1778846.

https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.mlr.press/v97/rahaman19a.html
https://proceedings.mlr.press/v97/rahaman19a.html
https://doi.org/10.1364/JOSAA.18.002448
https://doi.org/10.1364/JOSAA.18.002448
https://doi.org/10.1109/TPAMI.2020.3019967
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3019967
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3019967
https://doi.org/10.1145/1778765.1778846
https://doi.org/10.1145/1778765.1778846
https://doi.org/10.1145/1778765.1778846

References | 105

[51] Sara Fridovich-Keil and Alex Yu, M. Tancik, Q. Chen, B. Recht, and
A. Kanazawa, “Plenoxels: Radiance fields without neural networks,” in
CVPR, 2022.

[52] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revisited,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 4104–4113.

[53] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm, “Pixelwise
view selection for unstructured multi-view stereo,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2016, pp. 501–
518.

[54] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for
real-time rendering in dynamic, low-frequency lighting environments,”
ACM Trans. Graph., vol. 21, no. 3, pp. 527–536, Jul. 2002, ISSN: 0730-
0301. DOI: 10.1145/566654.566612. [Online]. Available: http
s://doi.org/10.1145/566654.566612.

[55] C. Sun, M. Sun, and H. Chen, “Direct voxel grid optimization: Super-
fast convergence for radiance fields reconstruction,” in CVPR, 2022.

[56] C. Sun, M. Sun, and H.-T. Chen, Improved direct voxel grid optimization
for radiance fields reconstruction, 2022. arXiv: 2206 . 05085
[cs.GR]. [Online]. Available: https://arxiv.org/abs/2
206.05085.

[57] F. Wang, Z. Chen, G. Wang, Y. Song, and H. Liu, Masked space-time
hash encoding for efficient dynamic scene reconstruction, 2023. arXiv:
2310.17527 [cs.CV].

[58] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang, “Pixel2mesh:
Generating 3d mesh models from single rgb images,” in Proceedings of
the European Conference on Computer Vision (ECCV), Sep. 2018.

[59] G. Wu et al., 4d gaussian splatting for real-time dynamic scene
rendering, 2023. arXiv: 2310.08528 [cs.CV].

[60] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum, “Learn-
ing a probabilistic latent space of object shapes via 3d generative-
adversarial modeling,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, ser. NIPS’16,
Barcelona, Spain: Curran Associates Inc., 2016, pp. 82–90, ISBN:
9781510838819.

https://doi.org/10.1145/566654.566612
https://doi.org/10.1145/566654.566612
https://doi.org/10.1145/566654.566612
https://arxiv.org/abs/2206.05085
https://arxiv.org/abs/2206.05085
https://arxiv.org/abs/2206.05085
https://arxiv.org/abs/2206.05085
https://arxiv.org/abs/2310.17527
https://arxiv.org/abs/2310.08528

106 | References

[61] Q. Xu et al., “Point-nerf: Point-based neural radiance fields,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 5438–5448.

[62] Z. Yang, X. Gao, W. Zhou, S. Jiao, Y. Zhang, and X. Jin,
“Deformable 3d gaussians for high-fidelity monocular dynamic scene
reconstruction,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 20 331–20 341.

[63] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa, “PlenOctrees
for real-time rendering of neural radiance fields,” in ICCV, 2021.

[64] K. Zhang, G. Riegler, N. Snavely, and V. Koltun, “Nerf++: Analyzing
and improving neural radiance fields,” arXiv:2010.07492, 2020.

[65] H. Zhao et al., “Tacker: Tensor-cuda core kernel fusion for improving
the gpu utilization while ensuring qos,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA),
2022, pp. 800–813. DOI: 10.1109/HPCA53966.2022.00064.

https://doi.org/10.1109/HPCA53966.2022.00064

TRITA-EECS-EX-2025:93
Stockholm, Sweden 2025

www.kth.se

	Introduction
	Background
	Problem
	Related Work
	Purpose
	Scope and Research Methodology
	Structure of the Thesis

	Novel View Synthesis
	Mathematical Background
	Volumetric Rendering
	Positional Encodings
	Gaussian Splatting
	Spherical Harmonics

	Static Scenes
	NeRF: Radiance Fields based on MLPs
	Extensions of NeRF
	Representation through Voxel Grids and other Data Structures
	Representation of a scene using Gaussians

	Dynamic scenes
	Expanding Implicit Models to Dynamic Scenes
	Explicit and Hybrid Approaches to Dynamic Scenes
	Hash-table based approach
	Gaussian Splatting and Point Based Methods for Dynamic Scenes

	Summary

	GPU Architecture
	Modern GPU-architecture
	Core Layout
	Tensor Cores
	Memory Layout
	Execution and Best Practices

	Interfacing with a GPU

	Methods
	Benchmarking Python Code
	Using cProfile

	Benchmarking and Analyzing Code with CUDA-kernels
	The PyTorch profiler

	Using NVIDIA Nsight to Analyze Memory Access Patterns
	GPU Traces
	System Documentation

	Model Selection
	Model selection
	HexPlane
	Mathematical Background
	Implementation Details

	DynIBaR
	Mathematical Background
	Implementation Details

	4D Gaussian Splatting
	Mathematical Background
	Implementation Details

	Analysis and Optimizations
	HexPlane
	Performance Analysis
	Possible Optimizations
	Conclusion

	DynIBaR
	Performance Analysis
	Improvements
	Conclusion

	4D Gaussian Splatting
	Performance Analysis
	Improving the Gaussian Rasterizer Backward Kernel
	Conclusion

	Summary

	Conclusion and Future Works
	Conclusions
	Limitations
	Future work
	Reflections

	References

