
Degree Project in Computer Science and Engineering

Second cycle, 30 credits

Federated hierarchical clustering for
RNA sequencing data

ASTRID NILSSON

Federated hierarchical clustering
for RNA sequencing data

ASTRID NILSSON

Degree Programme in Computer Science and Engineering
Date: March 25, 2025

Supervisors: Boris Muzellec, Pawel Herman
Examiner: Ivy Peng

School of Electrical Engineering and Computer Science
Host company: Owkin
Swedish title: Federerad hierarkisk klustring för RNA-sekvenseringsdata

© 2025 Astrid Nilsson

Abstract | i

Abstract
Genetic data, and in particular RNA sequencing data analysis is crucial in our
understanding of cancer, helping us prevent, diagnose and treat it. However,
it is usually not easily accessible; because of its high sensitivity with regards
to patient confidentiality, medical centers cannot often share it with research
institutions. As a consequence, researchers are not able to leverage the power
of big data in their models.

Federated computations have been introduced to find a trade-off between
privacy and model quality. Federated algorithms are executed over distributed
datasets, without the medical centers ever sharing their raw data directly,
by communicating locally aggregated quantities instead. While this is
rather straightforward for gradient-based methods, it is more challenging to
apply to many unsupervised algorithms, especially those involving pairwise
distances between points located in different data centers. Yet, genetic data
analysis pipelines – and notably the quality control or exploratory steps –
rely on hierarchical agglomerative clustering, which crucially depends on such
distances.

We develop two approaches for federated agglomerative clustering of
genetic data, and investigate their privacy properties, performance and
complexity. We find the best quality for single and average linkage when
testing them on bulk RNA sequencing data.

The first approach closely follows the classic agglomerative procedure; it
approximates local point groups as their centroid once they reach a critical size
in order to share them. We empirically observe that the critical size can be as
much as 10% of the total data size while maintaining a great performance.

The second approach is based on computing the distance matrix centrally
using random projections, a technique that can be employed for many other
algorithms. It experimentally leads to satisfactory results for a significant
dimensionality reduction. Privacy-wise, we attempt several attack models
against this approach, which do not succeed on genetic data, indicating that
collusion is the biggest threat for this method.

Keywords
Federated analytics, Hierarchical clustering, Transcriptomics

ii | Abstract

Sammanfattning | iii

Sammanfattning
Genetiska data, och i synnerhet analys av RNA-sekvenseringsdata, är avgö-
rande för vår förståelse av cancer och hjälper oss att förebygga, diagnostisera
och behandla sjukdomen. Dessa data är dock vanligtvis inte lättillgängliga;
på grund av deras höga känslighet när det gäller patientsekretess kan
vårdcentraler ofta inte dela dem med forskningsinstitutioner. Följden blir att
forskarna inte kan utnyttja kraften i stordata i sina modeller.

Federerade beräkningar har introducerats för att hitta en avvägning mellan
integritet och modellkvalitet. Federerade algoritmer körs över distribuerade
dataset utan att vårdcentralerna någonsin delar med sig av sina rådata direkt,
utan kommunicerar istället lokalt aggregerade mängder. Även om detta är
ganska enkelt för gradientbaserade metoder är det mer utmanande att tillämpa
på många oövervakade algoritmer, särskilt de som involverar parvisa avstånd
mellan punkter som ligger i olika datacenter. Ändå förlitar sig pipelines för
analys av genetiska data - och särskilt kvalitetskontrollen eller de utforskande
stegen - på hierarkisk agglomerativ klustring, som i hög grad beror på sådana
avstånd.

Vi utvecklar två metoder för federerad agglomerativ klustring av genetiska
data och undersöker deras integritetsegenskaper, prestanda och komplexitet.
Vi finner den bästa kvaliteten för enkel och genomsnittlig koppling när vi testar
dem på bulk RNA-sekvenseringsdata.

Den första metoden följer nära den klassiska agglomerativa proceduren;
den approximerar lokala punktgrupper som deras centroid när de når en
kritisk storlek för att kunna dela dem. Vi observerar empiriskt att den kritiska
storleken kan vara så mycket som 10% av den totala datastorleken med
bibehållen hög prestanda.

Det andra tillvägagångssättet bygger på att avståndsmatrisen beräknas
centralt med hjälp av slumpmässiga projektioner, en teknik som kan användas
för många andra algoritmer. Den leder experimentellt till tillfredsställande
resultat för en betydande dimensionalitetsreduktion. När det gäller integri-
tetsskydd försöker vi oss på flera modeller för att attackera denna metod,
men dessa lyckas inte med genetiska data, vilket tyder på att hemliga
överenskommelser är det största hotet mot den metoden.

Nyckelord
Federerade analyser, Hierarkisk klustring, Transkriptomik

iv | Sammanfattning

Résumé | v

Résumé
L’analyse de données génétiques, et en particulier de données de

séquençage d’ARN, est cruciale pour notre compréhension du cancer, nous
aidant à le prévenir, le diagnostiquer et le traiter. Cependant, ces données
ne sont pas toujours facilement accessibles ; étant hautement sensibles et
confidentielles, les centres médicaux peuvent rarement les partager avec des
instituts de recherche. Par conséquent, les chercheurs ne peuvent pas tirer parti
du potentiel des données massives pour créer leurs modèles.

Les calculs fédérés ont été introduits afin de trouver un compromis entre
confidentialité et qualité des modèles. Les algorithmes fédérés sont exécutés
sur des bases de données distribuées, sans que les centres médicaux aient
à partager leurs données brutes directement, ceux-ci communicant plutôt
des quantités agrégées localement. Si cela est relativement simple pour
les méthodes de gradient, c’est plus difficile à appliquer à bon nombre
d’algorithmes non-supervisés, notamment ceux impliquant des distances entre
des points localisés dans des centres de données distincts. Or, l’analyse
de données génétiques – particulièrement les étapes exploratoires ou de
contrôle de qualité – repose généralement sur le regroupement hiérarchique
agglomératif, qui dépend crucialement de telles distances.

Nous développons deux approches pour le regroupement agglomératif
fédéré des données génétiques, et examinons leur degré de confidentialité, per-
formance et complexité. Nous trouvons la meilleure qualité de regroupement
pour les liens simple et moyen lors de tests sur des données de séquençage en
masse d’ARN.

La première approche suit étroitement la procédure agglomérative
classique ; elle remplace des groupes de points par leur centroïde lorsqu’ils
dépassent une taille critique pour les partager. Nous observons empiriquement
que la performance est maintenue pour une taille critique de 10% de la taille
totale des données.

La seconde approche est basée sur le calcul de la matrice de distance via
des projections aléatoires, une technique utile pour bien d’autres algorithmes.
Expérimentalement, les résultats sont satisfaisants pour une réduction de
dimension significative. En terme de confidentialité, nous tentons plusieurs
attaques contre cette stratégie, qui échouent sur les données génétiques,
indiquant que la collusion reste la principale menace pour cette méthode.

vi | Résumé

Mots-clés
Analyse fédérée, Regroupement hiérarchique, Transcriptomique

Acknowledgments | vii

Acknowledgments
First, I would like to thank Boris Muzellec for all his guidance and kindness
throughout this thesis. I learnt a lot and had a very enjoyable experience during
this work thanks to him.

I would also like to thank every member of the Fundamental Machine
Learning team at Owkin for their warm welcome and their valuable advice
in this thesis.

Finally, many thanks to Pawel Herman for all his feedback and suggestions,
which really helped improve the quality of this thesis.

Paris, France, March 2025
Astrid Nilsson

viii | Acknowledgments

Contents | ix

Contents

1 Introduction 1
1.1 Research Question . 3
1.2 Purpose . 3
1.3 Research Methodology . 4
1.4 Delimitations . 4
1.5 Structure of the thesis . 4

2 Background 7
2.1 Federated computations . 7

2.1.1 Federated learning 7
2.1.2 Federated analytics 8
2.1.3 Attacks on federated computations 9

2.2 Hierarchical clustering . 10
2.2.1 Agglomerative clustering 11

2.2.1.1 Linkage methods and properties 11
2.2.1.2 Time complexity 12

2.2.2 Approximate agglomerative clustering 14
2.3 RNA-Seq data analysis . 15

2.3.1 RNA sequencing . 15
2.3.2 Differential expression analysis 16

2.4 Private distance computation 16
2.4.1 Orthogonal perturbations 17
2.4.2 Random projections 19

2.4.2.1 Definition 19
2.4.2.2 Bounds for specific problems 19
2.4.2.3 Privacy-preserving properties 20

2.4.3 Multidimensional scaling 21
2.4.4 Stable distributions 21

2.4.4.1 Definition 21

x | Contents

2.4.4.2 ℓp distance estimation 22
2.5 Related work . 22

2.5.1 Secure multiparty computation 22
2.5.2 Differential privacy 23

3 Methods 25
3.1 The Cancer Genome Atlas 26

3.1.1 Federated simulations with TCGA 27
3.1.2 RNA-Seq data preprocessing 27

3.2 Experimental design . 29
3.2.1 Simulation of the federated environment 29
3.2.2 Complexity and communication cost 30
3.2.3 Performance metrics 30

3.2.3.1 Cophenetic distance measures 31
3.2.3.2 Flat clustering measures 32

3.2.4 Privacy analysis . 33
3.2.5 Hardware/Software to be used 33

3.3 Federated hierarchical clustering approaches 34
3.3.1 Federated genewise clustering 34

3.3.1.1 Federated gene pairwise distance 35
3.3.1.1.1 Minkowski distance 35
3.3.1.1.2 Cosine distance 35
3.3.1.1.3 Correlation distance 36

3.3.1.2 Algorithm description 36
3.3.2 A centroid-based approach for federated samplewise

clustering . 37
3.3.2.1 A first scheme with simultaneous sharing of

local clusterings 38
3.3.2.2 Analysis 38

3.3.3 Gradual sharing of local clusters for the win 39
3.3.3.1 Federated distance update 40
3.3.3.2 Validity for approximate centroid and Ward

linkages 41
3.3.3.3 Centroid sharing and distance correction . . 42
3.3.3.4 Algorithm summary 43

3.3.4 Random projections for federated samplewise clustering 43
3.3.4.1 Algorithm description 45
3.3.4.2 Privacy analysis through attacks 46

Contents | xi

3.3.4.2.1 Known input-output attack on
orthogonal projections 46

3.3.4.2.2 Property inference attack with a
classifier 47

3.3.4.2.3 Reconstruction attack 48
3.3.4.2.4 Attack models training and pa-

rameters 50

4 Results and Analysis 51
4.1 Federated genewise clustering 51

4.1.1 Complexity analysis 51
4.1.2 Privacy analysis . 52

4.2 Centroid-based clustering approach 52
4.2.1 Complexity and privacy analysis 52

4.2.1.1 Complexity of the algorithm with simulta-
neous sharing of local centroids 52

4.2.1.2 Complexity of the algorithm with gradual
sharing of local centroids 53

4.2.1.3 Privacy analysis 54
4.2.2 Performance on a toy example: the bimodal dataset . . 55
4.2.3 Performance on TCGA 55

4.2.3.1 Performance of the algorithm with simulta-
neous sharing of local centroids 56

4.2.3.2 Performance of the algorithm with gradual
sharing of local centroids 57

4.2.3.3 Inversion issues 58
4.3 Random projection clustering 61

4.3.1 Complexity and communication cost analysis 61
4.3.2 Performance on toy datasets 61
4.3.3 Performance on TCGA 64

4.3.3.1 Clustering performance for the Euclidean
metric . 64

4.3.3.2 Performance comparison across metrics . . 66
4.4 Attacks on random projections 68

4.4.1 Known input-output attack 68
4.4.2 Property inference attack 69
4.4.3 Reconstruction attack 71

4.4.3.1 Median of ratios preprocessing tests 71
4.4.3.2 VST preprocessing tests 72

xii | Contents

4.5 Summary . 73
4.5.1 Algorithms performance analysis 73
4.5.2 Attacks analysis . 75

4.6 Samplewise clustering methods comparison 75

5 Discussion 77
5.1 Summary of our findings and their relevance 77

5.1.1 Key findings . 77
5.1.2 Impact of our work 78

5.1.2.1 Federated analytics 78
5.1.2.2 Gene expression analysis 79

5.2 Ethical and sustainability considerations 80
5.2.1 Concerns about data privacy regarding the TCGA

dataset . 80
5.2.2 Ethical questions . 80
5.2.3 Sustainability issues 81

5.3 Limitations . 81

6 Conclusions and Future work 83
6.1 Conclusions . 83
6.2 Future work . 84

References 87

A Limitations of the CCC with an example 99

List of Figures | xiii

List of Figures

2.1 Dendrogram generated by agglomerative clustering of isotropic
Gaussian blobs . 10

2.2 Dendrogram inversion caused by non-reducibility of centroid
linkage . 13

2.3 Heatmap of the gene expression of 50 samples across 100
genes from a breast cancer dataset 17

3.1 PCA of the TCGA dataset normalized with the median of
ratios method. 29

3.2 PCA of the TCGA dataset normalized with VST. 29
3.3 Dendrogram generated from single linkage clustering with an

example of cophenetic example 31
3.4 Impact of local cut to get clusters of at least size 2 with

simultaneous sharing scheme 39
3.5 Scheme of the gradual sharing of centroids 40
3.6 Outline of the projection-invariant classifier for predicting

gender from RNA-Seq data. 48

4.1 2D bimodal dataset divided in 3 federated centers. 56
4.2 CCC evolution with the threshold size for the bimodal dataset . 56
4.3 Evolution of two clustering metrics with the minimum cluster

size for the simultaneous sharing of local clusterings scheme . 57
4.4 Clustering performance with gradual sharing for similarly-

sized TCGA datasets . 59
4.5 Clustering performance at nmin = 10% with gradual sharing

for all VST datasets . 60
4.6 A dendrogram with inversions: pairs of clusters merge to

form a cluster with lower height than the individual clusters
composing it. 61

xiv | List of Figures

4.7 Mean CCC difference between enforced monotonocity and
original federated algorithm 62

4.8 Cophenetic correlation coefficient evolution using the random
projection scheme on two toy datasets 63

4.9 Convergence of Adjusted Rand index between pooled and
federated clusterings on a toy dataset 63

4.10 Adjusted Rand index convergence with a dataset made of 500
points sampled from 5 isotropic Gaussian clusters 64

4.11 Performance of random Euclidean projection scheme on VST
counts for two RNA-Seq datasets 65

4.12 Relative cophenetic error of clustering with Euclidean random
projection with different linkages for BRCA preprocessed with
size factors. 66

4.13 Evaluation of random projection scheme with the sketch size
on PAAD counts preprocessed with VST 67

4.14 Relative error of the known input-output attack with the size
factors normalization for the PAAD (left) and PRAD (right)
datasets. 68

4.15 Relative error of the known input-output attack with the VST
normalization for the SKCM (left) and PRAD (right) datasets. 69

4.16 Test accuracy of gender prediction from projected TCGA data 70
4.17 Comparison of the reconstruction error on TCGA when using

a simple VS complex decoder 72
4.18 Initializing the decoder as the projection’s pseudo-inverse

improves reconstruction . 73
4.19 Comparison of the reconstruction error on TCGA between the

size factors and VST methods, using all genes 74

A.1 Dataset containing 3 blobs and one strong outlier (left) and its
clustering representation (right) - the outlier is merged with
the other points at the very last step 99

List of Tables | xv

List of Tables

2.1 Cluster distance definition and update formula for several
linkage methods . 12

3.1 The different transcriptomics datasets from the Cancer
Genome Atlas . 26

4.1 Algorithm comparison between the centroid and projection-
based approaches . 76

xvi | List of Tables

List of acronyms and abbreviations | xvii

List of acronyms and abbrevia-
tions

ARI adjusted Rand index

CCC cophenetic correlation coefficient

DEA differential expression analysis
DP differential privacy

FedAVG federated averaging
FL federated learning
FMI Fowkles-Mallows index

HC hierarchical clustering

ICA independent component analysis

JL Johnson-Lindenstrauss

LSH locality-senstive hashing

MDS multidimensional scaling
ML machine learning
MMD maximum mean discrepancy
MSE mean square error
MST minimum spanning tree

PCA principal component analysis
PDF probability density function

xviii | List of acronyms and abbreviations

RKHS reproducing kernel Hilbert space
RNA-Seq ribonucleic acid sequencing

SGD stochastic gradient descent
SMPC secure multiparty computation

TCGA the Cancer Genome Atlas

VST variance-stabilizing transformation

List of Symbols Used | xix

List of Symbols Used

The following symbols will be later used within the body of the thesis.

x̄ Average of the coordinates of x, . page 36

∥ · ∥ The Euclidean or ℓ2 norm, . page 17

d
= equals in distribution, . page 21

S(p, γ) p-stable distribution of scale γ, . page 21

xx | List of Symbols Used

Introduction | 1

Chapter 1

Introduction

Genetic data analysis bolsters our understanding of how the human body
functions and has many applications in healthcare. In particular, it can help
prevent [1], diagnose [2], and treat [3] serious diseases such as cancer.

Here we focus on one data modality called ribonucleic acid sequencing
(RNA-Seq) [4], which represents the gene expression as inferred from the
sequencing of the RNA (i.e the resulting code from the transcription of the
DNA). A particularity of RNA-Seq data is its high dimensionality, with tens
of thousands of genes usually involved in the analysis. One of the main uses
of RNA-Seq data is for differential expression analysis (DEA) [5], which
compares the transcriptomic expression genewise and/or samplewise. DEA
can help understand which genes are correlated and thus potentially involved
in the same bodily functions. It can also uncover genes that are under- or over-
expressed for certain subtypes, which is to say groups of people that share
the same characteristics, such as a certain disease profile. A big part of the
DEA process is quality control. It is notably achieved by checking visually or
quantitatively that the data behaves as expected, using clustering or principal
component analysis (PCA) for example.

In that regard, hierarchical clustering (HC) [6] – a stratified grouping
procedure on data points – is often a key part of the genetic data analysis
pipeline [7, 8]. Contrary to other clustering algorithms, it shows relationships
between points at different levels, from strict to broad associations. The classic
approach for this algorithm is bottom-up [9]; all points begin as their own
cluster, and at each step, the two closest clusters are merged. The notion of
cluster distance is determined by a parameter called the linkage. For instance,
with single linkage, the distance between two given clusters is defined as the
minimum distance across all pairs of points with one in the first cluster and

2 | Introduction

another in the second cluster. HC can be used for several purposes, including
identifying outliers or making sure that expected clusters are indeed present
in the hierarchy.

In the context of RNA-Seq data analysis, there are unmistakable privacy
concerns with the sharing of people’ genetic code [10] so as to execute
algorithms such as HC over them. Indeed, genetic sequences contains sensitive
information that could be used to identify patients or discriminate them when
in the wrong hands. For instance, an insurance company with access to
someone’s genetic information could decide to increase their pricing if they are
likely to develop a certain disease. Given that it is critical to protect people’s
genetic confidentiality, a lot of genetic data is stored privately by medical
institutions and cannot be leveraged for machine learning (ML) algorithms,
or with increased difficulty. One way to preserve confidentiality throughout
computations is secure multiparty computation (SMPC) [11]. It usually relies
on cryptography tools to perform secure operations on the data, which is
often quite costly in practice. Another privacy paradigm, Differential privacy
(DP) [12], is a theoretical framework to analyze the anonymity provided by
a mechanism. It is usually used when adding random noise to the outputs,
in cases where the averaged output should not be affected too much by the
extra noise. However, these approximations are not adapted for genetic data
analysis, which requires precise computations.

Recently, the paradigm of federated learning (FL) has been proposed [13,
14] in order to deploy training of ML models over a network of distributed
clients that want their data to remain private. To that end, the raw data stays in
the local clients at all steps of the process, and only model parameters or non-
sensitive information is communicated in the network. The typical FL setting
is that of [13], in which the goal is to train a neural network among different
clients who communicate with a central server. At each epoch, every client
executes a training step with the current model, then sends its local gradient
to the server. The latter averages all gradients to update the model, which can
now be sent back to the clients. Lately, the concept of federated analytics [15]
has been explored, in order to extend the principle of FL to other data science
algorithms which are not gradient-based. However, federated algorithms are
still lacking in many statistical pipelines, whether in visualization, clustering
or specific to a certain application domain. Analysis of genetic sequencing
data usually relies on the latter type of pipelines, meaning that it is currently
hard to deploy a federated set-up to exploit genetic data securely. In particular,
HC is a staple of genetic data analysis but has no standard federated equivalent.
Therefore, our work aims at studying this specific issue to enhance federated

Introduction | 3

pipelines on medical data.

1.1 Research Question
Federated analytics is a relatively new domain, with existing efforts on
federating methods for PCA [16] or k-means clustering [17] for example.
Currently, there is no well-established federated algorithm for HC. Therefore,
the goal of this project is to study a federated approach to HC for practical use
by data scientists. We propose the following research question:

What is the effect of federating the HC of genetic data on performance
and complexity, compared with the equivalent unfederated algorithms?
Additionally, how do such federated approaches measure up in terms of data
privacy?

1.2 Purpose
Our purpose is to provide a federated algorithm for a standard HC approach
with pooled-equivalent or close performance for a high privacy level on the
genetic sequencing data.

Thus, the contribution is two-fold. On the one hand, we propose
unsupervised federated analytics tools; while we focus on HC in this work,
we assume the approach could potentially help federate other unsupervised
algorithms utilized by bioinformaticians.

On the other hand, the work can bolster federated analytics pipelines in real
applications, such as DEA in genetics. Clustering is a staple in exploratory
data analysis, which can help uncover patterns, errors and outliers in the data
before developing a model. Thus, having a federated HC algorithm would
be very helpful in many projects where the data access is federated only.
Contrary to many clustering algorithms, it does not require to input the number
of clusters beforehand, making it a compelling alternative to k-means in the
federated toolbox.

The project also adresses concerns about data privacy in artificial
intelligence algorithms. It raises ethical questions in the sense that the privacy
level of the algorithm has to be extensively studied so as to prevent data leaks.

4 | Introduction

1.3 Research Methodology
We develop federated methods for HC with the specific application of RNA-
Seq data in mind. This has several implications. First, our method should
be robust for high-dimensional data. Then, privacy-wise, we assume that
genewise information is non-sensitive, whereas samplewise information is
strictly confidential and should not be shared with the server.

In this work, we propose methods for both genewise and samplewise
clustering. We analyze them in terms of performance – if not pooled-
equivalent, using HC metrics on real RNA-Seq datasets – complexity and
communication cost. We also examine the privacy level, by observing what
quantities are shared and what can be learnt from them. Thus, we evaluate
algorithms both in terms of theoretical aspects and empirical properties on
real gene expression data.

1.4 Delimitations
First, all federated experiments in this project are simulated. While this means
we cannot judge the time complexity and communication price empirically,
it signifies we can focus more on the algorithmic perspective, as well as the
practical quality and privacy in our experiments. Undoubtedly, the end goal
is to adapt our developed methods into a federated software so that it can be
used in practice.

Then, note that we only study HC from the federated viewpoint, and
not other parts of the genetic data analysis pipeline. In particular, we do
not federate preprocessing methods for RNA-Seq data. In our experiments,
we assume that they are available and thus that our distributed data can be
preprocessed as pooled while remaining in the medical centers.

Finally, we try to rely as little as possible on privacy-enhancing paradigms
other than the federated one. Mainly, we would like to avoid SMPC because
of its high complexity cost, and DP as adding noise to our outputs is often
incompatible with the precision required in bioinformatics.

1.5 Structure of the thesis
Chapter 2 expands on the notions of federated computations, HC, RNA-Seq
and private algorithms. Chapter 3 introduces the methodology we use to
solve our problem. In particular, in section 3.3, we present our algorithms for

Introduction | 5

federated clustering and analyze them theoretically. Chapter 4 displays our
empirical results on real and synthetic data. Finally, we discuss our findings
in chapter 5 and explore limitations and possible future work in chapter 6.

6 | Introduction

Background | 7

Chapter 2

Background

This chapter first describes the principles of federated computations. Then, it
provides information about HC algorithms. It also presents RNA sequencing
and gene expression analysis. Additionally, it describes private distance
computation techniques as well as related privacy-preserving work.

2.1 Federated computations
Most ML algorithms are trained in a centralized fashion: the server aggregates
the data from different sources before training a model with it. This creates
obvious privacy issues when the data is sensitive, as is often the case in defense
or pharmaceutical – including genomics-related [10] – applications. This has
led researchers to investigate a federated setting, where the data remains in the
data centers but the model still benefits from all datasets.

2.1.1 Federated learning
FL, introduced in [13, 14], is a paradigm in which a model is trained by a
server using local datasets it does not have access to. In the classical federated
setting, at the start of each epoch, the model parameters are shared with all
centers, who perform one or several rounds of local training. Next, they each
send their gradients to the central server, which performs an average of the
local gradients to update the weights. Several strategies have been developed
to better this federated averaging (FedAVG) scheme to reduce the number of
communication rounds and improve performance in heterogeneous datasets
[18, 19].

FedAVG is especially effective given that most deep learning problems

8 | Background

optimize a seperable loss, i.e a loss Ltot that is a function of the individual
losses L on each data point: Ltot(θ, x) = f((Ltot(θ, xi))1≤i≤n) where x ∈
Rn×d is the training data, θ the trained parameters and f : Rn → R a function.
This is the case of popular losses like the mean square error (MSE) loss or the
cross-entropy loss for instance.

Two major distribution settings exist in FL [20]:

• cross-device FL, in which a large number of small devices such
as mobile phones store the data, and training can be completely
decentralized

• cross-silo FL, where a small number of entities with high computational
power own larger datasets

A significant difference between the two is that devices are usually allowed
to drop out of training at any step, for instance when they have low battery or no
internet connection. On the other hand, in cross-silo FL, clients are assumed
to be stateful: they are present at every round of communication.

The cross-silo setting is especially relevant in healthcare, where hospitals
have sensitive medical data which they do not want to share. With FL, they are
able to create a powerful model based on more than their own patients’ data
[21].

2.1.2 Federated analytics
The federated paradigm has mostly been applied to deep learning. However,
a lot of ML pipelines include other critical steps such as normalization,
clustering, visualization or statistical methods. This is notably the case in
bioinformatics and RNA-Seq data analysis. Thus, the federated framework
has been extended to federated analytics [15].

For instance, [22] have developed a federated version of a preprocessing
protocol, the Yeo-Johnson transform. They have reduced the problem to a
log-likelihood maximisation problem solved with an exponential search. PCA
has also been studied in this context, with the different federated algorithms
analysed and compared in [16].

In terms of clustering, k-means has received the most attention. The
authors of [17] have proposed a solution based on mini-batch gradient descent.
In [23], a local k(z)-means is run for each client C(z) and the cluster centroids
are then sent to the server. The latter then performs one round of Lloyd’s
algorithm to cluster these into k groups.

Background | 9

Another clustering approach is explored in [24], where they circumvent
the difficulties of unsupervised federated analytics by reducing the problem to
a traditional FL one. More specifically, they first train an autoencoder on the
data with FL and then share the latent space representation with the server,
which can then use any clustering algorithm.

To our knowledge, there is no purely federated approach for HC in the
literature. All privacy-preserving methods seem to rely on other notions such
as cryptography or differential privacy (more details in section 2.5).

2.1.3 Attacks on federated computations
In the general case and in the absence of other privacy-preserving tools, FL is
not guaranteed to protect the privacy of clients. Even when the raw data is not
directly shared with the server, this does not mean that an attacker cannot learn
anything. The quantities that are shared to the server during computations –
e.g, the gradients in FL – can potentially leak information about the local data.
Let us present a few common attacks:

• the property inference attack [25] aims at deducing some properties of
the training data, such as class proportions or metadata

• the membership inference attack [26] tries to find whether a particular
sample was used or not during model training

• the reconstruction attack uses model parameters, confidence scores
and/or gradients [27] in order to retrieve a training sample

These attacks have mostly been developed for machine learning models and
thus apply mostly to FL and less to federated analytics. Nevertheless, they
provide us with useful notions for analyzing the privacy capacity of any
potential strategy for federated clustering.

When defending against potential attacks, it is necessary to consider the
trustworthiness of the different participants. If some clients are malicious,
they might work with the server so as to decrypt the data of honest clients,
meaning that great precautions should be taken. Another possible model is
the honest-but-curious one, in which participants obey the instructions, but
use any information sent by the server so as to learn about other centers’ data.

10 | Background

2.2 Hierarchical clustering
HC [6] is a procedure which groups similar objects together to create a
stratified structure of a dataset. The resulting hierarchical tree is often
presented as a dendrogram (see Figure 2.1). The dendrogram helps understand
the relationships between objects at different scales: clusters at the bottom
correspond to narrow categories, whereas clusters at the top correspond to
more high-level associations.

There are two main families of algorithms for HC:

• agglomerative clustering [9], where each point starts out as its own
cluster. The algorithm successively picks two clusters to merge until
there is one cluster left containing all the items

• divisive clustering [28], where all points are initially in the same cluster.
At each step, a cluster is split in two, until all clusters consist of one
object only

Figure 2.1: Dendrogram (right) generated by agglomerative clustering of
isotropic Gaussian blobs (left) with complete linkage and Euclidean metric.
Each inversed U-shaped link corresponds to a merge between two clusters,
with the height indicating the distance between theses clusters.

One notable advantage of HC over other clustering algorithms is its lack
of hyperparameters. In particular, compared to the k-means, there is no
need to assign the number of clusters in advance: one can observe the
produced hierarchy and then choose a cutoff to flatten the clustering. Besides,
it is deterministic1, where k-means requires an initializaton in order to be

1given strictly increasing cluster merge distances or a way to uniquely choose between
two merges of equal cluster distance

Background | 11

reproducible.
Some common uses for HC include:

• identifying outliers in a dataset in order to filter them out

• qualitatively verify that data groups expected to be seperated according
to true labels (such as one healthy, one with a disease) are effectively in
distinct clusters

• serving as a baseline for other algorithms, such as classification or
consensus clustering, usually by flattening the clustering first

Here we choose to focus on agglomerative clustering, as it is the most
prevalent kind in RNA-Seq data analysis (more details available in 2.3).

2.2.1 Agglomerative clustering
Agglomerative clustering is the most prevalent kind of HC. It uses as input
the pairwise distance matrix, which can be obtained with any metric such as
the Euclidean metric (ℓ2), city-block (ℓ1) metric, or cosine dissimilarity1 for
instance. It requires a linkage criterion, which defines the distance between
two data clusters, such that at each step of the algorithm, the two closest
clusters are combined.

We adopt the SciPy [29] convention for the output of agglomerative
clustering. The clustering of n points outputs a matrix Z ∈ R(n−1)×4 matrix,
where each row represents a merging step, and stores in order the two indices
of the merged clusters, the merge distance and the number of points in the new
clusters.

2.2.1.1 Linkage methods and properties

The linkage method is a way to introduce a distance between clusters. Some
common linkages are the single, complete and average linkage – respectively
based on the minimum, maximum and average pairwise distance between
points in the two clusters. A lot of linkages, including those, fall under
the Lance-Williams algorithm family. This means cluster distances can
be updated in constant time after each merge using the following recursive

1Note that cosine dissimilarity is actually a semi-metric: it does not fulfil the triangle
inequality property. In this work, we use the terms distance and metric as an abuse of
terminology and not in the true mathematical sense.

12 | Background

formula. More specifically, let A,B and C be three clusters such that A and
B are selected to be merged. Then:

d(A∪B,C) = αAd(A,C)+αBd(B,C)+βd(A,B)+γ|d(A,C)−d(B,C)|

where αA, αB, β and γ are parameters which may depend on the size of A,B
and C. The definitions and update formulas for several usual linkages are
presented in table 2.1. Note that centroid and Ward linkage are only defined
for the Euclidean distance.

Method d(A,B) Lance-Williams update formula for d(A ∪B,C)

single min
a∈A,b∈B

d(a, b) min(d(A,C), d(B,C))

complete max
a∈A,b∈B

d(a, b) max(d(A,C), d(B,C))

average
1

|A||B|
∑

a∈A,b∈B
d(a, b)

|A|d(A,C) + |B|d(B,C)

|A|+ |B|

centroid ||c⃗A − c⃗B||

|A|d(A,C)2 + |B|d(B,C)2

|A|+ |B|
− |A||B|d(A,B)2

(|A|+ |B|)2

Ward

2|A||B|
|A|+ |B|

||c⃗A − c⃗B||

(|A|+ |C|)d(A,C)2 + (|B|+ |C|)d(B,C)2 − |C|d(A,B)2

|A|+ |B|+ |C|

Table 2.1: Cluster distance definition and update formula for several linkage
methods

One desirable property of a linkage method is reducibility. It is verified
when: for all clusters A,B,C such that A and B are nearest neighbours,
d(A ∪ B,C) ≥ min (d(A,C), d(B,C)). Notice that this is true for single,
complete, average and Ward linkage, but not for centroid linkage. A non-
reducible linkage often leads to inversions in the dendrogram representation
of the clustering, which can make it hard to interpret. An example of this can
be seen on figure 2.2, as the centroid of points A and B is closer to C than are
A or B.

2.2.1.2 Time complexity

For a dataset with n points and d features, the initial distance matrix
computation has a time complexity ofO(n2d). The merging phase can always
be implemented inO(n3) for all linkages with distance update in constant time.
This is achieved by computing the nearest cluster neighbours at each step and

Background | 13

Figure 2.2: Dendrogram inversion caused by non-reducibility of centroid
linkage. The centroid of points A and B is indicated by the cross.

merging them (see pseudo-code in 1). Using a heap to store pairwise distances
between clusters, the complexity becomes O(n2 log n).

For some linkages – including single, complete, average and Ward –
implementations in O(n2) exist. Typically, one possible way is by using the
nearest-neighbour chain algorithm [30, 31]. It applies to reducible linkages
that are also insensitive to merge order, and works by successively merging
clusters who are each other’s nearest neighbour (but not necessarily the global
pair of nearest neighbours).

Algorithm 1 Naive agglomerative clustering
Require: pairwise distance matrix DX between samples of X , metric µ,

linkage L
for k = 1, . . . , n do ▷ initialize clusters and distances

Ck ← {k}
for l = 1, . . . , k − 1 do

d(Ck, Cl)← DX [k, l]
end for

end for
for i = 1, . . . , n− 1 do ▷ merge the two closest clusters

k, l ← arg min
k,l

d(Ck, Cl)

Ck ← Ck ∪ Cl

Inactivate Cl

for j = 1, . . . , n do
if Cj active then

d(Ck, Cj) = UPDATEDISTANCE(Ck, Cl, Cj, µ, L)
end if

end for
end for

14 | Background

For single-linkage clustering, the classic implementation is based on the
minimum spanning tree (MST) problem. Given a connected undirected graph
of vertices, the MST is the subset of the edges that connects all points together
without any cycle and minimizing the sum of edge weights in the subset.

Note that both problems are closely related [32]. Indeed, consider the
subset E of edges that form the MST of a dataset and sort it by increasing
weight. For simplicity, let us assume weights are strictly increasing. Then:
the i-th edge of the MST connects points a and b with weight w i.i.f the i-th
merge during single-linkage clustering is between the clusters that respectively
contain a and b, with a cluster distance of d(a, b) = w. Thus, finding the
MST of a dataset gives the merge order and distances for its single-linkage
clustering.

2.2.2 Approximate agglomerative clustering
Because of the O(n2) or O(n3) time complexity, some approximate
algorithms have been developed for practical clustering of large datasets. They
are pertinent in the context of federated analytics, as they could potentially use
techniques that are easier to federate than the standard algorithms. The lower
complexity could also translate into smaller messages exchanged between the
clients and the server, leading to lower communication times. This is critical
as network communication is often a bottleneck in distributed computations.

[33, 34] propose faster algorithms for several linkages, relying on
approximate nearest neighbours queries. Their scheme is based on locality-
senstive hashing (LSH) [35], which consists in building hash functions such
that closer objects have a bigger probability of ending up in the same hash
bucket.

Another relevant approach for our work is [36], which computes only a
subsample of the pairwise distances, and defines the cluster distance based
only on the known object distances. More precisely, they sample random
pivot objects and compute distances from the dataset to the pivots. Then, they
calculate actual distances for all pairs whose distance to all pivots is small, and
compute additional distances between randomly picked pairs. This approach
can help in the cross-silo setting, where pairwise distances in each silo are
locally available but distances cross-silo are hard to compute.

Background | 15

2.3 RNA-Seq data analysis

2.3.1 RNA sequencing
RNA-Seq [4] is a standard method to analyze gene expression in samples.
RNA results from the transcription of the DNA in the cell, so its examination
provides insights about genetic expression. Typically, transcriptomics – the
study of RNA transcripts – lets us know which genes are more active in a
given cell, helping us understand its role in the body for example. Given that
RNA is then translated by the cell into proteins, RNA-Seq data can also serve
as a proxy for protein levels, in order to further study phenotypes [37].

The popularity of RNA-Seq has grown over the years as sequencing
technologies have become cheaper and more precise. There are three main
kinds of procedures [38, 39]:

• bulk RNA-Seq analyzes the expression of a large number of cells at
once, with cell membranes being destroyed before the sequencing. It
is useful to study general patterns and it produces big amounts of data
at a low cost, but does not give information about individual cells

• single-cell RNA-Seq can evaluate the expression of one cell at a time,
which leads to a more powerful analysis and makes it easier to study
gene expression in heterogeneous settings

• spatial transcriptomics provide localization information for single-
cell expression data. In bulk and single-cell sequencing, the spatial
context is lost. This new paradigm thus allows for even more precise
investigation of gene expression

The methods above are presented in increasing order of cost and complexity.
Even if spatial transcriptomics technically produce the most information, bulk
RNA-Seq is still widely used as it is largely sufficient for certain purposes,
having led to the discovery of biomarkers for cancer for instance.

Bulk RNA-Seq data is often modeled with Poisson or negative binomial
law. Indeed these are discrete laws and sequencing data corresponds to the
number of counts per gene, which are integers. Negative binomial is often
preferred to Poisson as the latter has equal variance and mean. In practice, it is
observed that RNA counts are overdispersed, i.e the variance grows faster than
the mean. It is worth mentioning that RNA-Seq data is very high-dimensional,
containing the expression of tens of thousands of genes. For reference, the
human genome consists of about 100 000 genes.

16 | Background

2.3.2 Differential expression analysis
One of the most notable applications of bulk RNA-Seq is DEA [5]. This
consists in finding genes that have different levels of expressions in varying
conditions. For instance, some genes can be differentially expressed
between cancerous and healthy cells, and thus become potential targets for
cancer treatment. The DEA pipeline has several preprocessing steps; after
normalization, data exploratory analysis is performed for quality control.

Clustering, especially agglomerative, is an essential part of the DEA
framework and more generally RNA-Seq analysis [7, 8]. Note that
agglomerative clustering can be used to cluster both genes and samples, which
have different purposes. Clustering of genes helps visualize which genes have
similar expression profiles, which could for instance mean they are involved
in the same biological function. Clustering of samples is useful for quality
control. For instance, it can be used to make sure the data is not clustered
according to non-biological factors – such as who performed the sequencing
of each sample. In the federated clustering setting, genewise clustering
corresponds to a vertical partition of the data and samplewise clustering to a
horizontal partition. For genewise clustering, the cosine distance and average
linkage are often used together [40]. For sample clustering, the Euclidean,
cosine and Pearson correlation are common metrics, using either average,
complete or Ward linkage.

The best choice of metric and linkage is of course dataset-dependent. For
instance, single linkage performs well for well-seperated clusters but has a
chaining effect otherwise, while complete linkage produces compact clusters.
Average and Ward linkages usually offer a balance between separability and
compactness.

The dendrogram representation of HC is often combined with a heatmap
(see figure 2.3) in order to visualize the differential gene expression across
samples and genes.

2.4 Private distance computation
Agglomerative clustering only requires the pairwise distance matrix as input
and not the coordinates. Therefore, instead of developing a federated
clustering algorithm, another valid approach would be for the server to first
privately compute pairwise distances, and then apply a standard clustering
algorithm on the distance matrix. In the field of private distance computation,
multiplicative perturbations have become popular for the ℓ2 norm. Indeed,

Background | 17

Figure 2.3: Heatmap of the gene expression of 50 samples across 100
genes from a breast cancer dataset (TCGA-BRCA [41]). Raw counts are
preprocessed with the variance stabilizing transformation [42].

they allow the server to retrieve a distorted version of the dataset, but whose
distance matrix is approximately preserved. They are also rather inexpensive
compared to cryptography-based approaches and tend to preserve geometric
properties better than additive noise for instance.

This can somewhat easily be adopted in the cross-silo federated
framework: the centers just have to agree on a seed to generate the
multiplication matrix and then send their transformed data to the server 2.

2.4.1 Orthogonal perturbations
One possible class of multiplicative matrix is rotations, or more generally
orthogonal matrices. Recall that a matrixR ∈ Rd×d is orthogonal if and only if
RTR = RRT = Id. Indeed, they are isometries for the ℓ2 norm: if X ∈ R1×d

then ||XR|| = ||X|| . By preserving pairwise distances, they have been used
for many purposes such as clustering [43], visualization, classification [44]
or kernel methods [45]. The authors of [45] even suggest to use a matrix
R ∈ Rd×k with k > d such that RRT = Id (but of course RTR ̸= Ik.) Then,
the Gram matrix is still preserved but the number of features is not shared with
the server.

Without prior knowledge, it is impossible for an attacker to infer the
original data from the transformed dataset. However, this method is highly
sensitive to collusion: if a center communicates the transformation to the

18 | Background

Algorithm 2 Private distance computation scheme
Require: M centers, with dataset X(k) ∈ Rn(k)×d in center C(k), final

dimension p
Centers C(1), C(M) agree on a shared seed s
for center k = 1, . . . ,M do

Q = RANDOMPERTURBATION(d, p, s) ▷ Q ∈ Rd×p

Y(k) ← X(k)Q
Send Y(k) to the server

end for
for k = 1, . . . ,M do

Server computes D(Y(k), Y(k)) ▷ equal to D(X(k), X(k))
for l = k + 1, . . . ,M do

Server computes D(Y(k), Y(l)) ▷ equal to D(X(k), X(l))
end for

end for

server, it can access the whole decrypted dataset. Additionally, several attacks
have been developed for the case the attacker has additional knowledge.

The authors of [44] propose an attack based on independent component
analysis (ICA) [46] in the case the attacker knows the distribution of the
features. As ICA reconstruction does not protect the feature order, the
distribution is used to match the reconstructed and original probability density
functions (PDFs). This might be hard in practice in a high-dimensional space
or if features have similar PDFs.

In [47], two attacks are developed. The first one assumes some inputs X
and their projection Y are known. For each unknown point x of projection
y, they derive the probability of reconstructing the input with a relative error
ϵ. This probability depends on the distance from y to the vector subspace
generated by Y . In the extreme case where y belongs to the generated
subspace, the probability is 1 for all ϵ, i.e the reconstruction is exact.

The second attack assumes some samples from the same probability
distribution as the inputs are known, and uses PCA to reconstruct the inputs.
It has limited use in high dimension (as is the case with RNA-Seq data) as one
of the steps has a complexity that includes a factor of O(2d), where d is the
dimension of the feature space.

Background | 19

2.4.2 Random projections
2.4.2.1 Definition

Random projections can alleviate some of the privacy issues of orthogonal pro-
jections, while approximately maintaining pairwise distances. The Johnson-
Lindenstrauss (JL) lemma [48] states the following. Let 0 < ϵ < 1, X ∈ Rn×d

and k > 8 ln(n)/ϵ2. There exists a linear map f : Rd → Rk such that for all
u, v ∈ X:

(1− ϵ)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ϵ)||u− v||2

It is notably verified with projection matricesQ ∈ Rd×k with i.i.d Gaussian
entries sampled from N(0, 1

k
); for all u, v ∈ X:

(1− ϵ)||u− v||2 ≤ ||uQ− vQ||2 ≤ (1 + ϵ)||u− v||2

Note that the sampling bound k = 8 ln(n)/ϵ2 depends on the number of
samples n but not on the number of features d. This is very convenient for us:
RNA-Seq data is usually comprised of tens of thousands of genes, while the
number of samples in a given study is usually around a few hundreds – maybe
thousands – at most. Depending on the complexity of the downstream task on
the server, the dimensionality reduction can also be useful to curtail costs.

2.4.2.2 Bounds for specific problems

In the case of specific distance-based applications, some better sampling
bounds have been found. In particular, [49] propose a lower bound for
the minimum spanning tree (MST) problem. The authors give a sampling
bound of O(1

ϵ2
(dX log(1

ϵ
) + log log n)), where dX ≤ logX is the doubling

dimension of dataset X , representing its intrinsic dimensionality1. As seen
in section 2.2.1.2, finding the MST of a dataset is equivalent to clustering it
with single linkage. Therefore, this also gives us a sampling bound for single
linkage when using the cost of the associated MST as a metric.

For k-means and Euclidean k-medians clustering – which respectively
minimize the squared and classic Euclidean distance between points and
their cluster centroids – the state of the art bound has been derived by [50].
They show that the cost of any clustering, including the optimal solution, is

1More precisely, let λX be the minimum λ > 0 such that for all x ∈ X and r > 0, there
exists S ⊆ X , |S| ≤ λ such that B(x, r) ∩X ⊆ ∪

s∈S
B(s, r

2). The doubling dimension of X
is defined as dX = log λX .

20 | Background

preserved with 1 + ϵ error with a sampling dimension of O(1
ϵ2

log(k
ϵ
)). This

bound depends on k which is usually much smaller than n.

2.4.2.3 Privacy-preserving properties

Random projections have mostly been used for dimensionality reduction, by
projecting data to a lower dimension k < d. Nevertheless, they can also be
relevant for privately computing distances as they are more difficult to attack
than orthogonal projections.

First, they produce approximations of the pairwise distances, and the
sample size can be adjusted to get a trade-off between utility and privacy.
Then, they are not as vulnerable to the attacks on orthogonal projections.
Typically, the ICA attack as in [44] fails as the number of observed dimensions
k is smaller than the number of sources d. Similarly, the PCA attack of [47]
works because the covariance matrix of the projected dataset has the same
eigenvalues as the covariance of the original dataset. However, the covariance
matrix of a dataset projected with a Gaussian-distributed matrix converges to
αId for some α ∈ R.

The authors of [51] have proposed several attacks based on prior
knowledge of the data and on whether the random projection matrix is known
or not. Their method used underdetermined ICA assuming the original data is
sparse and mutually independent, so that it can be modelled with the Laplace
distribution. They use maximum a posteriori estimation when the data is
non-sparse and correlated, in which case the data is assumed to follow a
multivariate Gaussian distribution.

As explained in section 2.3.1, RNA-Seq counts are discrete and
skewed, so they are usually modelled with a Poisson or negative binomial
distribution. Besides, they are neither sparse nor Gaussian distributed, so the
aforementioned attacks are usually not well-suited for bulk RNA-Seq. On the
contrary, single-cell RNA-Seq data is very sparse, so potentially exposed to
the first attack from [51].

While most preprocessing methods in bulk RNA-Seq data preserve the
skewness, feature Gaussianization – e.g with the Box-Cox or Yeo-Johnson
transformation – is sometimes used, notably for survival analysis [52], even in
the federated setting [22]. Such a procedure could make the random projection
of RNA data vulnerable to the second attack presented in [51].

Background | 21

2.4.3 Multidimensional scaling
It is worth mentioning that possessing the pairwise Euclidean distance matrix
D = d(X,X) of a dataset X is perfectly equivalent to having a version of X
up to affine isometry, i.e up to orthogonal projection and translation. Indeed,
given a valid Euclidean distance matrix D, obtained from a dataset X , one can
compute a dataset X ′ such that d(X ′, X ′) = D with multidimensional scaling
(MDS) [53, 54]. As X and X ′ have the exact same Euclidean distance matrix,
they are equal up to affine isometry.

In the federated setting, this means that even assuming we can privately
compute the distance matrix on the server – with cryptography techniques
for instance – there could still be a privacy leakage through attacks based on
distance-preserving transformations.

In the general case where the the norm is not l2, MDS can be expressed
as an optimization problem, but there is no trivial solution as in the classical
Euclidean case.

2.4.4 Stable distributions
2.4.4.1 Definition

The random projection trick for ℓ2 norm approximation is based on the
centered normal distribution, which is a special case of a stable distribution.
A distribution D over R is said to be stable if for all X1, X2 ∼ D independent
and a, b > 0, there exists X ∼ D and c > 0, d ∈ R such that aX1 + bX2 and
cX + d have the same distribution.

In particular, let p > 0. D is p-stable if any realization X ∼ D has a
characteristic function E(eitX) = e−γ|t|p where γ > 0 is the scale parameter.
We note D d

= S(p, γ) .
There are some famous analytical cases:

• the Gaussian distribution is 2-stable

• the Cauchy distribution is 1-stable

• the Levy distribution is 1
2
-stable

In the general case, p-stable distributions for 0 < p ≤ 2 are not analytical
but they can still be simulated easily[55].

22 | Background

2.4.4.2 ℓp distance estimation

Let D be a p-stable distribution of scale 1. Then: for all k ∈ N, for all
X,X1, . . . , Xk ∼ D i.i.d and for all a1, . . . , ak ∈ R:

k∑
i=1

aiXi
d
=

(
k∑

i=1

|ai|p
) 1

p

X (2.1)

The scale of the distribution above is then
k∑

i=1

|ai|p. This gives us the general

scheme for a privacy-preserving approximation of the ℓp distance by estimating
its scale. Precisely, let u, v ∈ Rd, X ∈ Rk×d with i.i.d entries of law S(p, 1),
then y = Xu−Xv is a random vector with i.i.d entries of law S(p, ||u−v||pp).

One possible estimator is the geometric mean, analyzed in [56, 57]:

γ̂ =

k∏
i=1

|yi|
p
k[

2
π
Γ(p

k
)Γ(1− 1

k
) sin(πp

2k
)
]k (2.2)

It is unbiased and similarly to the JL lemma, it can approximate pairwise ℓp
distances between n points up to a 1± ϵ factor for a sample size k = O

(logn
ϵ2

)
.

We are especially interested in the ℓ1 distance, which is still regularly used in
practice and is notably more robust to outliers than the ℓ2 norm.

2.5 Related work

2.5.1 Secure multiparty computation
SMPC [11, 58] is a way for parties to compute a function over their private
data without revealing it to the others. It is based on cryptography protocols,
and can be used in place of or in addition to federated learning.

SMPC protects participants from external attackers, but also from fellow
participants. It introduces two relevant adversary models to judge how clients
may try to gather private data [59]:

• the semi-honest or honest-but-curious model, in which parties respect
the protocol but use all the knowledge at their disposal – such as
intermediate and final results – to infer information about the original
data

Background | 23

• the malicious model, in which one or more participants actively disrupt
the protocol, by colluding or feeding wrong inputs to the server for
example

In the case of a central server performing computations on medical
institutions’ data, the semi-honest model is usually adapted, as in [60]. Indeed,
hospitals want to protect their patients’ data for moral, legal, and reputational
reasons. They also do not trust outside entities with their data, and especially
not the central server.

In the field of FL, a useful SMPC tool is secure aggregation, which lets
users privately compute the sum over their inputs. This can notably be used
by the server to average local model updates from clients [61]. Cryptography
schemes can also be used for federated analytics, as in [62] which securely
compute the cosine similarity matrix. Their technique relies on a random
projection scheme followed by a secure Hamming distance protocol. Similarly
to the random projection scheme for the ℓp norm, this could be applied to our
problem as the cosine distance is often used for agglomerative clustering of
RNA-Seq data.

We note that SMPC has been proposed for single-linkage clustering in the
case of two communicating parties [63], with a scalable scheme for a large
number of samples in a low-dimensional feature space (experiments are done
for under 20-dimensional datasets). In our cross-silo setup for RNA-Seq data,
we have more parties, connected to a central server, and the feature space is
massive (tens of thousands of genes). Thus, in practice, the use of encryption
techniques could have a prohibitive cost compared to other privacy-enhancing
strategies.

2.5.2 Differential privacy
DP [12, 64] is another framework that aims to protect individual information in
a group computation. The idea is usually to add noise to individual outputs so
that their true value is masked, but that the aggregated statistic remains about
the same. Typically, for FL, each client adds noise to their gradients before
sharing them with the server.

Formally, a mechanism M is ϵ-differentially private if for any two datasets
D1 and D2 that differ on one sample, and S ⊆ imM :

P(M(D1) ∈ S) ≤ eϵ P(M(D2) ∈ S)

The intuition is that applying M to a dataset should give about the same result

24 | Background

whether a single data point is present or not in the dataset. Choosing ϵ offers a
utility-privacy trade-off: a smaller ϵ brings more privacy, but the added noise
can affect the performance.

In the model above, each client is assumed to have access to the raw data of
individuals. In case individuals do not trust the data curator, they can add noise
to their data before sharing it. This is the setting of local differential privacy
[65]; an algorithm M respects ϵ-local differential privacy if for all user data
points x1 and x2, and all S ⊆ imM :

P(M(x1) ∈ S) ≤ eϵ P(M(x2) ∈ S)

DP has many applications. It has been explored in the federated setting,
for instance in federated learning [66], PCA [67] or k-means [68]. In [69],
a locally DP algorithm for HC is developed, but is decentralized and not
provably in polynomial time. The authors of [70] do propose a polynomial-
time approximation in the global DP setting. Nevertheless, both solutions
optimize Dasgupta’s objective for HC [71], while we are more interested in the
classic agglomerative algorithm with linkage functions, which is the standard
in genetic analysis. Furthermore, we would ideally prefer an exact or close
to exact solution for clustering of genetic data, whereas DP requires to add
random noise to shared quantities.

Methods | 25

Chapter 3

Methods

In this chapter, we provide an overview of the research process, the genetic
expression dataset used in our experiments, as well as our experimental setup.
We then present our original federated HC algorithms.

We first develop a straightforward method for genewise clustering based
on the low privacy constraints on gene information.

For samplewise clustering, we decide to investigate two different tracks:

• one specifically focused on the standard agglomerative clustering
algorithm, which introduces privacy while trying to be as close to the
original procedure as possible

• one that can more generally apply to distance-based algorithms, by
privately computing the distance matrix of the dataset

For all tracks, we focus on providing privacy under the federated
framework, and do not want to largely base our privacy mechanisms on DP or
SMPC. Indeed, usually, they respectively induce a loss of performance under
noise addition in the first case, and high computation costs in the second. We
do not forbid ourselves from resorting to them if appropriate, but we consider
that they should not be at the heart of our algorithms as we want to give
emphasis to real-world practical usage, which is not compatible with large
additive noise or complex encryption schemes.

Methods are analyzed according to several criteria:

• their empirical performance on real RNA-Seq data, and at times on toy
datasets to exhibit certain behaviours of the developed algorithms

• their theoretical complexity, including the communication cost between
clients and the server

26 | Methods

• their degree of privacy, by studying what is shared and what can
potentially be recovered

3.1 The Cancer Genome Atlas
For our experiments on real RNA-Seq data, we use 8 datasets from the Cancer
Genome Atlas (TCGA) program [41], each corresponding to a different cancer
type. Under this program, a massive amount of genomic-related data has
been published to help researchers improve cancer diagnosis, treatment and
prevention. The cancer types in the atlas have been selected according to
several reasons, including health impact, quality and quantity of the collected
data, and adequate patient consent (more information about ethical concerns
in section 5.2.1).

In our case, each data sample consists of two parts: the transcriptomic data
and the metadata. The transcriptomic data corresponds to raw gene counts,
which means the data is already aligned with a reference genome, so that
we obtain a table with the number of counts for each gene. Each dataset is
composed of hundreds of samples and around 50000 genes (see table 3.1).

Cancer type Acronym Number Number
of samples of genes

breast invasive carcinoma BRCA 1188 53633
colon adenocarcinoma COAD 506 53325
lung adenocarcinoma LUAD 532 53439
lung squamous cell carcinoma LUSC 517 53523
pancreatic adenocarcinoma PAAD 179 51642
prostate adenocarcinoma PRAD 452 53281
rectum adenocarcinoma READ 170 50777
skin cutaneous melanoma SKCM 427 53119

Table 3.1: The different transcriptomics datasets from the Cancer Genome
Atlas

The metadata contains relevant information about the patient. It notably
includes:

• potentially sensitive personal information such as gender, ethnicity or
age

• the tissue source site, which is the medical center that collected the
sample

Methods | 27

• medical data related to the tumour, such as the stage of the cancer or a
prior diagnosis

3.1.1 Federated simulations with TCGA
It is important to note that the tissue source site or even more broadly the
geographic region offers a natural way for us to split samples into centers to
simulate federated analytics. This is crucial because different clinical centers
have different instruments and procedures, which can translate into noticeable
heterogeneity between the datasets of these centers. By following a split by
actual source site, or by grouping source sites together into artificially bigger
centers, we have a more realistic setup than if we used a random split, or had
a homogeneous dataset.

In this work, we decide to regroup clinical centers by region in order to
mimic the federated cross-silo setting, and obtain a few centers with decently-
sized datasets. More specifically, we follow the same grouping as in [72],
in order to obtain seven centers: four from the United States – Northeast,
South, West, Midwest – Canada, Europe and a client containing the rest (which
includes clinical centers from different Asian countries, Brazil, Nigeria and
Australia). This allows a split between artificial centers of heterogeneous sizes,
with:

• the smallest center containing as low as 0.59-7.9% of the data

• the biggest center containing about 22-58% of the total data

3.1.2 RNA-Seq data preprocessing
Preprocessing of bulk RNA-Seq data is necessary in order to have comparable
samples and/or genes. Several factors need to be accounted for1, including:

• gene length: given two genes with similar levels of expression, the
profiling method causes the gene with the longer sequence to have more
counts, proportionally to that length

• sequencing depth: if two samples have the same level of expression per
gene but the first is sequenced with a bigger depth, the read counts are
proportionally bigger

1A more detailed description of the sequencing discrepancies and normalization methods
can be found at https://hbctraining.github.io/DGE_workshop_salmon_
online/lessons/02_DGE_count_normalization.html

https://hbctraining.github.io/DGE_workshop_salmon_online/lessons/02_DGE_count_normalization.html
https://hbctraining.github.io/DGE_workshop_salmon_online/lessons/02_DGE_count_normalization.html

28 | Methods

One common normalization method for samplewise gene comparison is
the median of ratios method [73] from the DESeq2 [74] package in R, which
addresses the sequencing depth issue. We consider a dataset X ∈ Nn×d

consisting of n samples and d genes. The method assumes most genes are not
differentially expressed, and creates a pseudo-reference sample corresponding

to the geometric mean of all samples for each gene: µj =

(
n∏

i=1

Xi,j

) 1
n

. For a

given sample, its size factor is defined as the median of the ratio of the sample’s
counts over the reference counts: si = median

(
Xi,j

µj

)
. The normalized

counts Xnorm are then defined by Xnorm,i,j =
Xi,j

si
. Note that genes with at

least one sample with zero counts are filtered out for the size factor estimation,
as the geometric mean ends up being 0.

As mentioned previously, the size factors method does not correct for
gene effects. In contrast, the variance-stabilizing transformation (VST) [42]
is a normalization method which uses the size factors but also gets rid of the
variance’s dependence on the mean. Indeed, RNA counts are over-dispersed:
the count variance increases faster than the mean. It is usually useful to remove
this dependence for visualization or clustering purposes. Specifically, VST
takes as input the counts normalized with the median of ratios above, Xnorm.
It then fits a dispersion-mean relation, for example via a Gamma-distributed
generalized linear model fa,b parametrized by a, b ∈ R, so that the variance
of fa,b(Xnorm) for each gene does not depend on the mean gene count. The
counts normalized by VST are thus the fa,b(Xnorm). Note that VST returns
data on the log2 scale, which is the scale used for differential gene expression
analysis.

To show the impact of the preprocessing method empirically, we plot the
PCA and explained variance per number of components for our cancer genome
dataset, preprocessed with the median of ratios method (figure 3.1), and with
VST (figure 3.2). We notably see that the dataset is captured by much less
components for the former rather than the latter preprocessing method.

Concretely for our purposes, these normalization methods are available in
PyDESeq2 [75], which is a Python package for DEA that implements the R
package DESeq2 [74].

Methods | 29

Figure 3.1: PCA of the TCGA dataset normalized with the median of ratios
method.

Figure 3.2: PCA of the TCGA dataset normalized with VST.

3.2 Experimental design

3.2.1 Simulation of the federated environment
In this work, all experiments are simulated and not done on a real distributed
network. The advantage of this approach is that we can easily deploy our
algorithmic models and assess their performance on datasets. With a federated
learning software, there are more code design constraints and experiments take
longer to execute.

Thus, we focus on developing a solid simulated algorithm, that can then be
translated into any federated software for real-world applications. The obvious

30 | Methods

downside of doing simulations only is that we do not measure the empirical
time complexity of our algorithms. This means that we should keep an eye on
the theoretical communication complexity, as this would presumably be the
biggest bottleneck in a real federated set-up.

We implement our simulated environment in Python. For this, we create
two classes, FedCenter and FedServer. The FedCenter class describes a local
center containing private data. It implements methods for data preprocessing
and for local computations involving its data only. Then, the FedServer class
contains a dictionary whose values are FedCenter instances and correspond to
each data center.

In our code, the FedServer never accesses or modifies FedCenter attributes
directly. It can only call centers’ public methods, to get the result of local
calculations which are designed not to share confidential information. Note
that in reality, there is no notion of private attribute in Python, so the FedServer
could technically access the private data from the FedCenter dictionary; this
is why this is merely a simulation and not an actual federated implementation.

3.2.2 Complexity and communication cost
We determine the time complexity of each algorithm, theoretically, by using
the big O formalism. This is useful to know whether it can be used in a
reasonable length of time on a real dataset given its dimensions.

We do not compute the global space complexity on the server and data
centers, assuming all of them have a large memory. We are however
interested in the communication cost of our methods. Given that we
simulate the federated network, we cannot empirically measure the duration
of communications between the server and the centers. Instead, we compare
our algorithms in terms of the total data size exchanged. More precisely, we
examine the number of communication rounds involved in each method and
the size of the message sent at each round.

3.2.3 Performance metrics
We use two complementary kinds of metrics to compare a federated clustering
to its pooled equivalent: metrics based on dendrogram comparisons and
metrics that study the cluster assignments when cutting the hierarchical tree
at a certain level. The first kind takes into account the distances between
clusters, while the second considers only if the groupings consist of the same
data points.

Methods | 31

3.2.3.1 Cophenetic distance measures

The first family uses the cophenetic distance, which is the pairwise distance
induced by the dendrogram: the cophenetic distance between two points is the
distance at which their respective clusters are merged during the clustering.
For instance, in the figure 3.3, the cophenetic distance between point 3 and
any of points 0, 4, or 5 is the same and is indicated by the dashed line.

Figure 3.3: Dendrogram generated from the single linkage clustering of six
points – the dashed line indicates the cophenetic distance between point 3 and
points 0, 4 and 5.

The standard HC metric that uses the cophenetic distance is the cophenetic
correlation coefficient (CCC). It is defined as the Pearson correlation
coefficient c between the cophenetic distance dHC and a reference distance
d on the dataset X:

c =

∑
1≤i<j≤n

(
dHC(Xi, Xj)− d̄HC

) (
d(Xi, Xj)− d̄

)… ∑
1≤i<j≤n

(
dHC(Xi, Xj)− d̄HC

)2 ∑
1≤i<j≤n

(
d(Xi, Xj)− d̄

)2
It is typically used to compare the cophenetic distance to the actual

pairwise distance with the metric of choice, but we can utilize it to compare
the federated and pooled cophenetic distances. Its value is between -1 and 1;
it is 1 when the distances are perfectly correlated, -1 when they are perfectly
anticorrelated and 0 when there is no correlation.

As it is a correlation coefficient, all pairwise distances do not hold the same
weight. Having a CCC close to 1 means that the biggest trends between pooled
and federated clusterings are the same, but does not say anything about the

32 | Methods

concordance between small distances. More details about this behavior with
a specific example are available in appendix A.

In our case, we are mostly interested in reproducing the bigger trends with
federated clustering, especially as the last merges – which correspond to bigger
distances for ultrametric linkages – are more informative than the first few.
Therefore, the CCC is still relevant, more so in the case there are no strong
outliers. If we want an index that assigns the same weight to all pairwise
cophenetic distances, we can find a complementary measure in the mean
relative error averaged over all federated and pooled cophenetic distances.

3.2.3.2 Flat clustering measures

The other kind of measure does not consider the merging distances, but only
the cluster assignments at each step. Recall that the agglomerative clustering
of n points has n− 1 steps, and the k-th merge step, 1 ≤ k ≤ n− 1, produces
n− k different clusters.

Let π1 and π2 respectively be the flat clusterings obtained from the
federated and pooled hierarchical trees cut to get k clusters. We can define
the true/false positive/negative quantities as follows:

• TP the number of pairs of objects clustered together in π1 and π2

• FP the number of pairs of objects clustered together in π1 but not π2

• FN the number of pairs of objects clusterd together in π2 but not π1

• TN the number of pairs of objects that are in different clusters in π1 and
π2

There are several measures we can use based on these quantities. The
first one is the Fowkles-Mallows index (FMI), developed specifically for
comparing two HC trees [76]. It has a value of

FMI =
TP√

(TP + FP)(TP + FN)

corresponding to the geometric mean of precision and recall. It ranges from 0
to 1, and takes the value 1 when the clusterings are exactly the same.

Another possible measure is the adjusted Rand index (ARI), which is the
Rand index

RI =
TP + TN

TP + FP + FN + TN

Methods | 33

corrected for chance. While the Rand index is between 0 and 1, this adjustment
gives a value of 0 to a random assignment. It makes the index take values
between -0.5 and 1, with the value 1 reached when the labelings are identical.

Note that to analyze the performance of federated clustering, we do not
usually compute these indices for all possible number of clusters. Indeed,
clustering mistakes during the first few merges are not as important as late
mistakes, as the hierarchical tree is often cut to retrieve a small number of
clusters. Therefore, we are more interested in getting indices close to 1 for the
last few merges. Note that in the special case the dataset has a known number
of clusters k, the index is most relevant for that given number of clusters.

3.2.4 Privacy analysis
We do not have a specific metric for privacy (as would be the case with
DP, which provides a mathematical framework of privacy [77]). Instead,
we perform a case-by-case analysis of whether each algorithm leaks local
quantities with the server or other participants. If it does, we assess if the
shared quantities reveal sensitive information about the data. Notably, we use
different empirical attacks on RNA-Seq data, inspired by previously propsosed
attacks on FL [78, 25] and data projections [47]. We can then see what a
malicious actor could learn depending on the obtained information.

3.2.5 Hardware/Software to be used
We use a MacBook Pro with a 6-Core Intel Core i7 and 16GB memory for
most purposes. For any machine learning training, we use a 8 CPU machine
(n1-standard-8) with a NVIDIA Tesla T4 GPU and 25GB of RAM.

All code is written in Python1 using VS Code. We rely on the following
Python libraries:

• NumPy [79], SciPy [29] and Scikit-Learn [80] for most scientific code

• PyDESeq2 [75] for processing bulk RNA-Seq data

• PyTorch [81] for machine learning attacks

• pandas [82] for dataframes manipulations

• Matplotlib [83] and Seaborn [84] for visualization
1Python Software Foundation, https://www.python.org/

34 | Methods

3.3 Federated hierarchical clustering ap-
proaches

Here we present the methods we have developed for federated HC in a cross-
silo context: a central server communicates with a few data centers in order to
execute some computation over the data, and send it back to each center.

As for the classic agglomerative HC procedure, our federated algorithms
are parametrized by a linkage method (defined in section 2.2.1.1, which
explicitates the most common linkages) and a metric. Both serve the same
purpose in our federated approaches as in the usual unfederated algorithm,
which we recall here. First, in terms of the linkage, single linkage identifies
clusters that are spatially stretched out, for instance a set of parallel lines, each
forming a cluster on which points are densely distributed. However, in case
of compact clusters that might be close together – imagine for example two
almost-colliding spheres with some noise at the intersection – single linkage
might not recognize them as separate clusters, and chain them together, known
as the chaining effect. In such a case, complete linkage is more adapted.
Finally, linkages such as average, centroid and Ward have intermediary
properties, providing an equilibrium between the separability of single-linkage
clusters, and the compactness of complete-linkage clusters.

Second, for the metric, one can use ℓp distances, in which case the higher
p is, the more the distance between two points will be based on the the
dimension that differentiates them the most. Cosine and correlation metrics
are also often used for HC; a big difference with ℓp metrics is that they
are scale-invariant, with the correlation dissimilarity also being translation-
invariant. Additionally, we note that average, Ward and centroid linkages are
only defined for the ℓ2 metric.

3.3.1 Federated genewise clustering
Genewise clustering is useful to identify correlated genes, as they may be
involved in the same biological pathways and participate in the same functions
in the body. Recall that federating the procedure of genewise clustering
requires us to develop an algorithm in the case of vertically-partitioned data.
Indeed, here the samples act as the features, distributed among the clients,
while the genes are the clustered objects.

For genetic data, we assume that individual patient data is very sensitive,
but that gene information is not. In particular, pairwise distances between
genes with the usual metrics is not considered as confidential information.

Methods | 35

Given that we investigate the cross-silo setting, we expect that there are several
clients who each hold a decently-sized dataset – with an order of magnitude of
at least 10-100. For each client, sharing the gene distances from their dataset
does not break any privacy constraint.

Let us considerM centersC(1), ..., C(M), each of them containing a dataset
X(k) ∈ Rn(k)×d. The equivalent pooled dataset is noted X ∈ Rn×d, with

n =
M∑
k=1

n(k). Let us take a metric that is separable over its inputs, meaning

that that the associated distance d between genes gi and gj is of the form

d(gi, gj) =
M∑
k=1

d(k)(gi, gj)

where d(k) is a distance computed in center C(k). Per the assumption above,
d(k)(gi, gj) are not sensitive and therefore we can privately compute the global
distance in a federated way, by summing the contribution of each center. Let
us now assess the separability of a few common metrics.

3.3.1.1 Federated gene pairwise distance

We will show that the ℓp, cosine and correlation distances are all separable
over the data centers.

3.3.1.1.1 Minkowski distance For all genes gi, gj indexed by 1 ≤ i, j ≤ d:

||gi − gj||pp =
n∑

l=1

|Xl,i −Xl,j|p

=
M∑
k=1

n(k)∑
l=1

|X(k)
l,i −X

(k)
l,j |

p

︸ ︷︷ ︸
depends only on center k

Thus, the ℓp distance can be computed as the sum of each center’s
contribution.

3.3.1.1.2 Cosine distance We can compute the cosine distance dC using
its relationship to the ℓ2 norm. Let x, y ∈ Rd and let θ(·, ·) indicate the angle

36 | Methods

between two points. Let us recall that:

dC(x, y) = 1− cos(θ(x, y))

= 1−

d∑
k=1

xi yi

||x|| ||y||

It is easy to show that:

dC(x, y) =
1

2

∣∣∣∣∣∣∣∣ x

||x||
− y

||y||

∣∣∣∣∣∣∣∣2
Therefore, the cosine distance can also be written as the sum of each center’s
input; specifically, for all genes gi, gj with 1 ≤ i, j ≤ d:

dC(gi, gj) =
1

2

M∑
k=1

n(k)∑
l=1

(
X

(k)
l,i

||X(k)
l,i ||
−

X
(k)
l,j

||X(k)
l,j ||

)2

︸ ︷︷ ︸
computed by center k

3.3.1.1.3 Correlation distance The correlation distance simply corre-
sponds to the centered cosine distance. Once again, as gene information is
not considered sensitive, we allow the server to compute each gene’s sum of
counts. We also assume that the server knows the total number of samples n,

so that for gene gi, it can compute ḡi =
1
n

M∑
k=1

X
(k)
l,i and send it back to every

center. The correlation distance for genes gi, gj with 1 ≤ i, j ≤ d is:

dcorr(gi, gj) = dC(gi − ḡi, gj − ḡj)

=
1

2

M∑
k=1

n(k)∑
l=1

(
X

(k)
l,i − ḡi

||X(k)
l,i − ḡi||

−
X

(k)
l,j − ḡj

||X(k)
l,j − ḡj||

)2

︸ ︷︷ ︸
calculated by center k

Again, the correlation distance can be expressed as the sum of centers’
computations.

3.3.1.2 Algorithm description

We can now present a straightforward gene clustering algorithm valid for all
linkage methods and for the metrics above (algorithm 3). Notice that the

Methods | 37

distance computation is exact, meaning that performance-wise, the algorithm
is pooled-equivalent. Also, the algorithm has no more parameters than its
unfederated counterpart, i.e a linkage method and a metric.

Algorithm 3 Federated genewise agglomerative clustering

Require: M centers with dataset X(k) ∈ Rn(k)×d in center C(k), metric µ,
linkage L
ḡ ← 0 ▷ average count per gene, ḡ ∈ Rd

if µ is correlation then
n← 0
for center k = 1, . . . ,M do

On center k:
ḡ(k) ← SUMGENECOUNTS(C(k))
Send ḡ(k), n(k) to the server

On the server:
ḡ ← ḡ + ḡ(k)

n← n+ n(k)

end for
ḡ ← ḡ/n

end if
D ← 0 ▷ global distance matrix
for center k = 1, . . . ,M do

On center k:
D(k) ← DISTANCE(C(k), ḡ, µ)
Send D(k) to the server

On the server:
D ← D +D(k)

end for
On the server:

AGGLOMERATIVECLUSTERING(D,L)

3.3.2 A centroid-based approach for federated sam-
plewise clustering

Federating samplewise clustering is a much more complex issue than genewise
clustering. With a horizontal partition of the data into federated centers, it
is trivial to compare distances between points inside a center. However, we
would also like to be able to compare samples from different centers, which is
hard to achieve without leaking these samples.

38 | Methods

We make the following assumption: sharing a single sample with the
server and other centers is problematic, but communicating the coordinates
of a centroid aggregated from enough samples does not leak sensitive
information about those points. Given this, we can create an algorithm
based around sharing the centroids of local clusters once they reach a critical
size nmin, so that other centers can approximate points in these clusters as
their average coordinates. nmin is the only new parameter of this federated
approach compared to the classic algorithm, and lets the user select the
right privacy/performance trade-off. Indeed, the smaller nmin, the closer the
clustering is to the unfederated algorithm’s output, but the more revealing the
centroid potentially is, as it averages less points.

3.3.2.1 A first scheme with simultaneous sharing of local
clusterings

A first simple idea is to compute the local clustering in each center,
communicate the centroid of every local cluster to the server, and complete
the clustering from these centroids. To be precise, we can simply build the
hierarchical tree in each local center and cut it at the point for which all clusters
have met the threshold size nmin. As is shown on figure 3.4 (right), when the
cut is done at the height for which this criterion is met, some clusters can be
pointlessly big. It is better to recursively look in each branch of a merge for
the smallest allowed clusters (right).

Then, all centers share the centroids of their locally obtained clusters to
the server. The partial dendrograms are also shared with the server, in order
to reconstitute the merges in order of merge distance. Now, the agglomerative
clustering can resume using the centroids, weighted by their number of points.
In a way, the server sees each centroid c aggregated from nC points as if it were
nC points with the same coordinates c.

Note that Ward and centroid linkages are based on the distances between
the clusters’ centroids (cf. table 2.1), so approximating clusters as their
centroids gives exact cluster distance computations in the global phase.

3.3.2.2 Analysis

This simple method unfortunately has a big shortcoming. Let us consider the
case where a small cluster – whether an outlier, or a number of points lesser
than nmin – is far from other points in a center. During the local clustering
phase, it will remain its own cluster until the last step, where it will be merged

Methods | 39

Figure 3.4: Local cut to get clusters of size at least 2, either recursive (left) or
by height (right). Given the dashed cut, resulting clusters are circled in red

with other points. Therefore, the cut of the HC will return only one cluster
with all points in it.

Ideally, we would like cluster centroids to be shared at the lowest feasible
size, in order to maximize interaction with other centers and be as close as
possible to the pooled clustering. This is what leads us to the next algorithm.

3.3.3 Gradual sharing of local clusters for the win
We thus consider a second approach that is still based on approximating
clusters as their centroids, but that is closer to the original standard
agglomerative clustering algorithm. Here the idea is to merge the two closest
communicating clusters at each step. At first, clusters are only local and each
center shares the distance between its two closest clusters in order to find the
closest pair overall.

Then, once a cluster’s size nC surpasses the threshold size nmin, its
centroid c is shared with other centers, who now see a cluster with nC points
with the coordinates of c (see figure 3.5). In the center of origin of the cluster,
distances remain unchanged, but in other centers, the distance to the new
cluster is computed according the linkage.

This cluster is now considered global, and can be fused with either other
global clusters or local clusters. When a local cluster is integrated into a global
cluster, its members join a waitlist of unshared samples attached to the center.
That way, when the waitlist reaches the minimum size nmin in a center, its

40 | Methods

Figure 3.5: Scheme of the gradual sharing of centroids. Centroids are
represented with a triangle. Here a centroid from center A has already been
publicized to act as a cluster proxy, and a centroid from center B is currently
being communicated to all participants.

objects are averaged and the centroid is published. Distances with clusters in
other centers are then updated as if the samples had joined the cluster but with
their centroid’s coordinates.

3.3.3.1 Federated distance update

We now give more details about the distance update schemes. Recall that
when two clusters A and B are combined, we usually have to compute the
distance d(A∪B,C) to all other clusters C, using d(A,C) and d(B,C). This
is straightforward for local/local or global/global merges. Indeed, when two
local clusters from the same center are merged, only distances in that center
and to global clusters are updated. The linkage rule is used for the update,
using the already known distances. Similarly, when two global clusters are
fused, the distance update is necessary for other global clusters, as well as
distances to local clusters in every center. Again, this is done according to the

Methods | 41

linkage and with existing cluster distances.
However, let us examine a global/local merge between a global cluster

CG and a local cluster CL. For clusters in the center of origin of CL and
for all other global clusters than CG, there are no issues as all distances to
CL and CG already exist. However, let us consider a cluster C from another
center. We would also like to compute the distance from CG ∪ CL to local
clusters in other centers, but only d(CG, C) is defined. We decide to perform
the update as if d(CL, C) = d(CG, C). The intuition is that this should be a
reasonable approximation asCL andCG are the closest clusters at that merging
step, so they should be similar enough compared to other clusters. With this
approximation, there is no need to update the distance for single, complete and
centroid linkages. An update is nevertheless required for average and Ward
linkages as their formula is based on cluster sizes.

3.3.3.2 Validity for approximate centroid and Ward linkages

We note that with our algorithm, the distance update formula is always well-
defined even with approximate distances. This is not trivial at first glance for
centroid and Ward linkage, whose update formula involves the square root of
a value created from the distance (see table 2.1). We show that the value is
always positive and that this is due to the fact that we always fuse the closest
cluster pair at each step. Let A and B be two clusters that are merged at the
current step and C be another cluster. A and B are merged which means
they are the two closest clusters: (A,B) = argmin

A′, B′
d(A′, B′). In particular,

d(A,B) ≤ d(A,C) and d(A,B) ≤ d(B,C) when d(A,C), d(B,C) are
defined. The only case when one is not defined – say d(A,C) without loss
of generality – is if A is local and B is global, in which case we previously
defined d(A,C) := d(B,C), which means the assumption is still true.

We now prove that this is sufficient for the square root to be defined. For
centroid linkage:

|A|d(A,C)2 + |B|d(B,C)2

|A|+ |B|
≥ |A|d(A,B)2 + |B|d(A,B)2

|A|+ |B|
= d(A,B)2

≥ |A||B|d(A,B)2

(|A|+ |B|)2

as |A|, |B| ≥ 1.

42 | Methods

For Ward linkage:

(|A|+ |C|)d(A,C)2 + (|B|+ |C|)d(B,C)2 ≥ |C|d(A,B)2

seeing as |A|, |B| ≥ 1.
Therefore, the quantities are always positive and the square root is defined.

3.3.3.3 Centroid sharing and distance correction

We now describe the process of sharing objects’ centroids as a way to
approximate clusters. When a new global cluster emerges CG, we share its
centroid cG with every client. The centroid is notably used for initializing the
distance to local clusters in other centers. Let us take another global cluster
C ′

G and let l(k), 1 ≤ k ≤ M denote its (potentially empty) local waitlists in
each center. Before CG became global, its distance to C ′

G may have contained
approximations corresponding to the local waitlists. Specifically, whenever a
local cluster was merged into C ′

G, it was approximated as the public centroid
c′G of C ′

G at that time, as we had no better available information. Now that
the centroid of CG is shared, the distance from cG to a waitlist l(k) in center
(k) does not have to rely on centroid c′G anymore, and we should get a better
approximation of d(CG, l

(k)) by computing it in center (k) as the distance from
cG to the cluster made of all points in l(k). Thus, we correct the distance
estimation as follows.

Let us note C ′
G = G′ ∪

⋃
1≤k≤M

L(k), where G′ contains all the points

published as part of a centroid, and L(k), 1 ≤ k ≤ M contains the unshared
points in center (k). The distance between CG and C ′

G can be updated in the
following way. For single linkage,

d(CG, C
′
G)← min

(
d(CG, C

′
G), min

1≤k≤M
d(CG, L

(k))

)
Similarly for complete linkage,

d(CG, C
′
G)← max

(
d(CG, C

′
G), max

1≤k≤M
d(CG, L

(k))

)
For average linkage, before correction,

d(CG, C
′
G) =

|G′|
|C ′

G|
d(CG, G

′) +
|C ′

G| − |G′|
|C ′

G|
δ

Methods | 43

where δ is the term we would like to replace. δ is of the form δk
1≤k≤M

where δk

can be stored in center (k) and appropriately modified every time a local/local
approximation is made. Therefore we do:

d(CG, C
′
G)← d(CG, C

′
G) +

|C ′
G| − |G′|
|C ′

G|

(∑
1≤k≤M

|L(k)|
|C ′

G| − |G′|
− δ

)

For centroid and Ward linkages, it is not possible to keep a separate track
of the accumulated error given the distance formula. Therefore, we recompute
d(CG, C

′
G) from scratch.

A centroid can also become public as part of an already existing global
cluster, and the distance correction works similarly as above. The main
difference is with average linkage, for which the weighted average also
contains a fixed element corresponding to the distance to the global cluster
before integration of the centroid. The public centroid of the merged cluster
is also updated as the weighted average of all shared centroids of the cluster.

3.3.3.4 Algorithm summary

We summarize our samplewise clustering algorithm in 4. In a nutshell,
at each step, the closest communicating clusters, are merged: either two
global clusters, one global and one local cluster, or two local clusters in
the same center. Distances are updated only for clusters that are allowed to
communicate. When a cluster has a local part bigger than the threshold size
nmin, we share its centroid with everyone so as to initialize or improve cluster
distance approximations.

3.3.4 Random projections for federated samplewise
clustering

The previous approach is very much shaped for agglomerative clustering and
hard to generalize to other federated analytics pipelines. We also investigate
a different technique, based on computing an approximation of the pooled
distance matrix through random projections. The random projection scheme
for private computations has been extensively studied in the literature and
described in section 2.4. It has been proposed for single-linkage clustering
[49], but the experiments consider the cost of the associated MST, and are
only valid for the Euclidean metric. Here, we propose a more thorough

44 | Methods

Algorithm 4 Centroid-based federated clustering
Require: M centers with X(k) ∈ Rn(k)×d in center (k), minimum cluster size

nmin

Ensure: ∃ 1 ≤ k ≤M , such that nmin ≤ n(k)

for center k = 1, . . . ,M do
Initialize local clusters and distances

end for
for step s = 1, . . . , n− 1 do

i, j ← arg min
i,j

d(Ci, Cj) ▷ closest communicating active clusters

Ci ← Ci ∪ Cj

for cluster l do
if Ci and Cl communicate then

d(Ci, Cl) = UPDATEDISTANCE(Ci, Cj, Cl)
end if

end for
for center k = 1, . . . ,M do

Ci [k]← Ci [k] ∪ Cj [k] ▷ merge private sublists in the center
if |Ci [k] | ≥ nmin then

SHARECENTROID(Ci, Ci [k])
Ci [k]← ∅
for cluster l not in center k do

d(Ci, Cl) = CORRECTDISTANCE(Ci, Cl)
end for

end if
end for

end for

benchmark, analyzing more linkages and metrics, and centered specifically
on HC measures (presented in 3.2.3).

The random projection method for the Euclidean distance is quite
general, as many statistical pipelines can be computed using only the
Euclidean distance matrix – or equivalently with MDS, the dataset up
to orthogonal transformation. Some notable applications include kernel
methods, visualization methods (t-SNE, UMAP), clustering (k-means,
DBSCAN) and nearest neighbours. Using the random projection principle,
we only add the projection dimension d′ as additional parameter to federate
the HC method. We see intuitively that a lower value of d′ yields more noisy
distances, meaning a higher degree privacy but a lower resemblance to the
unfederated clustering result.

Methods | 45

3.3.4.1 Algorithm description

We detail the algorithm for clustering with any linkageL and with the ℓp norm,
0 < p ≤ 2, based on sampling from the p-stable distribution with scale 1,
noted S(p, 1). Let us consider a dataset X ∈ Rn×d split into M centers, with

each center C(k) containing a dataset X(k) ∈ Rn(k)×d. Let n =
M∑
i=1

n(k). Let d′

be the final dimension of the dataset.
First, all centers settle on a random seed s using SMPC. Though this

requires the use of cryptography, we consider it to be reasonable for practical
purposes. Now, all centers can sample dd′ i.i.d variables from the stable law
S(p, 1) with the shared seed s, so as to form the same matrix Q ∈ Rd×d′ . Each
center sends its encrypted dataset Y(k) = X(k)Q to the server.

The server concatenates all received sets to get Y ∈ Rn×d′ . It then
computes the pairwise differences between all objects in Y as a n × n × d′

matrix ∆. Now, let 1 ≤ i, j ≤ n. ∆i,j is a random vector of d′ variables
following the stable law S(p, ||Xi −Xj||pp).

Therefore, we get an approximation of ||Xi−Xj||p by estimating the scale
of this stable distribution using ∆i,j . For the ℓ2 norm, this simply corresponds
to the standard deviation of the distribution, which can be estimated as

||Yi − Yj||2 =

Ã
1

n

d′∑
k=1

(Yi,k − Yj,k)2

For the ℓ1 norm, several estimators exist and are analyzed in [57]: the
median, geometric mean and maximum likelihood estimators. The first
two are asymptotically equivalent, with the second converging faster. The
last estimator is more efficient but requires to solve a maximum likelihood
equation. We opt for the geometric mean estimator (equation 2.2) for its rather
low computational cost and adequate performance (80% of the maximum
likelihood estimator according to the authors). While we only benchmark it
for the ℓ1 norm, it can be extended to the ℓp norm , 0 < p ≤ 2 (a detailed
account of estimators can be found in [56]).

Finally, once the total distance matrix is estimated, it can be fed to a
standard agglomerative clustering algorithm. The summary as pseudocode
of the complete algorithm can be found in 5.

The algorithm is written for the ℓp norm, but we can also extend it to
the cosine and correlation distances. This is done by reducing them to the
Euclidean distance with the tricks explicited in sections 3.3.1.1.2 and 3.3.1.1.3.

46 | Methods

Algorithm 5 Sampling stable distributions for HC
Require: M centers, with dataset X(k) ∈ Rn(k)×d in center C(k), final

dimension d′, exponent p for the ℓp norm, linkage L
Centers C(1), . . . , C(M) agree on a shared seed s
for center k = 1, . . . ,M do

Sample Q ∈ Rd×d′ with i.i.d entries from S(p, 1) with seed s
Y(k) ← X(k)Q
Send Y(k) to the server

end for
On the server:

∆← PAIRWISEDIFFERENCE(Y) ▷ ∆ ∈ Rn×n×d′ where n =
M∑
i=1

n(k)

D ← 0 ▷ distance matrix, D ∈ Rn×n

for i = 1, . . . , n− 1 do
for j = i+ 1, . . . , n do

D(i, j)← ESTIMATESTABLESCALE(∆i,j, p)
D(j, i)← D(i, j)

end for
end for
AGGLOMERATIVECLUSTERING(D,L)

3.3.4.2 Privacy analysis through attacks

While it is easy to understand what is shared with the server for the centroid-
based approach, it is not clear what the server can recover from the random
projection or even the orthogonal projection method, especially given prior
knowledge on the data. This is why we attempt several attacks to see if the
server or a malicious entity would be able to retrieve more information than
expected from the projected data.

3.3.4.2.1 Known input-output attack on orthogonal projections We
first test the known input-output attack from [47], which we will now describe.
It requires no prior knowledge, and assumes that the attacker holds two pieces
of information: the projected dataset on the server, as well as some of the
original inputs.

More precisely, let X ∈ Rn×d be the original pooled dataset, Y its
orthogonal projection and k the number of known inputs. Let Xk ∈ Rk×d

be the objects known by the attacker and Yk the associated output. For all
x ∈ Rd, let d(x,Xk) refer to the distance from x to the vector space generated
by the rows of Xk.

Methods | 47

We also assume the attacker can identify Yk, i.e they know the index
matches between the partial inputs and the total output. If they do not, they can
usually easily find it by matching the vectors norms and pairwise distances:
they are the same between the inputs and the outputs as the projection is
orthogonal. In most datasets, even with vectors normalized to 1, enough
pairwise distances are different for there to be no ambiguity in the matching.

We now describe the attack: given all orthogonal matrices Q ∈ Rd×d

such that XkQ = Yk, the attacker can sample one uniformly one at random,
denoted Q̂. The authors of [47] then infer the probability of the reconstruction
x̂ = yQ̂−1 being a good reconstruction of x when y = xQ. Specifically, the
probability that ||x̂− x|| ≤ ϵ||x|| for an input x ∈ X is:

P(x, ϵ) =
2

π
arcsin

(
||x||ϵ

2d(x,Xk)

)
if ||x||ϵ < 2d(x,Xk) else 1 (3.1)

In particular, for all x ∈ X , we can now compute the value of ϵ for which
the probability of a breach is 1, which corresponds to the maximum relative
error of the reconstruction when sampling a random solution valid on Xk:

ϵx =
2d(x,Xk)

||x||
(3.2)

Notice that when x belongs to the subspace generated by Xk, then
d(x,Xk) = 0 and the reconstruction is exact.

3.3.4.2.2 Property inference attack with a classifier Gene expression
data is obviously very sensitive, and encodes information such as sex or
genetic diseases. The authors of [85] benchmarked different machine learning
algorithms for the task of recovering patient information from their RNA-Seq
data. They notably obtain good results when training a neural network for
gender and cancer type, but not with age, race1 and cancer stage.

Even if their RNA-Seq preprocessing setup is different than ours, this
suggests that we could potentially learn sensitive information from gene
expression. In our case, we have an additional difficulty in the fact that the gene
expression is projected with a random matrix, whether orthogonal or following
a stable distribution.

We consider a setting where an attacker has access to the projection Y ∈
1Prediction of race also had a good accuracy, but the dataset was very imbalanced (80%

Caucasian), making it somewhat inconclusive

48 | Methods

Rn×k of a dataset X ∈ Rn×d (k ≤ d), the preprocessing method, the selected
genes as well as the projection method (here we only focus on Gaussian and
orthogonal matrices). We assume the attacker also has access to a dataset
X ′ ∈ Rn′×d with similar distribution as X , and their labels z ∈ An′ where A

is the label space. The labels can represent gender or cancer type for instance.
The attacker can now use (X ′, z) to train a classifier f that predicts the label

from the genetic data. To account for the unknown projection, the classifier
receives as input a batch from X ′ projected with a random matrix from the
relevant matrix group. In other words, we try to see if it is possible to train a
projection-invariant classifier to retrieve patient data, so that we can feed it Y
to retrieve its labels.

Figure 3.6: Outline of the projection-invariant classifier for predicting gender
from RNA-Seq data.

In a second part, we also try a simpler attack that supposes stronger
knowledge from the attacker, which is that they know the labels of objects
transformed with the right projection. This corresponds for instance to the
case some labels (and the indices of their matching samples) are leaked, or a
center colludes with the server and shares the projection matrix. This is less
realistic than the previous attack, but it can still be insightful to check whether
it is effective. In that case, there is no need to sample a new projection at each
training step, as labeled projected data is available.

3.3.4.2.3 Reconstruction attack RNA-Seq data follows a certain distri-
bution, usually modeled as a negative binomial law. Even after preprocessing
with the median of ratios or VST method, we can assume that gene expression
data has a given distribution. We can thus try to use that prior information
in order to inverse the projection of the data and reconstruct it in the original

Methods | 49

space. To achieve this, we should find the inverse transformation that best
matches the distribution of the reconstruction to the prior distribution.

We express this as an optimization problem. We are looking for a distance
between probability distributions, and it should be expressed as a differentiable
objective so as to find the best inverse transformation through gradient descent.
We choose the maximum mean discrepancy (MMD) for this purpose.

The MMD between distributions p and q is defined as the distance between
their representations µp and µq in a reproducing kernel Hilbert space (RKHS)
H:

MMD(p, q) = ||µp − µq||H
LetX ∈ Rm×d be n vectors sampled from the distribution p and Y ∈ Rn×d

bem vectors with distribution q. Let k : Rd×Rd → R be the kernel associated
toH. An unbiased estimator of the squared MMD is:

’MMD
2
(X,Y) =

1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi, xj) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, yj)

We use the Gaussian kernel, defined as follows: for all x, y ∈ Rd,

k(x, y) = exp
(
− 1

2σ2
||x− y||2

)
where σ ∈ R+ is a parameter to tune.

We now go back to our attack. We assume that the attacker has access
to the projected dataset Y ∈ Rn×k, originating from the dataset X ∈ Rn×d:
Y = XQ. Now, the attacker also possesses some data X ′ ∈ Rm×d with same
distribution as X . They want to solve the following minimization problem:

f̂ = arg min
f∈F

MMD (X ′, f(Y))

where F is a certain parametric function space. We experiment with two
function spaces:

• the deprojection space, in which any function is of the form f : Y ∈
Rk → Y R ∈ Rd where R ∈ Rk×d. In the case of orthogonal projection,
we want R = Q−1

50 | Methods

• a more complex decoder space, in which functions follow a typical
decoder architecture, alternating between linear and activation layers

3.3.4.2.4 Attack models training and parameters We now detail the
neural network architectures and training parameters for the classifier and
reconstruction attacks.

First, for the classifier, we use four blocks made of one linear layer, one
ReLU layer and one batch normalization [86] layer. We double the number
of features at each linear step, starting with an output dimension of dNN in
the first block. We choose dNN = 2048 except for the Gaussian projection
in dimension 100, where we use dNN = 1024. The last block is a linear
layer followed by an activation layer – sigmoid for binary classification, else
softmax. We use the Adam optimizer [87]. We tune the learning rate with a
grid search.

For the reconstruction attack, the architecture of the complex decoder is
composed of three blocks of a linear layer and a ReLU activation layer, and one
final linear layer. Again, we double the hidden dimension at each step, starting
with an output dimension of dNN = 4096 in the very first linear layer. We
use Adam for this advanced decoder, while we try both Adam and stochastic
gradient descent (SGD) for the simple linear decoder. We tune the learning
rate and the standard deviation σ of the Gaussian kernel with a grid search. A
good value for σ is usually the median of pairwise distances in the dataset, so
we try for values of σ a few orders of magnitude below and above that constant.

Note that all presented experiments for these attacks are run with 5 different
seeds, and performance metrics are averaged across runs unless specified
otherwise.

Results and Analysis | 51

Chapter 4

Results and Analysis

In this chapter, we present the theoretical analysis of our algorithms as well as
the results to our experiments and discuss them. Note that all plots showing
the evolution of a measure with quantiles exhibit the mean value as well as the
10-90% and 25-75% quantiles.

We recall that our clustering performance metrics (CCC and FMI) compare
all federated clusterings with their classic unfederated equivalents, and not to
any clustering based on data labels.

4.1 Federated genewise clustering
Our proposed approach has pooled-equivalent clustering results, so we only
analyze its complexity and privacy.

4.1.1 Complexity analysis
We now analyze the complexity of the algorithm. In each center k:

• computing the sum of counts per gene is done in O(n(k)d)

• computing the gene pairwise distance takes O(n(k)d2)

Note that even if the centers work in parallel, we are in the cross-silo setup,
so we assume that at least several centers have datasets of length in the same
order of magnitude as the total size. More precisely, let nmax = max

1≤k≤M
n(k).

Then we assume nmax = Θ(n). Thus, all centers’ computations are done in
O(nd2).

52 | Results and Analysis

Now, we suppose that we have a star network: data centers communicate
only with the server and not with each other. With this structure, every center
communicates with the server in a sequence – whether to send the distance
matrix or gene count, or to receive the average gene count. In total, the
communication cost is therefore O(Md2).

Finally, on the server, the time complexity of the agglomerative clustering
is that of the classic algorithm: O(n2) for optimized procedures (single,
complete, average and Ward linkages) and O(n2log n) in the general case.

4.1.2 Privacy analysis
To summarize, the centers share the following information with the server:

• the average counts per gene for the correlation metric

• the pairwise gene distance per center for all metrics

This information is considered non-sensitive in our case, hence the privacy
of the algorithm.

Note that we can extend this scheme to a more general case where the
different summands are considered sensitive, but the global aggregation is
not. For genetic data, this could be the case in a cross-device setting with
the correlation metric: indeed, computing the average gene count when every
client holds one data point means sharing said data point with the server.

In that case, secure aggregation [61] should be used in order to obtain the
global summation (either for the gene average or the distance matrix) without
accessing any of the individual summands.

4.2 Centroid-based clustering approach

4.2.1 Complexity and privacy analysis
4.2.1.1 Complexity of the algorithm with simultaneous sharing

of local centroids

This first centroid-based method allows clusters from different centers to
interact, and has a low communication cost. Let us consider a dataset X ∈
Rn×d partitioned into M centers, such that center (k) has X(k) ∈ Rn(k)×d.
Given the threshold size nmin, center (k) communicates:

• its centroids, which represents at most a ⌊ n(k)

nmin
⌋ × d matrix

Results and Analysis | 53

• its merge information, which is at most a (n(k) − 1)× 4 matrix (storing
the cluster indices, merge distance and new number of points for each
merge)

Therefore, the communication cost is in O(nd/nmin + n).
Complexity-wise, the clustering in the centers and the server can be done

with any optimized procedure. Cutting the tree, computing the centroids and
building the final dendrogram amounts to O(nd), which is smaller than the
cost of the clustering. Therefore, the total complexity is that of the pooled
clustering.

4.2.1.2 Complexity of the algorithm with gradual sharing of local
centroids

We now compute the complexity and communication costs of our second
centroid-based approach. Let us consider M centers, each having a dataset
X(k) ∈ Rn(k)×d. Given the threshold size nmin, we define nG = ⌊ n

nmin
⌋, which

corresponds to the maximum number of active global clusters at any step of
the algorithm.

Local cluster distances are first initialized in O(n2
(k)d) in every center k.

We detail below the complexity of a single merge operation. Keep in mind
that there are n− 1 merges in total and that at most nG centroids are shared.

Each center k finds the min distance between a local and a local or global
cluster inO(n(k)(n(k)+nG)). The center communicates this distance with the
server. With a star network, the communication cost isO(M). The server also
computes the min distance between global clusters in O(n2

G).
The server now communicates to centers whether they are the one which

contains the overall min distance, and thus have to perform the merge. If the
merge is between global clusters, the server can send the indices of the two
clusters. In any case, the cluster distance update is performed in O(n).

We now describe the cost of sharing a centroid globally. When a subcluster
reaches the critical size nmin in center k, its centroid is computed inO(n(k)d)

and sent inO(d) to the server. The center must also send the distances between
this local group and the global clusters in O(nG). For centroid and Ward
linkages, these distances can be recomputed on the server inO(nGd) by using
the received local centroid.

Then, the server distributes the centroid coordinates with a communication
cost ofO(Md), and each center k computes or makes a correction on distances
in O(n(k)d).

54 | Results and Analysis

In total, the algorithm thus has a O(n2(d + n)) complexity cost, as does
the naive pooled version when including its distance computation cost. The
total communication cost is O(nM + n

nmin
(Md+ n

nmin
)).

4.2.1.3 Privacy analysis

Both algorithms share the following significant information with the server
and the centers:

1. merge information: which clusters are merged and at which distance

2. centroids of groups of at least nmin points (divulged only to the server
in the first centroid-based method)

Centers also disclose the smallest distance involving one of their clusters, but
it is hardly useful, especially if the cluster index is not shared.

We analyze the sharing of merge information first. We assume that
agglomerative clustering is performed in a setting where having the pooled
dendrogram is not sensitive. Otherwise, there is no point in clustering private
data. This is a fair assumption given that at worse, the dendrogram reveals
a few pairwise distance between points – note that the distance between two
clusters with one point only is exactly the distance between the two points for
all common linkages.

Thus, in our federated setting, having access to pairwise distances
between clusters does not reveal anything when the position of the clusters is
completely unknown. Now, recall that with our federated approach, we share
centroids coordinates. By extension, in the gradual-centroid-sharing method,
we sometimes share the distance from a centroid to a local cluster: this happens
when a cluster CG that has just become global is merged with a local cluster
CL. In the extreme case where CL contains only one point, we can now place
said point in a ball of radius d(CG, CL).

One way to alleviate this issue is to impose a threshold dmin on the
dendrogram distances, such that points can only be placed in a ball of radius
dmin. Let (k) be a center with minimum cluster distance d(k) at a given step;
then (k) sends max(dmin, d(k)) instead of d(k) to the server.

We now discuss our second privacy point: the shared centroids. Intuitively,
the bigger nmin is, the bigger the privacy level. For nmin = 1, the algorithm
even corresponds to the classic pooled version. While nmin is not a standard
privacy parameter – typically, it is not part of a privacy framework such as
DP – it is still a flexible parameter that can be chosen according to the privacy
needs and the data distribution. Genetic data is in dimension close to 50 000

Results and Analysis | 55

and with a distribution that is not excessively concentrated. Therefore, it seems
difficult to infer the coordinates of RNA-Seq data points from their average,
even with a low number of points.

4.2.2 Performance on a toy example: the bimodal
dataset

We first use a very simple toy dataset with two well-seperated clusters in order
to outline the behavior of our centroid-based algorithm. This lets us illustrate
the relationship between performance (i.e similarity to the pooled classic
clustering, which very easily identifies the two clusters) and the minimum
cluster size nmin. In particular, it gives us an idea of the maximum value
nmin can take in order to still reproduce the important clustering trends in the
data.

We use a 2D bimodal dataset of 100 points where the two cluster centers
have a distance of 1 and points follow a Gaussian distribution of deviation 0.1
around the centers (see figure 4.1). Each cluster has 50 points. Points are
randomly assigned to 3 federated centers so that the centers have around the
same number of samples (33/33/34 split), equitably distributed between the
two modes. We compute the CCC for different values ofnmin for the Euclidean
metric and the single, complete and average linkages (cf. figure 4.2).

We observe a step-like evolution of the metric: while the CCC is very
close to 1 at first, it suddenly drops at nmin = 18 to stagnate around 0.4-
0.5. Given the strong seperation between the two clusters, the CCC is almost
1 when the algorithm effectively forms the two clusters at the penultimate
merge. Federated centers have a size of 33-34, hence 16-17 points in each
mode. When nmin ≥ 18, clusters are forced to include points from the two
modes long before the second to last merge, leading to a poor HC.

While this is a simple example, it illustrates an upper bound on nmin

to obtain a reasonable performance in the case of clearly separated clusters.
Ideally, for each important cluster distributed among at least two centers, nmin

should be smaller than the maximum number of points in a center that belong
to said cluster.

4.2.3 Performance on TCGA
We now study the performance of our centroid-based approach on real RNA-
Seq datasets, as the goal of our work is to contribute to federated HC methods
specifically in the context of genetic data analysis. We use datasets from

56 | Results and Analysis

Figure 4.1: 2D bimodal dataset divided in 3 federated centers.

Figure 4.2: CCC evolution with the threshold size for the bimodal dataset
for the single (left), complete (middle) and average (right) linkages with the
gradual sharing algorithm.

TCGA (presented in 3.1). Each dataset is divided artificially between different
federated data centers by using an intuitive geographic split, explained in
section 3.1.1.

4.2.3.1 Performance of the algorithm with simultaneous sharing
of local centroids

We first examine the performance of the naive centroid-based approach, when
the local clustering is executed in each center until all clusters pass the critical
size, and then their centroids are sent to the server to continue the clustering.
For the FMI, we take the average over the last 10 significant merges (i.e we
omit the last one, which is 1 as there is one cluster containing all points for both
pooled and federated algorithms). We compute the CCC and this average FMI

Results and Analysis | 57

for the LUSC dataset preprocessed with the median of ratios method (figure
4.3), for nmin ≥ 2. We use the Euclidean metric.

We observe that the CCC and FMI range from mediocre to decent
depending on the linkage when nmin = 2. They then quickly drop to low
values before stagnating for complete, average and Ward linkages as nmin

increases. In the case of single linkage, the metrics are constant from nmin =

2, meaning that the local clustering already has to merge all points together in
order to naturally force all objects into a cluster of size more than one. This
is the problem explained in section 3.3.2.2: in practice, the rule rarely allows
clusters from different centers to fuse unless they contain all the points in their
center. Here, even for a dataset of 517 points, the clustering quality stagnates
at very poor values for nmin = 15 at most for all linkages.

Figure 4.3: Evolution of two clustering metrics (CCC and FMI) with the
minimum cluster size for the simultaneous sharing of local clusterings scheme.
Here we use the LUSC dataset preprocessed with size factors. Results are
shown for the single, complete, average and Ward linkages.

4.2.3.2 Performance of the algorithm with gradual sharing of
local centroids

We now check the performance of the improved centroid-based method on
the different TCGA datasets. Again, we compute the CCC as well as the
FMI averaged over the last 10 relevant merging steps. For each dataset, we
consider values from nmin = 2 to nmin = nf where nf is 10% of the size

58 | Results and Analysis

of the equivalent pooled dataset. Here we show the performance quantiles
for the TCGA datasets of similar size around 500 – COAD, LUAD, LUSC,
PRAD, SKCM – until nf = 42 (10% of SKCM’s size, the smallest of these
datasets). We plot the performance in three cases: Euclidean metric for both
preprocessing methods, and cosine metric for VST (figure 4.4). For this last
case – Euclidean and VST – we also plot the measures at 10% for all datasets
in figure .

The federated clustering for single and average linkages on the large RNA-
Seq datasets is the closest to the original unfederated agglomerative grouping.
Notably, for all preprocessings and metrics, and for all tested values of nmin,
the FMI averaged over the 10 last merges remains above 0.95. This means
that the algorithm makes few errors in forming the major clusters and then
merging them. The CCC also stays quite close to 1, standing above 0.9 for
single linkage and 0.8 for average linkage. The performance for the smaller
datasets is about as good for READ, but quite lower for PAAD. It would be
worth investigating more the relationship between dataset size/distribution and
performance.

For complete and Ward linkage, the quality is much more variable between
the 5 datasets, and less stable between consecutive values of the minimum
cluster size, no matter the preprocessing (and metric for complete linkage).
This is somewhat surprising for Ward linkage, as its formula for cluster
distances is the distance between the clusters’ centroids, multiplied by a factor
depending on their sizes. With our centroid-based approach, approximating a
cluster as its centroid does not change its distance to other clusters. It seems
that the local merges at the start influence the structure of the clustering too
much too early, and so the initial bad choices cannot be corrected when the
centroids are shared.

4.2.3.3 Inversion issues

One major drawback of our approach is that it causes inversions to appear in the
dendrogram, even for ultrametric linkages like single, complete, average and
Ward linkages. In other words, the pooled dendrogram only has increasing
merging heights whereas the federated dendrogram is not guaranteed to. In
particular, let us consider the case where a global cluster is created and its
centroid is very close to a point clustered on its own in another center. Then,
there is a good chance the merge will have a distance smaller than the merge
distance of the global cluster, and an inversion will appear.

When significant inversions occur in the dendrogram, the latter is much

Results and Analysis | 59

Figure 4.4: Clustering performance with gradual sharing for similarly-
sized datasets for single, complete, average and Ward linkages. Different
preprocessings and metrics are studied: (A) size factors, Euclidean (B) VST,
Euclidean (C) VST, cosine.

60 | Results and Analysis

Figure 4.5: Clustering performance at nmin = 10% with gradual sharing for
all VST datasets for Euclidean metrics, using the single, complete, average and
Ward linkages.

harder to interpret, as can be seen on figure 4.6. Inversions make it difficult to
visualize the order of merges and to compare merging distances. One solution
to this issue is to enforce the monotonicity of merge distances for ultrametric
linkages, as we know that the associated pooled dendrogram has monotonic
merge distances. This can be achieved as a post-process after executing the
federated clustering algorithm. The question is now how this affects the
performance of the federated algorithm.

In order to determine this, we compute the difference in CCC between
the algorithm with imposed monotonicty and without. We plot the average
over all TCGA datasets for 2 ≤ nmin ≤ 50 (figure 4.7); each dataset is only
included in the average until nmin reaches 10% of the size of the equivalent
pooled dataset. We observe that there is no major discrepancy in the CCC, with
a maximum absolute difference of 0.016. For complete linkage, enforcing a
monotonic behaviour even improves the mean CCC with regards to the pooled
clustering; for the other linkages, depending on the value of nmin, one or the
other is better.

Results and Analysis | 61

Figure 4.6: A dendrogram with inversions: pairs of clusters merge to form a
cluster with lower height than the individual clusters composing it.

4.3 Random projection clustering

4.3.1 Complexity and communication cost analysis
First, all centers project their data inO(n(k)dd

′). For the cosine and correlation
distances, an added cost of O(n(k)d) is necessary to normalize the data.

For a cross-silo network in which centers communicate only with the
server, the communication cost is that of all centers sending their transformed
dataset to the server: O(nd′). Now, the server computes the approximated
pairwise distances in O(n2d′) and the HC with the complexity of the
classic pooled approach: either O(n2) or O(n2 logn) depending on the
implementation.

4.3.2 Performance on toy datasets
To understand the performance of the random projection scheme for HC, we
apply it to two very different types of datasets: one that is very unstructured
and one that admits a well-defined clustering. For the first type, we take 100
uniformly sampled points in [0, 1]500. For the second, we sample 100 points
from 5 isotropic Gaussian blobs of standard deviation σ = 0.1, whose centers
are sampled uniformly in [0, 1]500. We evaluate the single, complete, average
and Ward linkages for the Euclidean metric.

For each evaluated sketch size, we do 100 runs, sampling a different dataset
and projection matrix each time. We observe that the clustering performance
is great for the easy clustering problem (A) while it is very poor for the uniform

62 | Results and Analysis

Figure 4.7: Mean CCC difference between enforced monotonocity and
original federated algorithm for several linkages (single, complete, average,
Ward), averaged over all TCGA datasets.

data (B) (cf. figure 4.8).
With the Gaussian blobs, the CCC reaches 0.9 for a sketch size below 25

for single and average linkage, and around dimension 50-60 for complete and
Ward linkage, corresponding respectively to around a 90% and 80% dimension
reduction. Recall that the bound on the sampling size for the convergence of
pairwise distances depends on the number of samples (100 here) and not the
original dimension (500 here). Thus, the scheme is all the more effective for
high-dimensional data.

On the other hand, for the uniform dataset, the CCC barely even reaches
0.8 for single linkage when the sketch size equals the original dimension, and
is under 0.3 for complete and Ward linkage. This highlights the unstability of
agglomerative clustering, as the Euclidean random projection scheme more or
less returns a perturbed version of the dataset, which then affects the clustering.
The authors of [88] study the stability of HC, and find that single linkage
is the most robust, while complete and average linkages are unstable. This
is concordant with our experiments, in which single linkage obtains the best
performance.

We can also look at the convergence of the ARI for the clustering of the
5 isotropic Gaussian groups when cutting the hierarchical tree at 5 clusters
(figure 4.9). The index reaches a value of 1 for all linkages for a sketch size
between 5 and 8 (dimension reduction of 98-99%): this corresponds to a

Results and Analysis | 63

Figure 4.8: Cophenetic correlation coefficient evolution for different linkage
functions using two toy datasets: (A) 5 isotropic Gaussian clusters, up to a
sketch size of 200 (B) uniform data, up to a sketch size of 1000.

Figure 4.9: Convergence of Adjusted Rand index between pooled and
federated clusterings, with a dataset made of 5 isotropic Gaussian clusters for
the single, complete, average and Ward linkages.

perfect agreement between the clusters of the pooled and federated instances.
As this is an easy clustering problem (centers are chosen in [0, 1]500 and

σ = 0.1), we would also like to analyze the quality as the clustering becomes
harder. For this, we compute the threshold size for which the average CCC over
20 runs surpasses 0.95 as σ increases (figure 4.10). Interestingly, while average
and single linkage are better at first, we see that as the deviation increases,
average and Ward linkages have a slow growth, contrary to single and complete
linkages. This is for the specific problem of a few Gaussian clusters, so it
would be appropriate to check other instance problems to see if that behaviour
remains.

64 | Results and Analysis

Figure 4.10: Adjusted Rand index convergence with a dataset made of 500
points sampled from 5 isotropic Gaussian clusters. We plot the min sketch
size required for the CCC to exceed 95% depending on the standard deviation
of the gaussian distributions. Four linkages are represented: single, complete,
average and Ward.

4.3.3 Performance on TCGA
We now apply our random projection scheme to real RNA-Seq data from
TCGA (described in 3.1), with the same federated split as before.

4.3.3.1 Clustering performance for the Euclidean metric

We now analyze the performance of the random projection algorithm on all
TCGA datasets, with a sketch size from 10 to up to 1000. We examine the
CCC, which we can compare to the pairwise distance correlation between the
pooled dataset and its projection. As with the centroid-based algorithm, we
also compute the FMI averaged over the last 10 significant cluster merges.
For this experiment, BRCA is excluded1. Data is preprocessed with VST and
experiments are run with 100 different seeds.

We evaluate the performance for the Euclidean metric, and show the plots
for the best and worst performing datasets overall (figure 4.11).

We get great results for single and average linkages. For all datasets, the
FMI surpasses 0.9 for a sketch size of 40 in the worst case for average linkage,

1Probably due to the size of the dataset, there was a system crash when using BRCA which
we did not have time to investigate.

Results and Analysis | 65

and is always above 0.94 for single linkage for all sketch sizes starting at 10.
The CCC approaches 1 with a similar convergence to the pairwise distance
correlation for single linkage. It reaches 0.9 for a sketch size of at worst 1000
for all datasets except SKCM, where it is valued at 0.76.

In the case of complete and Ward linkage, the performance varies a lot
across datasets, with the CCC and FMI respectively converging towards values
as low as around 0.4 and 0.6. As with the toy examples in section 4.3.2, it
seems that for a non-trivial clustering problem, the lack of stability of some
linkages really impacts the clustering performance of our algorithm. As a
result, the random projection method does not appear viable for complete and
Ward linkages.

Figure 4.11: Performance of random Euclidean projection scheme on VST
counts using the single, complete, average and Ward linkages for two RNA-
Seq datasets: (A) COAD (B) SKCM.

We can also look at the convergence of the mean relative error of the
cophenetic distance with regards to the sketch size. As opposed to the CCC,
this gives the same weight to all cophenetic distances. We plot the relative
error over 100 runs for BRCA counts preprocessed with the size factors method
(figure 4.12).

We observe that the error for single linkage converges, passing below 5%
around dimension 100 for all datasets. For complete and Ward, the error
stays above 10% for all sketch sizes up to 1000; even for average linkage, the
mean error across runs only drops below 10% for one dataset (SKCM). This
empirically confirms the stability of single linkage. It also suggests that for

66 | Results and Analysis

other linkages, our algorithm recovers at best the main clustering trends, but
not the low-level details.

Figure 4.12: Relative cophenetic error of clustering with Euclidean random
projection with different linkages for BRCA preprocessed with size factors.

4.3.3.2 Performance comparison across metrics

We extend our analysis to other useful distance metrics for RNA-Seq, and
now compare our algorithm for the Euclidean, cityblock and cosine metric.
We plot the performance over 100 seeds of the method on the PAAD dataset
preprocessed with VST (figure 4.13).

As with the Euclidean metric, the algorithm performs best for single and
average linkage. The convergence of distances – both cophenetic and usual
– for the cosine metric is as quick as with the Euclidean metric, which we
expect as they use the same type of random projection and estimation. Over
100 seeds, all CCC for the Euclidean and cosine metrics are above 0.95 for a
projection dimension of 250.

Results and Analysis | 67

On the other hand, the convergence of ℓ1 distances is slightly slower, with
25% of runs giving a CCC below 95% at a sketch size of 500. This is surely
due to the distance estimator being less efficient than for ℓ2.

However, the FMI shows quick convergence for all metrics, staying above
0.95 for sketch sizes above 20, corresponding to a dimension reduction of
99.96%.

As for complete linkage, we observe the same somewhat unreliable
behaviour as with the Euclidean metric, with the average CCC stagnating
around 0.6 for instance for PAAD clustered with the cityblock metric.

Figure 4.13: Evaluation of random projection scheme with the sketch size on
PAAD counts preprocessed with VST for different metrics: (A) Euclidean (B)
cityblock (C) cosine. Results are presented for the single, complete, average,
and Ward linkages.

68 | Results and Analysis

4.4 Attacks on random projections

4.4.1 Known input-output attack
We first perform the known input-output attack on orthogonal projections from
[47] (described in 3.3.4.2.1). For this attack, the malicious party knows all
projected data, as well as some of the input data and their matching projection.

Here we compute the maximum relative error that is guaranteed when
the attacker knows a certain percentage of the dataset (equation 3.1). We do
this separately for each TCGA dataset and preprocessing method. For each
percentage that we consider, we randomly sample the known objects. Each
experiment is repeated 10 times with a different seed. We show the results for
the two datasets for which we get the worst and best results for the size factors
(figure 4.14) and VST (figure 4.15) methods.

We find that the privacy breach is higher with the VST preprocessing than
the size factors method for a small known proportion, while the opposite is
true for a high proportion. For the size factors method, the relative error does
get under 10% for 50% of the points when half the data is known. However,
one might wonder how realistic it is for an attacker to acquire such a large
portion of the original dataset. Indeed, if we imagine that most of the data is
split more or less evenly between silos, they would have to obtain data from
several centers. One case where this attack would actually be effective is in a
federated setting with private centers where public data is also used, and the
public data represents a majority of the global dataset.

Figure 4.14: Relative error of the known input-output attack with the size
factors normalization for the PAAD (left) and PRAD (right) datasets.

Results and Analysis | 69

Figure 4.15: Relative error of the known input-output attack with the VST
normalization for the SKCM (left) and PRAD (right) datasets.

4.4.2 Property inference attack
We execute the property inference attack explained in 3.3.4.2.2, in which an
attacker with access to the projected data uses it to derive personal information
on patients, such as gender or age. We perform experiments for the task of
gender prediction from the TCGA data (BRCA, COAD, LUAD LUSC, PAAD,
READ, SKCM)1. Here we use the normalization with size factors.

We take the decision of reducing the number of genes, originally around
50 000, by taking the genes filtered by the preprocessing. These are the genes
which have no zero count in any sample. While this is not a realistic filtering
step, it should allow us to keep the most important genes and helps reduce the
size of the feature space, letting us do more experiments (with computations
being obviously faster, especially for the orthogonal projection).

Preprocessing is done separately for the training/validation sets and the
test set, to imitate the fact that the attacker and the federated centers do
their computations separately. For the centers, we do the preprocessing as
if their data was pooled, which supposes the existence of federated RNA
normalization methods (which are not the focus of this work).

We then take the intersection of training and testing genes when there is
no dimensionality reduction, i.e for orthogonal or no projection. We then have
around 10 000 - 15 000 genes after filtering (the exact number depends on the
random split between training and testing). We do a 60/20/20 split between
training/validation/test sets.

1We do not include PRAD i.e prostate cancer patients, for which gender information is
missing – presumably because all patients were cisgender male. We do include BRCA (breast
cancer) as there are still a few male patients and not just female patients.

70 | Results and Analysis

We compute the accuracy for four kinds of projection – orthogonal, and
Gaussian for the projected dimensions 100, 1000 and 10000. We compare this
to the accuracy of the standard classifier when there is no projection.

In the case that the attacker only has data in the original space, we observe
that the model does not manage to learn projection invariance (figure 4.16).
While the mean accuracy without projection is 76.5%, the accuracy for all
projections mostly stays in the 40-60% range, which is rather poor given
that the balance between labels is 60/40. The difference in testing accuracy
between the classifier without projection and with any of the projections is
statistically significant with a paired t-test (for all conditions, p ≤ 0.0031).
Note that even without projection, the accuracy is not excellent, which is
probably due to the filtering-out of a majority of genes.

Figure 4.16: Test accuracy of gender prediction over 5 runs for the
projection-invariant classifier (orange) VS the fixed-projection classifier
(green), compared with the classifier in the absence of projection (blue).
Dimensions 100, 1000 and 10000 are tested for the Gaussian projection.

We now analyze the case where the projection is fixed, corresponding
to the setting where the attacker obtains labeled data in the projection space
(figure 4.16). As expected, for Gaussian projections, as the output dimension
increases, the accuracy also improves, with statistical relevance between

1computed using n = 5 samples per condition, yielding degrees of freedom between 4.48
and 6.19

Results and Analysis | 71

dimensions 100 and either 1000 or 10000 (paired t-test: p ≤ 0.007121), but
not between 1000 and 10000 (paired t-test: p = 0.7112). The performance
for the orthogonal projection is slightly lower than the performance without
projection, but not with statistical significance (p = 0.2693).

Unsurprisingly, the attack for a fixed projection is more effective than
the projection-invariant attack. We verify this by computing a paired t-
test on the test accuracies, comparing them between a fixed and variable
projection, which gives statistically significant results (porthogonal = 0.00474,
pgauss(100) = 0.00196, pgauss(1000) = 0.00420, pgauss(10000) = 0.0001924).

4.4.3 Reconstruction attack
We now try to reconstruct samples from their projection by matching the
distribution of the reconstruction and other RNA-Seq data in the original space
(more details in 3.3.4.2.3). It is critical for us to evaluate the performance of
this attack. Indeed, if it succeeds in uncovering the original data, then the
projection scheme is unviable as a federated approach, as it means that the
raw dataset is essentially shared with the central server.

4.4.3.1 Median of ratios preprocessing tests

We perform the reconstruction attack on all TCGA datasets at once, assuming
that they have an overall close distribution as RNA-Seq datasets, even if they
correspond to different cancer types. We use a 50/50 random split between the
projected data of the server and the data known by the attacker. We analyze
three types of projections: orthogonal as well as Gaussian for a sketch size
of 1000 and 10000. To evaluate the reconstruction attack, we compute the
relative error between the reconstruction and the original sample.

Our first test is done on data preprocessed with the size factors method,
and filtering the genes as for the classifier attack in 4.4.2, meaning we have
around 10 000 - 15 000 genes. We compare the reconstruction error for the
simple linear decoder and a more complex decoder with several layers (figure
4.17). We see that in all cases, the reconstruction is unsatisfactory: the median
error is above 50% and the minimum error above 25% in all cases. We still
observe that for all types of projections, the complex decoder performs better
than the linear decoder.

1n = 5 samples, 6.78 and 7.73 degrees of freedom
2n = 5 samples, 6.06 degrees of freedom
3n = 5 samples, 7.07 degrees of freedom
4n = 5 samples, respective degrees of freedom 4.33; 4.51; 4.12 and 6.00

72 | Results and Analysis

Figure 4.17: Comparison of the reconstruction error on TCGA when using a
simple VS complex decoder. Samples are normalized with the median of ratios
method. Dimensions 1000, and 10000 are tested for the Gaussian projection.

We notice that the reconstruction is bad even for the orthogonal projection,
which theoretically admits an exact solution with error 0 for the linear decoder
(which is the inverse of the orthogonal projection). For Gaussian projections,
it is not obvious what the best possible error is for the linear decoder. We
can take our dataset and compute the reconstruction error using the pseudo-
inverse as a decoder (figure 4.18). We see that even with a Gaussian projection
of dimension 10000, the relative error is around 40%. We also try initializing
the weights in the optimization as the pseudo-inverse of the projection (figure
4.18). Interestingly, the pseudo-inverse serves as a good initialization for the
gradient descent, and the relative error even decreases during training. In
dimension 10000, half of the data is reconstructed with an error around 50%
with this initialization.

4.4.3.2 VST preprocessing tests

We now compute the reconstruction error when the attack is performed on
TCGA data normalized with VST. This time, we use all the genes (around
50 000). We also compare it to the error for the size factors preprocessing,
selecting all the genes as well. The reconstruction is much better with VST
(figure 4.19), as it is around 20% for most samples compared to around
75% for the previous preprocessing method. The discrepancy is statistically
significant, as determined by a paired t-test (p = 0.0000491 for the mean

Results and Analysis | 73

Figure 4.18: Initializing the decoder as the projection’s pseudo-inverse
improves reconstruction. Left: relative reconstruction error using the pseudo-
inverse of the projection, averaged over 10 random Gaussian projections for
each sketch size and TCGA dataset. Right: comparison of the reconstruction
error on TCGA with a linear decoder when initializing the weights randomly
or as the pseudo-inverse, for projection dimensions 1000 and 10000.

reconstruction error from a Gaussian projection of dimension 1000; computed
from n = 5 sampled runs, giving 8 degrees of freedom). The reconstruction
is not perfect, but low enough that it is unclear if the attacker could learn
something from it.

We try to combine the reconstruction and property inference attack to see
if the VST reconstruction is meaningful. We suppose that the attacker trains
a classifier on their data to predict the gender attribute. They can then feed
the reconstruction of the server data to the network to recover the label. We
compare the testing accuracy between the original federated dataset and the
reconstruction from its projection. The experiment is run for 5 seeds.

While the original dataset has a great accuracy, with a mean value
of 0.90 (±0.06), the reconstructed dataset’s average accuracy is valued at
0.57 (±0.09). Even though the original label imbalance is about a 60/40 split,
the prediction on the reconstruction always favours one label: we find that the
most predicted label is chosen from 87 to 99% of the time. Thus, we cannot
conclude that the reconstruction is meaningful from this experiment.

4.5 Summary

4.5.1 Algorithms performance analysis
Our experiments in sections 4.2.3.2 and 4.3.3 suggest that both algorithms –
based on centroids and random projections – perform quite well for single

74 | Results and Analysis

Figure 4.19: Comparison of the reconstruction error on TCGA between the
size factors and VST methods, using all genes. Gaussian projections of
dimension 100 and 1000 are studied here.

and average linkages on RNA-Seq data. This performance is maintained
even for a high minimum public cluster size nmin in the first case (see
figures 4.4, 4.5), or for large dimensionality reduction in the second case (cf.
figures 4.11 and 4.13). Therefore, our algorithms seem to offer a reasonable
privacy/performance trade-off for single and average linkages.

For complete and Ward linkages however, performance varies a lot across
datasets, as shown in figures 4.4 and 4.3 for instance. While the clustering is
great in some cases, its low performance in other cases makes it unpredictable
for now. It could be worth investigating the difference in performance between
datasets. The lack of stability of these linkages is probably a large factor in
the low clustering quality of our algorithms. Indeed, these linkages lead to
satisfactory results in easy clustering problems (e.g clear-cut Gaussian clusters
as in figure 4.9), where perturbing the dataset rarely affects the clustering
trends.

Thus, for difficult clustering problems, our methods seem to be adapted for
single and average linkages only. We note that single linkage is rarely used in
real instances, including gene expression analysis. On the other hand, average
linkage is actually often employed in practice and works with all metrics; this
makes our algorithms viable for real-case usage in terms of performance.

Results and Analysis | 75

4.5.2 Attacks analysis
Our different attacks on random projections in section 4.4 are overall rather
ineffective. We know a prior exists on genetic data and we examined cases
with zero loss of information (orthogonal) or low loss (Gaussian projections
with almost no dimension reduction). Therefore, we could expect to recover
much more sensitive information than what we obtained. Genetic data is quite
complex, and we suppose that its high dimension makes attacks much more
difficult given the discrepancy between the number of samples and the number
of genes in our attacks.

Specifically, the projection-invariant classifier (see figure 4.16) probably
cannot be trained successfully with such a small dataset. For the reconstruction
attack, it might be that the reconstruction follows the distribution of RNA-
Seq data but remains far from its original match. This is something that
could be investigated, as our preliminary analysis makes it unclear whether
we can learn information from reconstructions that are still around 20% off
(figure 4.19). We could not manage to accurately predict the gender of
reconstructed samples, and most samples were classified together (cf. section
4.4.3.2), which does not indicate a meaningful reconstruction. One could also
check if differentially expressed genes between the original samples and their
reconstruction match to further test the significance of reconstructions.

4.6 Samplewise clustering methods com-
parison

As we have developed two different approaches for samplewise clustering,
we ponder their differences to understand the benefits and drawbacks of each
method.

To begin with, the result of the centroid method depends on the data
distribution between the centers, while the output of the random projection
method does not. In particular, the centroid-based method benefits from a
heterogeneous partition of the data, in which every cluster is mostly contained
in one center. On the other hand, there are more approximations when one
cluster is split between a lot of centers. Contrary to this, the second method
returns exactly the same results no matter the distribution, given an identical
projection matrix.

Then, the centroid-based approach is quite focused on HC and can at
best be generalized to federating other clustering algorithms. As explained

76 | Results and Analysis

before, the projection-based algorithm has many known applications other
than clustering, such as visualization or kernel methods.

Another difference between the approaches is in the network com-
munication. The random projection method requires only one round of
communication (assuming a seed has been agreed upon previously) whereas
the centroid approach has O(n) communication rounds. In practice, this
can create a bottleneck in the computation, which should be investigated
empirically with real federated software.

We can also consider variants of our centroid-based algorithm to reduce
communication. Let us suppose that communication is the biggest time factor
and local computation is negligible. Instead of having a communication
round for each merging step, we could imagine ways to enforce less frequent
checkpoints. For instance, instead of executing only the merge with minimum
cluster distance, one could execute the top α merges, 1 ≤ α ≤ n − 1,
which would add parallelization and lower the number of communication
steps. Another possibility would be for all big centers to merge clusters until
one private group is of size nmin at least, then share all those groups, and repeat
the process.

Privacy-wise, it seems that the first algorithm offers a reasonable
privacy/performance trade-off, as nmin can be rather high without dropping
in quality, so that centroids are averaged over many points. It is also quite
straightforward to understand what it is shared to the server. On the other hand,
for the projection algorithm, it is unclear what is leaked. As the server receives
the complete transformed dataset, the data is highly vulnerable to collusion by
a malicious center with the server. Other than that, our experimental analysis
suggests that it is hard to attack transformed bulk RNA-Seq data using prior
knowledge. Of course, just because our attack strategies have failed does not
mean none would succeed. Therefore, it is difficult to be certain that the
projection-based approach is truly secure for high-dimensional data.

To conclude this part, we summarize several aspects of both approaches in
table 4.1.

Approach Centroid-based Projection-based
Privacy parameter min size of shared centroid projection dimension

Complexity O(n2(d+ n)) same as pooled
Communication rounds O(n) O(1)

Table 4.1: Algorithm comparison between the centroid and projection-based
approaches

Discussion | 77

Chapter 5

Discussion

5.1 Summary of our findings and their rele-
vance

5.1.1 Key findings
We have shown that genewise federated agglomerative clustering can be
achieved without difficulty for all linkages and metrics and while preserving
samples’ privacy. Given that our approach yields pooled-equivalent
performance and complexity, it should be preferred over other privacy-
protecting methods. Indeed, SMPC guarantees equal performance but at a
higher computational cost, while DP produces approximate results. Recall that
our method is only valid in the case that feature information is non-sensitive,
as is the case with genes; in other settings, SMPC-based techniques might be
more adapted.

With regards to samplewise federated clustering, we have developed two
distinct approaches: one based on approximating groups of points as their
centroid on the server, and one based on random projections. Both have
great performance for several common metrics when using single and average
linkages.

For single linkage, a SMPC approach had been proposed [63], but it was
tested on low-dimensional data and adapted to the case of two parties. Here,
our methods can operate on high-dimensional data and in the cross-silo setting,
i.e with more than two data centers. The authors of [32] did propose random
projections for single linkage, but their experiments focused on the cost of the
associated MST. Here, we confirm the empirical usefulness of this technique
for clustering by using HC-specific metrics.

78 | Discussion

Though single linkage is somewhat uncommon in practice, this is not the
case of average linkage, which is one of the most popular linkages, notably
in RNA-Seq data analysis. This suggests that our algorithms can effectively
be useful in practice as they will be in direct correspondence with centralized
genetic analysis pipelines. We expect that this equivalence makes them rather
likely to be adopted, compared to the previously mentioned DP approaches
[69, 68] , which optimize the lesser known Dasguspta’s objective.

Regrettably, our methods do not perform consistently well in our
experiments for complete and Ward linkages, which are also widely used. This
suggests that a SMPC-based approach might be required for these unstable
linkages, so as to guarantee equivalent performance with pooled clustering.

Privacy-wise, our centroid approach offers a very reasonable perfor-
mance/privacy trade-off. It has a satisfactory quality attained for as high
as 10% of dataset sizes selected as the minimum number of points in a
shared centroid. Meanwhile, the random projection method works well
with high dimension reduction. Our empirical analysis suggests that it is
difficult to attack in a semi-honest setting when dealing with bulk RNA-Seq
data. However, in a malicious setting, it is obviously vulnerable to collusion
between a center and the server.

To complement our work, in the literature, the privacy properties of
random projections have also been investigated from a theoretical viewpoint,
via the DP setting [89, 90]. They offer insights into what level of dimension
reduction is required in order to preserve a certain degree of DP.

5.1.2 Impact of our work
5.1.2.1 Federated analytics

From the viewpoint of federated analytics, our contribution is two-fold. First,
we have proposed a novel clustering approach by approximating groups of
points as their centroids in external centers. This is one way to solve the
impossibility of sample-to-sample comparison in different data centers which
could serve for other algorithms.

To our knowledge, previous privacy-enhancing methods for HC relied on
either on SMPC or DP. In the first case, the proposed method was for two
parties only [63], which means an inability to face a case with several data
centers, which is common in practice, in addition to heavy communication
costs because of cryptography protocols. In the second case, the proposed
techniques [69, 70] optimized Dasgupta’s objective instead of the traditional
agglomerative algorithms with linkages. Yet, the latter are the most prevalent

Discussion | 79

in RNA-Seq analysis, meaning that bioinformaticians might not be able to
interpret their results as easily. Thus, our centroid-based solution could be the
most suited for multi-party agglomerative HC on genetic data, for scientists
aiming to have an algorithm as close to what they usually use but with a bigger
focus on privacy.

Then, we have studied the use of random projections for clustering.
Random projections are a well-known technique, but they have seldom been
applied to federated works. Yet, as they offer a way to compute pointwise
distances on the server, they can potentially aid in several domains, such as
clustering, visualization or kernel methods. However, their privacy guarantees
are somewhat blurry, and they are especially vulnerable to collusion between
malicious parties. Several attacks from the existing literature can be used
against them [47, 25], and we have also proposed a new reconstruction attack,
based on distribution matching in the input space. We have applied all
these attacks to randomly-projected RNA-Seq data, so that our experimental
assessment of the privacy/performance trade-off of random projections can
help others understand whether or not to employ them in federated projects
given their specific needs.

Federated clustering remains underdeveloped. While federated methods
for k-means exist [17, 23], other clustering techniques such as density-based
still do not have a standard federated equivalent, which is why our work fills a
critical gap in the federated landscape.

5.1.2.2 Gene expression analysis

Gene expression analysis has had a crucial impact on the understanding
of biological functions. It has helped us in the prevention, diagnosis and
treatment of diseases such as cancer or cardiovascular technologies. Given
the sensitivity of genetic data, we need to adapt our data analysis pipelines so
as to protect the privacy of patients, and leverage currently unaccesible data
pools.

Agglomerative clustering plays a critical role in these pipelines, as it
benefits the exploratory and quality control steps. We propose algorithms
for gene and samplewise clustering, allowing researchers to assess the
relationships between genes and between patient data. Therefore, our
federated algorithms can improve privacy-preserving procedures and help
uncover new insights about diseases using previously unavailable data.

80 | Discussion

5.2 Ethical and sustainability considerations

5.2.1 Concerns about data privacy regarding the
TCGA dataset

The TCGA gene expression and metadata we use is part of the open-access
TCGA database. It only comprises data that does not cause any risk of
patient re-identification. In our project, we do not utilize the controlled-
access database, which contains more sensitive genetic information and is
only available to qualified researchers who have agreed to certain contractual
obligations.

Participants of the TCGA project underwent a comprehensive informed
consent protocol, which includes an extensive discussion about the risks and
benefits. Note that the ethical protocol used by TCGA is also stricter than
the guidelines from the National Institutes of Health for Human Research
Protections in the United States.

More information about TCGA’s ethical policies can be found on the
National Cancer Institute website1.

5.2.2 Ethical questions
Analysis of genetic data comes with ethical concerns given its sensitive nature.
Genetic expression contains information about a person’s predispositions to
diseases, and could thus be used to discriminate against that person. Given
the hereditary nature of genetic data, when a patient’s information is divulged,
it is also potentially revealing about their relatives’ information. Therefore,
it is extremely important that any genetic data analysis protocol follow strict
guidelines with clear privacy properties.

In this work, we have presented several algorithms with different privacy
mechanisms. While not standard, the privacy parameter of our centroid-based
method is intuitive enough. It can be tweaked so as to guarantee a high level
of privacy in a context where the clustering results are deemed acceptable to
share. It is also rather unaffected by malicious centers or a server who decide
to collude.

On the other hand, random projections rely on the assumption that the
transformation cannot be reversed by the server. This depends heavily on
the data distribution in the general case, and it cannot be strictly proven that

1https://www.cancer.gov/ccg/research/genome-sequencing/tc
ga/history/ethics-policies

https://www.cancer.gov/ccg/research/genome-sequencing/tcga/history/ethics-policies
https://www.cancer.gov/ccg/research/genome-sequencing/tcga/history/ethics-policies

Discussion | 81

this procedure is safe. It is also quite vulnerable to collusion, which has
serious consequences. In the orthogonal case, it leads to a complete decryption
of the data. In the Gaussian case, our results suggest that the server could
successfully train a classifier to predict information about patients. In this
context, we are not convinced that hospitals would accept to use the random
projection protocol in practice.

5.2.3 Sustainability issues
By contributing to privacy-enhancing algorithms for DEA, we aim at
furthering research efforts on the treatment of diseases, in order to improve
quality of life. For instance, early detection of pathologies can sometimes
help curing them more quickly and at a lower cost. According to the World
Health Organization, global cancer rates could face a 77% increase by 2050,
highlighting the need for more effective and targeted medical care. Again,
by allowing more data to be leveraged in computations by preserving their
privacy, we should be able to move towards more efficient treatments.

5.3 Limitations
A limitation of our work is its specific application to genetic data. Indeed,
vertically-partitioned clustering would be harder if feature-wise privacy was
required. Moreover, our samplewise clustering algorithms apply to datasets
X ∈ Rn×d with typical orders of magnitude n ∼ 10− 1000 and d ∼ 10000−
100000. Recall that while the random projection algorithm has optimal
complexity, the centroid-based algorithm requires a O(n3) cost in terms of
n, which can be prohibitive for large-scale applications. Note that this is often
not the case, given that in the classical setting, the best-case scenario comes
with a O(n2) complexity that can already be quite restrictive.

It is worth mentioning that we focused specifically on the bulk RNA-Seq
modality. While this sequencing method remains very popular, single-cell
sequencing and transcriptomics are increasingly used for their better precision.
Thus, it could be useful to have federated clustering algorithms adapted to
these. A big difference would be in terms of privacy constraints, as single-cell
data has stricter priors, and is notably very sparse [91]. Thus, our algorithms
could potentially be easier to attack with such data.

Here we focused on approximate algorithms so as to get acceptable
complexity for the cross-silo setting while maintaining a certain privacy
threshold. The private alternative for exact clustering would be to use SMPC,

82 | Discussion

which has higher communication costs but yields pooled-equivalent results.
Even then, privacy concers remain: the quantities computed on the server have
to be non-sensitive in the first place. In our case, computing the distance matrix
on the server amounts to having the pooled dataset up to isometry, which can
be attacked similarly as random projections. However, there is no collusion
issue in that case.

Conclusions and Future work | 83

Chapter 6

Conclusions and Future work

In this chapter, we summarize our findings and their limitations, and present
possible avenues for future work.

6.1 Conclusions
In this work, we presented methods for cross-silo federated clustering both in
the genewise and samplewise settings. We studied their complexity, privacy
characteristics and empirical performance on high-dimensional genetic data.
Our methods have proven reliable for RNA-Seq data for common parameters
of the agglomerative clustering procedure, meaning that they can be integrated
into federated data analysis pipelines for real-case projects.

In this thesis, we asked ourselves how federating the HC of genetic data
affects performance and complexity, measured against equivalent unfederated
algorithms. We also inquired to what extent these federated approaches respect
data privacy.

First, we found that federated gene-wise HC can be achieved with
pooled-equivalent results at a low complexity, while preserving sample-wise
privacy. Therefore, there is no performance, complexity or privacy cost
to federating the classic agglomerative clustering algorithm for gene-wise
comparisons. Second, for sample-wise HC, our federated procedures had
to be approximate versions of their classic counterparts, in order to retain
low enough complexity and communication costs. Empirically, for genetic
data, the clustering results of our approaches were consistently close to the
unfederated agglomerative algorithms, for both single and average linkage,
and this, at adequate levels of data privacy for the centroid-based method. For
the random-projection approach, satisfactory performance was obtained for

84 | Conclusions and Future work

dimensions where reconstruction attacks failed, but where collusion between
a data center and the server would have severe effects on privacy.

In brief, federating the HC of data samples without using SMPC methods
has a negative effect on performance. It also involves a higher complexity,
with back-and-forth communication between devices, but with a reasonable
performance/privacy trade-off for our first algorithm. While tt requires
acceptable communication costs for a low-dimensional dataset (either by
nature or through Gaussian projection) for our second algorithm, this comes
at a potential price in genetic data privacy.

Federated analytics certainly comprise different challenges to those of FL.
In particular, the quantities to compute in such algorithms are sometimes more
closely related to the original data, and thus harder to protect. We cannot
simply average local gradient contributions in order to mask unique inputs as
is possible with FL. In particular, the pairwise point relationships are often
crucial in order to compute distance matrices for clustering or visualization
techniques. This is a great difficulty when points are distributed across several
clients.

We note that federated clustering is only useful as long as the distributed
data can be properly preprocessed in a federated manner. RNA-Seq data is
famously sensitive to batch effects – effects due to the different sequencing
conditions in different experiments – which must be removed for analysis.
Normalization methods such as VST are also significantly useful. Therefore,
we could focus next on federating gene expression preprocessing methods in
order to move towards a complete federated RNA-Seq analysis pipeline.

6.2 Future work
The obvious next thing to do is to implement our algorithms in a software
for federated computations. Indeed, this would let us test it in practice, and
especially verify if the compute time is reasonable. It would also mean that it
would be available for researchers and thus could serve in federated projects
that include a HC step.

With regards to the centroid-based algorithm, a real implementation would
also let us examine the empirical compute cost when communication between
the server and the centers occurs. We could then decide whether we need to
reduce the communication cost using variants of the algorithm as mentioned
in section 4.6. It might be that less frequent checkpoints are possible at a
small price in performance, given the observed stability of single and average
linkages in our experiments.

Conclusions and Future work | 85

We now focus on the random projection algorithm. We should look into
detail for possible cryptography schemes that allow centers to choose a secret
common seed. Cryptography was out of the scope of this work, but such a
scheme would be required for a complete implementation of our federated
algorithm. We would then need to analyze the complexity and communication
cost of the selected mechanism.

As mentioned previously, the JL projection method has already been
studied under the DP framework [89, 90]. This could be useful in order for
us to have a theoretical way to examine the privacy of our random projection
algorithm for the Euclidean distance. We could then try to extend it to the
cityblock, cosine and correlation distances. In terms of practical experiments,
we would have to test on real RNA-Seq data what DP constants are required
to reasonably protect it. Indeed, if the level of noise deemed necessary for
privacy purposes is too high, it means that our algorithm may not actually
have a satisfactory privacy/performance balance.

In relation to this, there is also room for improvement in the attacks on
random projections. First, we did not have time to try all attacks on all
preprocessing methods and using the whole gene set. Besides, as mentioned
previously, we did not exhaustively check whether a somewhat medium
reconstruction error (less than 20%) is enough to leak sensitive information
about the data. We could also focus more on the collusion problem for
Gaussian or Cauchy projections. We obtained satisfactory clustering quality
with high dimensionality reduction, given that the projection bound depends
on the number of samples and not the dimension. Therefore, it would be
interesting to assert what can actually be learnt when the projection matrix
is divulged.

Finally, it would be useful to perform a more extensive performance
benchmark of our algorithms. With regards to the centroid-based algorithm,
we could analyze its performance depending on the splits between centers,
both in terms of data heterogeneity and local dataset size. Additionally, not
only could we use other gene expression datasets, but we should try to evaluate
the biological relevance of the main clusters found. Indeed, we could check
whether the clusters correspond to actual subgroups corresponding to precise
medical information. This could potentially help reinforce our findings on the
empirical quality of the clustering.

86 | Conclusions and Future work

References | 87

References

[1] O. Ginsburg, P. Ashton-Prolla, A. Cantor, D. Mariosa, and P. Brennan,
“The role of genomics in global cancer prevention,” Nature Reviews
Clinical Oncology, vol. 18, no. 2, pp. 116–128, Feb 2021. doi:
10.1038/s41571-020-0428-5 [Page 1.]

[2] J. Khan et al., “Classification and diagnostic prediction of cancers
using gene expression profiling and artificial neural networks,” Nature
Medicine, vol. 7, no. 6, pp. 673–679, Jun 2001. doi: 10.1038/89044
[Page 1.]

[3] J. E. Dancey, P. L. Bedard, N. Onetto, and T. J. Hudson, “The genetic
basis for cancer treatment decisions,” Cell, vol. 148, no. 3, pp. 409–420,
Feb 2012. doi: 10.1016/j.cell.2012.01.014 [Page 1.]

[4] Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool
for transcriptomics,” Nat. Rev. Genet., vol. 10, no. 1, pp. 57–63, Jan.
2009. doi: 10.1038/nrg2484 [Pages 1 and 15.]

[5] C. Soneson and M. Delorenzi, “A comparison of methods for differential
expression analysis of RNA-seq data,” BMC Bioinformatics, vol. 14,
no. 1, p. 91, Mar. 2013. doi: 10.1186/1471-2105-14-91 [Pages 1 and 16.]

[6] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” WIREs Data Mining and Knowledge Discovery, vol. 2, no. 1,
pp. 86–97, 2012. doi: 10.1002/widm.53 [Pages 1 and 10.]

[7] C. M. Koch, S. F. Chiu, M. Akbarpour, A. Bharat, K. M. Ridge,
E. T. Bartom, and D. R. Winter, “A Beginner’s Guide to Analysis
of RNA Sequencing Data,” American Journal of Respiratory Cell and
Molecular Biology, vol. 59, no. 2, pp. 145–157, Aug. 2018. doi:
10.1165/rcmb.2017-0430TR Publisher: American Thoracic Society -
AJRCMB. [Pages 1 and 16.]

88 | References

[8] D. Jiang, C. Tang, and A. Zhang, “Cluster analysis for gene
expression data: a survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 16, no. 11, pp. 1370–1386, 2004. doi:
10.1109/TKDE.2004.68 [Pages 1 and 16.]

[9] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”
Sep. 2011, arXiv:1109.2378 [cs, stat]. [Pages 1 and 10.]

[10] D. Greenbaum, A. Sboner, X. J. Mu, and M. Gerstein, “Genomics and
privacy: implications of the new reality of closed data for the field,” PLoS
Comput. Biol., vol. 7, no. 12, p. e1002278, Dec. 2011. [Pages 2 and 7.]

[11] A. C. Yao, “Protocols for secure computations,” in 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982), Nov. 1982.
doi: 10.1109/SFCS.1982.38 pp. 160–164, iSSN: 0272-5428. [Pages 2
and 22.]

[12] C. Dwork, “Differential Privacy,” in Automata, Languages and
Programming, ser. Lecture Notes in Computer Science, M. Bugliesi,
B. Preneel, V. Sassone, and I. Wegener, Eds. Berlin, Heidelberg:
Springer, 2006. doi: 10.1007/11787006_1. ISBN 978-3-540-35908-1
pp. 1–12. [Pages 2 and 23.]

[13] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y.
Arcas, “Communication-Efficient Learning of Deep Networks from
Decentralized Data,” in Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. PMLR, Apr.
2017, pp. 1273–1282, iSSN: 2640-3498. [Online]. Available:
https://proceedings.mlr.press/v54/mcmahan17a.html [Pages 2 and 7.]

[14] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. Association for
Computing Machinery, 2015. doi: 10.1145/2810103.2813687. ISBN
9781450338325 p. 1310–1321. [Pages 2 and 7.]

[15] A. R. Elkordy, Y. H. Ezzeldin, S. Han, S. Sharma, C. He, S. Mehrotra,
and S. Avestimehr, “Federated Analytics: A survey,” Feb. 2023,
arXiv:2302.01326 [cs]. [Pages 2 and 8.]

[16] A. Hartebrodt and R. Röttger, “Federated horizontally partitioned
principal component analysis for biomedical applications,” Bioin-

https://proceedings.mlr.press/v54/mcmahan17a.html

References | 89

formatics Advances, vol. 2, no. 1, p. vbac026, 04 2022. doi:
10.1093/bioadv/vbac026 [Pages 3 and 8.]

[17] H. H. Kumar, K. V R, and M. K. Nair, “Federated k-means clustering: A
novel edge ai based approach for privacy preservation,” in 2020 IEEE
International Conference on Cloud Computing in Emerging Markets
(CCEM), 2020. doi: 10.1109/CCEM50674.2020.00021 pp. 52–56.
[Pages 3, 8, and 79.]

[18] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “SCAFFOLD: Stochastic controlled averaging for federated
learning,” in Proceedings of the 37th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, Jul. 2020, pp.
5132–5143. [Online]. Available: https://proceedings.mlr.press/v119/kar
imireddy20a.html [Page 7.]

[19] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” 2020. [Page 7.]

[20] P. Kairouz et al., “Advances and open problems in federated learning,”
2021. [Page 8.]

[21] N. Rieke et al., “The future of digital health with federated learning,” npj
Digital Medicine, vol. 3, no. 1, p. 119, Sep. 2020. doi: 10.1038/s41746-
020-00323-1 [Page 8.]

[22] T. Marchand, B. Muzellec, C. Béguier, J. Ogier du Terrail, and
M. Andreux, “Securefedyj: a safe feature gaussianization protocol
for federated learning,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 36 585–36 598.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2
022/file/ed3c686f9cda57e56cc859402c775414-Paper-Conference.pdf
[Pages 8 and 20.]

[23] D. K. Dennis, T. Li, and V. Smith, “Heterogeneity for the Win: One-
Shot Federated Clustering,” in Proceedings of the 38th International
Conference on Machine Learning. PMLR, Jul. 2021, pp. 2611–2620,
iSSN: 2640-3498. [Online]. Available: https://proceedings.mlr.press/v1
39/dennis21a.html [Pages 8 and 79.]

https://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.mlr.press/v119/karimireddy20a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/ed3c686f9cda57e56cc859402c775414-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ed3c686f9cda57e56cc859402c775414-Paper-Conference.pdf
https://proceedings.mlr.press/v139/dennis21a.html
https://proceedings.mlr.press/v139/dennis21a.html

90 | References

[24] J. Zhou et al., “Ppml-omics: A privacy-preserving federated machine
learning method protects patients’ privacy in omic data,” Science Ad-
vances, vol. 10, no. 5, p. eadh8601, 2024. doi: 10.1126/sciadv.adh8601
[Page 9.]

[25] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov,
“Property Inference Attacks on Fully Connected Neural Networks using
Permutation Invariant Representations,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
Toronto Canada: ACM, Oct. 2018. doi: 10.1145/3243734.3243834.
ISBN 978-1-4503-5693-0 pp. 619–633. [Pages 9, 33, and 79.]

[26] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in 2017 IEEE Symposium
on Security and Privacy (SP), 2017. doi: 10.1109/SP.2017.41 pp. 3–18.
[Page 9.]

[27] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage from
gradients,” 2020. doi: 10.48550/arXiv.2001.02610 [Page 9.]

[28] L. Kaufman and P. J. Rousseeuw, ”6. Divisive Analysis (Program
DIANA)”. Wiley, 2009. ISBN 978-0-470-31748-8 [Page 10.]

[29] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020.
doi: 10.1038/s41592-019-0686-2 [Pages 11 and 33.]

[30] B. Jean-Paul, Construction d’une classification ascendante hiérarchique
par la recherche en chaîne des voisins réciproques, 1982, vol. 2.
[Page 13.]

[31] J. Juan, “Programme de classification hiérarchique par l’algorithme de la
recherche en chaîne des voisins réciproques,” vol. 2, pp. 219–225, 1982.
[Page 13.]

[32] J. C. Gower and G. J. S. Ross, “Minimum spanning trees and single
linkage cluster analysis,” Journal of the Royal Statistical Society. Series
C (Applied Statistics), vol. 18, no. 1, pp. 54–64, 1969. [Online].
Available: http://www.jstor.org/stable/2346439 [Pages 14 and 77.]

[33] A. Abboud, V. Cohen-Addad, and H. Houdrouge, “Subquadratic
High-Dimensional Hierarchical Clustering,” in Advances in Neural

http://www.jstor.org/stable/2346439

References | 91

Information Processing Systems, vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://papers.nips.cc/paper_files/paper/201
9/hash/d98c1545b7619bd99b817cb3169cdfde-Abstract.html [Page 14.]

[34] H. Koga, T. Ishibashi, and T. Watanabe, Fast Hierarchical Clustering
Algorithm Using Locality-Sensitive Hashing, Oct. 2004, vol. 3245. ISBN
978-3-540-23357-2 Pages: 128. [Page 14.]

[35] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the thirtieth
annual ACM symposium on Theory of computing - STOC ’98. Dallas,
Texas, United States: ACM Press, 1998. doi: 10.1145/276698.276876.
ISBN 978-0-89791-962-3 pp. 604–613. [Page 14.]

[36] M. Kull and J. Vilo, “Fast approximate hierarchical clustering using
similarity heuristics,” BioData Mining, vol. 1, no. 1, p. 9, Sep. 2008.
doi: 10.1186/1756-0381-1-9 [Page 14.]

[37] F. Edfors et al., “Gene‐specific correlation of RNA and protein levels in
human cells and tissues,” Mol. Syst. Biol., vol. 12, no. 10, Oct. 2016. doi:
10.15252/msb.20167144 [Page 15.]

[38] X. Yu, F. Abbas-Aghababazadeh, Y. A. Chen, and B. L. Fridley,
“Statistical and bioinformatics analysis of data from bulk and single-cell
RNA sequencing experiments,” in Methods in Molecular Biology, ser.
Methods in molecular biology (Clifton, N.J.). New York, NY: Springer
US, 2021, pp. 143–175. [Page 15.]

[39] P. L. Ståhl et al., “Visualization and analysis of gene expression in tissue
sections by spatial transcriptomics,” Science, vol. 353, no. 6294, pp. 78–
82, Jul. 2016. doi: 10.1126/science.aaf2403 [Page 15.]

[40] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” Proceedings
of the National Academy of Sciences, vol. 95, no. 25, pp. 14 863–14 868,
Dec. 1998. doi: 10.1073/pnas.95.25.14863 Publisher: Proceedings of
the National Academy of Sciences. [Page 16.]

[41] Cancer Genome Atlas Research Network et al., “The cancer genome atlas
Pan-Cancer analysis project,” Nat. Genet., vol. 45, no. 10, pp. 1113–
1120, Oct. 2013. doi: 10.1038/ng.2764 [Pages 17 and 26.]

https://papers.nips.cc/paper_files/paper/2019/hash/d98c1545b7619bd99b817cb3169cdfde-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/d98c1545b7619bd99b817cb3169cdfde-Abstract.html

92 | References

[42] B. P. Durbin, J. S. Hardin, D. M. Hawkins, and D. M. Rocke,
“A variance-stabilizing transformation for gene-expression microarray
data,” Bioinformatics, vol. 18, no. suppl_1, pp. S105–S110, Jul. 2002.
doi: 10.1093/bioinformatics/18.suppl_1.s105 [Pages 17 and 28.]

[43] S. Oliveira and O. Zaïane, “Privacy Preserving Clustering By Data
Transformation,” JIDM, vol. 1, pp. 37–51, Feb. 2010. [Page 17.]

[44] K. Chen, G. Sun, and L. Liu, “Towards Attack-Resilient Geometric
Data Perturbation,” in Proceedings of the 2007 SIAM International
Conference on Data Mining. Society for Industrial and Applied
Mathematics, Apr. 2007. doi: 10.1137/1.9781611972771.8. ISBN 978-
0-89871-630-6 978-1-61197-277-1 pp. 78–89. [Pages 17, 18, and 20.]

[45] A. Hannemann, A. B. Ünal, A. Swaminathan, E. Buchmann, and
M. Akgün, “A Privacy-Preserving Federated Learning Approach for
Kernel methods,” Jun. 2023, arXiv:2306.02677 [cs]. [Page 17.]

[46] P. Comon, “Independent component analysis, A new concept?” Signal
Processing, vol. 36, no. 3, pp. 287–314, Apr. 1994. doi: 10.1016/0165-
1684(94)90029-9 [Page 18.]

[47] K. Liu, C. Giannella, and H. Kargupta, “An Attacker’s View of Distance
Preserving Maps for Privacy Preserving Data Mining,” in Knowledge
Discovery in Databases: PKDD 2006, D. Hutchison et al., Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, vol. 4213, pp. 297–
308. ISBN 978-3-540-45374-1 978-3-540-46048-0 Series Title: Lecture
Notes in Computer Science. [Pages 18, 20, 33, 46, 47, 68, and 79.]

[48] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings
into a Hilbert space,” in Contemporary Mathematics, R. Beals, A. Beck,
A. Bellow, and A. Hajian, Eds. Providence, Rhode Island: American
Mathematical Society, 1984, vol. 26, pp. 189–206. ISBN 978-0-8218-
5030-5 978-0-8218-7611-4 [Page 19.]

[49] S. Narayanan, S. Silwal, P. Indyk, and O. Zamir, “Randomized
Dimensionality Reduction for Facility Location and Single-Linkage
Clustering,” in Proceedings of the 38th International Conference on
Machine Learning. PMLR, Jul. 2021, pp. 7948–7957, iSSN: 2640-
3498. [Online]. Available: https://proceedings.mlr.press/v139/narayan
an21b.html [Pages 19 and 43.]

https://proceedings.mlr.press/v139/narayanan21b.html
https://proceedings.mlr.press/v139/narayanan21b.html

References | 93

[50] K. Makarychev, Y. Makarychev, and I. Razenshteyn, “Performance of
johnson-lindenstrauss transform for k-means and k-medians clustering,”
in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, ser. STOC 2019. Association for Computing Machinery,
2019. doi: 10.1145/3313276.3316350. ISBN 9781450367059 p. 1027–
1038. [Page 19.]

[51] Y. Sang, H. Shen, and H. Tian, “Effective reconstruction of data
perturbed by random projections,” IEEE Transactions on Computers,
vol. 61, no. 1, pp. 101–117, 2012. doi: 10.1109/TC.2011.83 [Page 20.]

[52] I. Zwiener, B. Frisch, and H. Binder, “Transforming RNA-Seq Data to
Improve the Performance of Prognostic Gene Signatures,” PLOS ONE,
vol. 9, no. 1, p. e85150, Jan. 2014. doi: 10.1371/journal.pone.0085150
Publisher: Public Library of Science. [Page 20.]

[53] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, Mar.
1964. doi: 10.1007/BF02289565 [Page 21.]

[54] W. Torgerson, “Multidimensional Scaling: I. Theory and Method,” Psy-
chometrika, vol. 17, pp. 401–419, Feb. 1952. doi: 10.1007/BF02288916
[Page 21.]

[55] J. M. Chambers, C. L. Mallows, and B. W. Stuck, “A Method
for Simulating Stable Random Variables,” Journal of the American
Statistical Association, vol. 71, no. 354, pp. 340–344, Jun. 1976. doi:
10.1080/01621459.1976.10480344 [Page 21.]

[56] P. Li, “Estimators and tail bounds for dimension reduction in lα (0 < α ≤
2) using stable random projections,” in Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA
’08. Society for Industrial and Applied Mathematics, 2008. doi:
10.5555/1347082.1347084 p. 10–19. [Pages 22 and 45.]

[57] P. Li, T. J. Hastie, and K. W. Church, “Nonlinear Estimators and
Tail Bounds for Dimension Reduction in l1 Using Cauchy Random
Projections,” in Learning Theory, N. H. Bshouty and C. Gentile, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. ISBN 978-3-540-
72927-3 pp. 514–529. [Pages 22 and 45.]

94 | References

[58] C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li, and
Y.-a. Tan, “Secure Multi-Party Computation: Theory, practice and
applications,” Information Sciences, vol. 476, pp. 357–372, Feb. 2019.
doi: 10.1016/j.ins.2018.10.024 [Page 22.]

[59] O. Goldreich, Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge University Press, 2004. [Page 22.]

[60] X. Dong, D. A. Randolph, C. Weng, A. N. Kho, J. M. Rogers,
and X. Wang, “Developing high performance secure multi-party
computation protocols in healthcare: A case study of patient risk
stratification,” AMIA Summits Transl. Sci. Proc., vol. 2021, pp. 200–209,
May 2021. [Page 23.]

[61] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’17. Association
for Computing Machinery, 2017. doi: 10.1145/3133956.3133982. ISBN
9781450349468 p. 1175–1191. [Pages 23 and 52.]

[62] J. Scott, M. Yeo, and C. H. Lampert, “Cross-client label propagation
for transductive and semi-supervised federated learning,” Transactions
on Machine Learning Research, 2023. [Online]. Available: https:
//openreview.net/forum?id=gY04GX8R5k [Page 23.]

[63] X. Meng, D. Papadopoulos, A. Oprea, and N. Triandopoulos, “Private
Hierarchical Clustering and Efficient Approximation,” in Proceedings
of the 2021 on Cloud Computing Security Workshop. Virtual Event
Republic of Korea: ACM, Nov. 2021. doi: 10.1145/3474123.3486760.
ISBN 978-1-4503-8653-1 pp. 3–20. [Pages 23, 77, and 78.]

[64] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our Data, Ourselves: Privacy Via Distributed Noise Generation,” in
Advances in Cryptology - EUROCRYPT 2006, ser. Lecture Notes in
Computer Science, S. Vaudenay, Ed. Berlin, Heidelberg: Springer,
2006. doi: 10.1007/11761679_29. ISBN 978-3-540-34547-3 pp. 486–
503. [Page 23.]

[65] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and
A. Smith, “What can we learn privately?” in 2008 49th Annual
IEEE Symposium on Foundations of Computer Science, 2008. doi:
10.1109/FOCS.2008.27 pp. 531–540. [Page 24.]

https://openreview.net/forum?id=gY04GX8R5k
https://openreview.net/forum?id=gY04GX8R5k

References | 95

[66] K. Wei et al., “Federated learning with differential privacy: Al-
gorithms and performance analysis,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 15, pp. 3454–3469, 2020. doi:
10.1109/TIFS.2020.2988575 [Page 24.]

[67] A. Grammenos, R. Mendoza Smith, J. Crowcroft, and C. Mascolo,
“Federated Principal Component Analysis,” in Advances in Neural
Information Processing Systems, vol. 33. Curran Associates, Inc., 2020,
pp. 6453–6464. [Online]. Available: https://proceedings.neurips.cc/p
aper/2020/hash/47a658229eb2368a99f1d032c8848542-Abstract.html
[Page 24.]

[68] V. Cohen-Addad, A. Epasto, V. Mirrokni, S. Narayanan, and P. Zhong,
“Near-Optimal Private and Scalable k-Clustering,” in Advances in
Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35.
Curran Associates, Inc., 2022, pp. 10 462–10 475. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2022/file/43f557768
96a2e33239c2954519f605e-Paper-Conference.pdf [Pages 24 and 78.]

[69] A. Kolluri, T. Baluta, and P. Saxena, “Private Hierarchical Clustering
in Federated Networks,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. Virtual Event
Republic of Korea: ACM, Nov. 2021. doi: 10.1145/3460120.3484822.
ISBN 978-1-4503-8454-4 pp. 2342–2360. [Pages 24 and 78.]

[70] J. Imola, A. Epasto, M. Mahdian, V. Cohen-Addad, and V. Mirrokni,
“Differentially private hierarchical clustering with provable approxima-
tion guarantees,” in Proceedings of the 40th International Conference on
Machine Learning, ser. ICML’23. JMLR.org, 2023. [Pages 24 and 78.]

[71] S. Dasgupta, “A cost function for similarity-based hierarchical
clustering,” in Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’16. New York, NY, USA: Associ-
ation for Computing Machinery, 2016. doi: 10.1145/2897518.2897527.
ISBN 9781450341325 p. 118–127. [Page 24.]

[72] J. Ogier du Terrail et al., “FLamby: Datasets and Benchmarks for Cross-
Silo Federated Learning in Realistic Healthcare Settings,” in Advances
in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35. Curran
Associates, Inc., 2022, pp. 5315–5334. [Page 27.]

https://proceedings.neurips.cc/paper/2020/hash/47a658229eb2368a99f1d032c8848542-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/47a658229eb2368a99f1d032c8848542-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/43f55776896a2e33239c2954519f605e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/43f55776896a2e33239c2954519f605e-Paper-Conference.pdf

96 | References

[73] S. Anders and W. Huber, “Differential expression analysis for sequence
count data,” Genome Biology, vol. 11, no. 10, p. R106, Oct 2010. doi:
10.1186/gb-2010-11-10-r106 [Page 28.]

[74] M. I. Love, W. Huber, and S. Anders, “Moderated estimation of fold
change and dispersion for rna-seq data with deseq2,” Genome Biology,
vol. 15, no. 12, p. 550, Dec 2014. doi: 10.1186/s13059-014-0550-8
[Page 28.]

[75] B. Muzellec, M. Teleńczuk, V. Cabeli, and M. Andreux, “PyDESeq2:
a python package for bulk RNA-seq differential expression analysis,”
Bioinformatics, vol. 39, no. 9, p. btad547, 09 2023. doi: 10.1093/bioin-
formatics/btad547 [Pages 28 and 33.]

[76] E. B. Fowlkes and C. L. Mallows, “A method for comparing
two hierarchical clusterings,” Journal of the American Statistical
Association, vol. 78, no. 383, pp. 553–569, 1983. [Online]. Available:
http://www.jstor.org/stable/2288117 [Page 32.]

[77] C. Dwork and A. Roth, “The Algorithmic Foundations of Differential
Privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2013. doi: 10.1561/0400000042 [Page 33.]

[78] Y. Chen, Y. Gui, H. Lin, W. Gan, and Y. Wu, “Federated learning attacks
and defenses: A survey,” in 2022 IEEE International Conference on Big
Data (Big Data), 2022. doi: 10.1109/BigData55660.2022.10020431 pp.
4256–4265. [Page 33.]

[79] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585,
no. 7825, pp. 357–362, Sep. 2020. doi: 10.1038/s41586-020-2649-2
[Page 33.]

[80] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Page 33.]

[81] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d. Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2
019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf [Page 33.]

http://www.jstor.org/stable/2288117
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

References | 97

[82] Wes McKinney, “Data Structures for Statistical Computing in Python,”
in Proceedings of the 9th Python in Science Conference, Stéfan van der
Walt and Jarrod Millman, Eds., 2010. doi: 10.25080/Majora-92bf1922-
00a pp. 56 – 61. [Page 33.]

[83] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing
in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007. doi:
10.1109/MCSE.2007.55 [Page 33.]

[84] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open
Source Software, vol. 6, no. 60, p. 3021, 2021. doi: 10.21105/joss.03021
[Page 33.]

[85] S. Kweon, J. H. Lee, Y. Lee, and Y. R. Park, “Personal health information
inference using machine learning on RNA expression data from patients
with cancer: Algorithm validation study,” J. Med. Internet Res., vol. 22,
no. 8, p. e18387, Aug. 2020. doi: 10.2196/18387 [Page 47.]

[86] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32nd International Conference on International Conference on
Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, p.
448–456. [Page 50.]

[87] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), San
Diega, CA, USA, 2015. [Page 50.]

[88] G. Carlsson and F. Mémoli, “Characterization, stability and convergence
of hierarchical clustering methods,” Journal of Machine Learning
Research, vol. 11, no. 47, pp. 1425–1470, 2010. [Online]. Available:
http://jmlr.org/papers/v11/carlsson10a.html [Page 62.]

[89] J. Blocki, A. Blum, A. Datta, and O. Sheffet, “The Johnson-
Lindenstrauss Transform Itself Preserves Differential Privacy,” in 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science,
Oct. 2012. doi: 10.1109/FOCS.2012.67 pp. 410–419, iSSN: 0272-5428.
[Pages 78 and 85.]

[90] K. Kenthapadi, A. Korolova, I. Mironov, and N. Mishra, “Privacy
via the Johnson-Lindenstrauss Transform,” Journal of Privacy and
Confidentiality, vol. 5, no. 1, Aug. 2013. doi: 10.29012/jpc.v5i1.625
ArXiv:1204.2606 [cs]. [Pages 78 and 85.]

http://jmlr.org/papers/v11/carlsson10a.html

98 | References

[91] G. A. Bouland, A. Mahfouz, and M. J. T. Reinders, “Consequences
and opportunities arising due to sparser single-cell rna-seq datasets,”
Genome Biology, vol. 24, no. 1, p. 86, Apr 2023. doi: 10.1186/s13059-
023-02933-w [Page 81.]

Appendix A: Limitations of the CCC with an example | 99

Appendix A

Limitations of the CCC with an
example

While the CCC is popular for comparing two HC results, it is important to
note that it is mostly meaningful in term of large trends. It is mostly the big
distances that influence this measure.

We take a 2D toy dataset specifically designed to illustrate this behaviour.
We look at the case where we have a few well-separated clusters and one stark
outlier (figure A.1). The outlier is merged at the end, with a very high cluster
distance.

Figure A.1: Dataset containing 3 blobs and one strong outlier (left) and its
clustering representation (right) - the outlier is merged with the other points at
the very last step

Consider the case where all the federated merge heights are the same as
pooled, but we assign them to a random pair of clusters to be merged at
each step, except for the last merge which must be to the outlier. Without
considering the outlier, we get an average CCC of 8.9e-5 over 100 shuffling

100 | Appendix A: Limitations of the CCC with an example

seeds, which is quite bad. When including the outlier with the forced merge
at the end, the mean CCC becomes 0.71, meaning that having a good distance
to the outlier overpowers all the previous bad merging choices.

TRITA-EECS-EX-2025:253
Stockholm, Sweden 2025

www.kth.se

	Introduction
	Research Question
	Purpose
	Research Methodology
	Delimitations
	Structure of the thesis

	Background
	Federated computations
	Federated learning
	Federated analytics
	Attacks on federated computations

	Hierarchical clustering
	Agglomerative clustering
	Linkage methods and properties
	Time complexity

	Approximate agglomerative clustering

	RNA-Seq data analysis
	RNA sequencing
	Differential expression analysis

	Private distance computation
	Orthogonal perturbations
	Random projections
	Definition
	Bounds for specific problems
	Privacy-preserving properties

	Multidimensional scaling
	Stable distributions
	Definition
	lp distance estimation

	Related work
	Secure multiparty computation
	Differential privacy

	Methods
	The Cancer Genome Atlas
	Federated simulations with TCGA
	RNA-Seq data preprocessing

	Experimental design
	Simulation of the federated environment
	Complexity and communication cost
	Performance metrics
	Cophenetic distance measures
	Flat clustering measures

	Privacy analysis
	Hardware/Software to be used

	Federated hierarchical clustering approaches
	Federated genewise clustering
	Federated gene pairwise distance
	Minkowski distance
	Cosine distance
	Correlation distance

	Algorithm description

	A centroid-based approach for federated samplewise clustering
	A first scheme with simultaneous sharing of local clusterings
	Analysis

	Gradual sharing of local clusters for the win
	Federated distance update
	Validity for approximate centroid and Ward linkages
	Centroid sharing and distance correction
	Algorithm summary

	Random projections for federated samplewise clustering
	Algorithm description
	Privacy analysis through attacks
	Known input-output attack on orthogonal projections
	Property inference attack with a classifier
	Reconstruction attack
	Attack models training and parameters

	Results and Analysis
	Federated genewise clustering
	Complexity analysis
	Privacy analysis

	Centroid-based clustering approach
	Complexity and privacy analysis
	Complexity of the algorithm with simultaneous sharing of local centroids
	Complexity of the algorithm with gradual sharing of local centroids
	Privacy analysis

	Performance on a toy example: the bimodal dataset
	Performance on TCGA
	Performance of the algorithm with simultaneous sharing of local centroids
	Performance of the algorithm with gradual sharing of local centroids
	Inversion issues

	Random projection clustering
	Complexity and communication cost analysis
	Performance on toy datasets
	Performance on TCGA
	Clustering performance for the Euclidean metric
	Performance comparison across metrics

	Attacks on random projections
	Known input-output attack
	Property inference attack
	Reconstruction attack
	Median of ratios preprocessing tests
	VST preprocessing tests

	Summary
	Algorithms performance analysis
	Attacks analysis

	Samplewise clustering methods comparison

	Discussion
	Summary of our findings and their relevance
	Key findings
	Impact of our work
	Federated analytics
	Gene expression analysis

	Ethical and sustainability considerations
	Concerns about data privacy regarding the TCGA dataset
	Ethical questions
	Sustainability issues

	Limitations

	Conclusions and Future work
	Conclusions
	Future work

	References
	Limitations of the CCC with an example

