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Abstract

The recent increase of smart meters in the residential sector has
lead to large available datasets. The electricity consumption of
individual households can be accessed in close to real time,
and allows both the demand and supply side to extract valu-
able information for efficient energy management. Predicting
electricity consumption should help utilities improve planning
generation and demand side management, however this is not
a trivial task as consumption at the individual household level
is highly irregular.

In this thesis the problem of improving load forecasting is ad-
dressed using two machine learning methods, Support Vector
Machines for regression (SVR) and Random Forest. For a cus-
tomer base consisting of 187 households in Austin, Texas, pre-
dictions are made on three spatial scales: (1) individual house-
hold level (2) aggregate level (3) clusters of similar households
according to their daily consumption profile. Results indicate
that using Random Forest with K = 32 clusters yields the
most accurate results in terms of the coefficient of variation.
In an attempt to improve the aggregate model, it was shown
that by adding features describing the clusters’ historic load,
the performance of the aggregate model was improved using
Random Forest with information added based on the grouping
into K = 3 clusters. The extended aggregate model did not
outperform the cluster-based models.

The work has been carried out at the Swedish company Watty.
Watty performs energy disaggregation and management, allow-
ing the energy usage of entire homes to be diagnosed in detail.
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Sammanfattning

Den senaste tidens ökning av smarta elmätare inom bostadssek-
torn medför att vi har tillg̊ang till stora mängder data. Hush̊all-
ens totala elkonsumption är tillgänglig i nära realtid, vilket
till̊ater b̊ade tillg̊angssidan och efterfr̊agesidan att nyttja infor-
mationen för effektiv energihantering. Att förutsäga elförbruk-
ningen bör hjälpa elbolag att förbättra planering för elproduk-
tion och hantering av efterfr̊agesidan. Dock är detta inte en
trivial uppgift, d̊a elkonsumptionen p̊a individuell husniv̊a är
mycket oregelbunden.

Denna masteruppsats föresl̊ar att använda tv̊a välkända mask-
ininlärningsalgoritmer för att lösa problemet med att förbättra
lastprognoser, och dessa är Support Vector Machines för regres-
sion (SVR) och Random Forest. För en kundbas best̊aende av
187 hush̊all i Austin, Texas, gör vi prognoser baserat p̊a tre
tillvägag̊angssätt: (1) enskilda hush̊all (2) aggregerad niv̊a (3)
kluster av liknande hush̊all enligt deras dagliga förbrukningspr-
ofil. Resultaten visar att Random Forest med K = 32 kluster
ger de mest precisa resultaten i termer av variationskoefficien-
ten. I ett försök att förbättra den aggegerade modellen visade
det sig att genom att lägga till ytterligare prediktionsvari-
abler som beskriver klustrens historiska last, kunde precisio-
nen förbättras genom att använda Random Forest med infor-
mation fr̊an K = 3 olika kluster. Den förbättrade aggregerade
modellen presterade inte bättre jämfört med de klusterbaser-
ade modellerna.

Arbetet har utförts vid det svenska företaget Watty. Watty
utför energidisaggregering och energihantering, vilket gör att
bostäders energianvändning kan analyseras i detalj.
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Machine Learning Terminology

Machine Learning Terminology

Dataset A set of instances with a description of the
attributes of the instances.

Training set The partition of the dataset used to train the
model and fit its internal parameters.

Test set The partition of the dataset, disjoint from the
training set, used to test the generalization
accuracy of the model.

Feature, attribute, predictor A variable believed to influence the outcome
of the prediction.

Feature vector A list of features describing an instance from
the dataset.

Target, true value The variable that the model seeks to predict.

Classifier, regressor A trained machine learning algorithm that
takes as input a feature vector and returns ei-
ther a label (classifier) or a continuous value
(regressor).

Accuracy (error) The rate of correct (incorrect) predictions
made by the model, measured by a predefined
function.

Cross-validation A method for testing accuracy of a classifier
(regressor) where the data is divided into k
folds of near equal size. The classifier (re-
gressor) is trained on k − 1 folds, leaving one
fold out to test on. The process is repeated k
times. The accuracy of the classifier (regres-
sor) is the average accuracy for the k folds.
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Chapter 1

Introduction

Residential buildings constitute 25% of the Swedish electricity consumption [1]. Similarly
in urban areas like Stockholm, the residential electricity consumption amounts to 30%
of the total electricity consumption [2]. Undoubtedly there are numerous economic and
environmental benefits to streamlining the energy usage and reducing the overall con-
sumption. Three important targets are driving the development of the energy industry
in Europe, namely the European Union 20-20-20 goals [3]:

• 20% cut in greenhouse gas emissions from 1990 levels

• 20% of energy coming from renewable resources

• 20% improvement in energy efficiency

To meet future demands of reduced greenhouse gas emissions, an increased amount of
renewable energy and improved energy efficiency, changes must take place in the electric
power system.

Alongside the introduction of the EU 20-20-20 goals the term ”smart grid” has ma-
terialized. A first step in the development towards a smart grid is gaining a deeper
understanding of the value chain in the electric power system. By retrieving more in-
formation practitioners seek to automate the process of delivering electricity from the
electric utilities to the home and in turn reduce peak demand, operations and manage-
ment costs [4]. To allow for a transition into the smart grid the European Union has
imposed an obligation of a 80% roll-out of smart meters by 2020 [5].

The smart meter allows reading of the electricity consumption of individual households
in close to real time. Collecting and analyzing smart meter data provides valuable
knowledge about the user behavior, and is interesting both from a demand (consumer)
and supply (electric utilities) perspective. For the consumers it allows efficient use of
energy and identification of ”energy guzzlers”, whereas for the electric utilities there are
economic benefits in developing accurate methods for predicting future energy usage. It
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CHAPTER 1. INTRODUCTION

has been shown that a 1% reduction in the average forecast error can save hundreds of
thousands or even millions of dollars for an electric utility [6].

Traditionally, residential energy demand estimates have been made at a regional or local
level where consumption profiles are publicly available [7]. Electric utilities and other
service offering companies within the energy industry can forecast the energy usage of
a city like Stockholm using the consumption profile of the city, and multiply by their
share of customers to arrive at the desired prediction. Contrarily, in a sensor based ap-
proach consumption profiles are gathered from smart electricity meters for all individual
customers. It is relevant to investigate if a sensor based model with predictions made on
the individual household level can predict the energy consumption more precisely than
a regional or local model, due to being able to account for each individual household’s
consumption pattern and characteristics.

Combined with a selection of the spatial granularity, energy consumption predictions
are often made for varying time horizons. Load forecasting is classified depending on
the duration of the time horizon. Predictions from 15 minutes up to one day ahead
fall into the category of short-term load forecasting (STLF), from one day to a year to
medium-term load forecasting (MTLF) and between a year up to ten years ahead to
long-term load forecasting (LTLF). Residential buildings and measurements drawn from
a smart meter are examples of small-scale systems that display high variability in the
load dynamics and impose strict requirements on the STLF modeling tools.

The purpose of this thesis is to investigate the impact of clustering on the prediction
accuracy of future energy consumption for a customer base consisting of numerous house-
holds in an urban area. By making hourly single-step forecasts on three spatial data
scales, namely individual households, clusters of similar households and on an aggregate
level, we anticipate to recognize how traditional forecasting methods can be improved
to meet the demands of the smart grid. Additionally, the research within sensor based
forecasting is expanded by investigating state-of-the-art algorithms (Support Vector Re-
gression) together with previously uncommon algorithms (Random Forest) in the work of
residential energy consumption predictions. Clustering is performed with the K-Means
Clustering algorithm. The terms energy consumption, energy demand and load are used
interchangeably throughout the thesis.

2



1.1. OBJECTIVES

1.1 Objectives

This section outlines the main objectives of the thesis, given in a relatively general
manner. Towards the end of the thesis, in Section 6.1, each objective will be reviewed
and related to the results.

1. Analyze historical residential energy consumption data
Given historical time series of energy consumption from individual households,
conduct a statistical analysis to highlight the behavior of the individual series and
the dependency between different series.

2. Review and select appropriate mathematical models
Review and evaluate mathematical models, emphasizing their ability to capture
load dynamics and successfully forecast the future load.

3. Experiment with clustering and cluster sizes
Conduct experiments to assess the impact of clustering and the cluster size on the
accuracy of the load forecast.

4. Discuss implications on short-term load forecasting
Given results of the above points, discuss strengths and weaknesses of outlined
models and propose adjustments to allow for future studies to advance research
within STLF.

1.2 Scope and Limitations

Used in this thesis is the Pecan Street Data Set [8], which is part of a research project
conducted in the Austin area in Texas, with the goal of solving the global water and
energy challenge. As such, any conclusions made may only be viable for the studied
population in Austin and extensions to other geographical areas must be taken with
care. With that said, numerous studies are currently performed on STLF with different
model setups on different datasets. The ability to generalize grows as practitioners test
developed model setups on new datasets in a spectrum of geographical areas.

The models used for predicting the future load are Support Vector Regression and Ran-
dom Forest, where the underlying reason for selecting each is established in Section 2.4.
To assess the quality of the models, a baseline model is created that serves as a bench-
mark. In the interest of determining the impact of clustering similar households before
developing a forecast model, K-Means Clustering is used to cluster households based on
the average daily load profile of each household. All calculations have been performed
using Python 2.7, with base algorithm implementations from scikit-learn

1
.

1
http://scikit-learn.org/stable/
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CHAPTER 1. INTRODUCTION

1.3 Disposition

The rest of this thesis is structured as follows. In Chapter 2 related work is reviewed
and the current state-of-the-art assessed. In Chapter 3 the mathematical background
is presented, laying the groundwork for the models outlined in Chapter 4. Chapter 5
presents the results of the forecasting and evaluates the impact of the number of clusters
on the prediction accuracy. Chapter 6 discusses the impact of the results, where future
work is also suggested. Section 6.2 concludes the thesis. Appendices are referred to
where needed.
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Chapter 2

Previous Work

This chapter provides an overview of previous work completed within short-term load
forecasting. A brief introduction and a historic note is given in Section 2.1. Section
2.2 describes the assortment of traditional statistical methods used for STLF. Selected
work is presented in Section 2.3, performed within both the commercial and residential
building sector. Recent contributions to the field of residential load forecasting are
presented, many of which have given rise to the study undertaken in this thesis. Finally,
in Section 2.4, the algorithms adopted in this report are proposed.

2.1 Short-Term Load Forecasting

To make predictions, an analysis is performed on the load signal which is a time series.
The goal is to impose a relationship between future and past samples. Then, a model
can estimate the future evolution of the load signal in terms of its history and commonly
some exogenous variables believed to influence the future load. In the first energy predic-
tion contest, the Great Energy Predictor Shootout (GEPS), organized by the American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) in 1993-
1994, participants were asked to predict the hourly energy consumption of a commercial
building. The winning contestant [9] developed a sensor based model using a machine
learning algorithm that relied to a small extent on domain knowledge about the commer-
cial building whose energy was predicted. Following the popularity and success of GEPS,
more attention has been given to the field of short-term load forecasting. The following
sections explore the various methods applied to STLF where forecasting approaches are
commonly classified to conventional statistical methods and machine learning methods.

5



CHAPTER 2. PREVIOUS WORK

2.2 Conventional Methods

Statistical methods are white box models: the internal structure of the model is well
known which allows for interpretation and understanding of the process. In a prediction
setting, a regression analysis is applied where the outputs of the model are explicitly
related to the inputs through mathematical equations. The family of statistical white
box models includes multiple linear regression [10–12], autoregressive moving average
(ARMA) [13], autoregressive integrated moving average (ARIMA) [14] and Kalman filter
[15]. Conventional methods are advantageous in that they are easily implemented and
interpreted, however their disability to handle non-linearity in short-term load series
instead encourages the use of machine learning methods.

2.3 Machine Learning Methods

Succeeding GEPS, considerable work has been compassed within machine learning in
the field of commercial energy load forecasting. Machine learning methods are so-called
black box models: the internal dynamic is at most times unknown and at best difficult
to interpret. However, the ability of the methods to learn complex internal representa-
tions without human interference is a major advantage. Notable work includes that of
Chae et al. [16] where Artificial Neural Networks (ANN) were used to make day-ahead
forecasts of the electricity usage for a commercial building with a temporal resolution
of 15 minutes, and Fu et al. [17] where a Support Vector Machine (SVM) with a RBF
kernel was trained for each hour of the day to predict the next day electricity load of a
public building in Shanghai.

The recent increase of smart meters in the residential sector has lead to large available
datasets. Together with advancements within machine learning, more effort is being put
into monitoring, analyzing, characterizing and forecasting the energy usage of individual
households. Among the most commonly used and successful machine learning algorithms
are Support Vector Machines [10, 18–21] and Artificial Neural Networks [10, 18], however
cases of using Tree-based methods have also been seen [22, 23].

In [18] the consumption of a family of three living in Warsaw, Poland was forecast a
day ahead by training a model for each hour of the day using SVM and a Multi-Layer
Perceptron (MLP). Edwards et al. [10] compare a Linear Regression (LR) with several
variations of SVM and Feed-Forward Networks (FFN), and assess the results against the
recognized GEPS dataset as well as three households located in Tennessee, US. Results
indicate that a Least-Squares SVM outperforms said methods and best predicts the
future hourly residential load.

In [19] an extension is made to forecast the load of multi-family residential buildings
rather than individual households. Jain et al. use a SVM with a RBF kernel to examine
the impact of both the temporal and the spatial granularity on the prediction accuracy,

6



2.4. METHOD PROPOSAL

and come to the conclusion that making hourly forecasts on the ”by floor” level grants
the optimal prediction results, as opposed to modeling single units or the whole building.
In what seems to be a consistent trend in forecasting with SVMs and MLPs, Humeau
et al. [20, 21] explore the similarity in usage between different households and design
a cluster-based algorithm where the prediction accuracy is assessed as a function of the
number of clusters. In a setting with 782 different households located in Ireland, SVM
obtains an optimal prediction accuracy using four clusters, whereas for MLP and LR
the error increases with the number of clusters.

2.4 Method Proposal

In line with previous work [10, 18–21], and what has been assessed as the current state-
of-the-art, SVM for regression, Support Vector Regression (SVR) is proposed as the
first method used in the thesis. The radial basis function (RBF) is selected as the kernel
function to use with SVR, due to its ability to generalize and function well with nonlin-
ear datasets [24]. Furthermore, continuing the research of [22, 23], Random Forest for
regression is suggested as a second method. Little attention has been paid to Random
Forests, a method which holds a great advantage in being rather insensitive to hyper-
parameter values [25]. Random Forests are also less prone to overfitting due to their
characteristic of being an ensemble of decision trees trained on different parts of the
same training set.

7



Chapter 3

Mathematical Background

In this chapter the mathematical background underlying the work presented in the thesis
is put forward. The reader is expected to be acquainted with some basic optimization and
graph theory. Section 3.1 and Section 3.2 describes two well-known machine learning
techniques used in a variety of applications, namely Support Vector Regression and
Random Forest. Section 3.3 provides an overview of the K-Means Clustering algorithm,
used to partition observations into K different clusters.

Let D = {(x1, y1), (x2, y2), . . . , (xn, yn)} ⊂ RN ×R be a set of training data, where xi =
[xi1, xi2, . . . , xiN] denotes the N-dimensional input features and yi the corresponding
outputs, often referred to as labels. To give an example, xi could be a set of characteristics
of an apartment such as the number of square meters, number of rooms, what floor it is
located on, if it is located in a major city and yi the corresponding price of the apartment.

3.1 Support Vector Regression

In this section an overview is given of the ideas underlying Support Vector (SV) machines
for function approximation, known as Support Vector Regression. SV Machines spring
from the theory of Perceptrons developed by Rosenblatt in 1962 [26], further contextu-
alized in 1986 [27] when the back-propagation algorithm was discovered, and the theory
of Structural Risk Minimization promoted by the likes of Vapnik and Chervonenkis [28,
29].

3.1.1 The Basic Idea

The idea of ε-SV regression [30] is is to find a function f(x) that has at most ε deviation
from the actual targets yi for all available training data. At the same time f(x) has to
be as simple as possible; while an overly complex function will account for all variations

8



3.1. SUPPORT VECTOR REGRESSION

in the training set and yield a small error, it will not generalize well to previously unseen
data points. As tempting as it might be to achieve a close to zero error measure on the
training data, this is only used to prepare the algorithm for the real test in predicting
new compositions of input features. The idea of achieving an overly complex f(x) is
known as overfitting, and will be discussed in further detail in Section 3.2.1.

To make the derivation pedagogical the case of linear functions f(x) is first described,
after which the analysis can be extended to the nonlinear case. Consider a function:

f(x) = ⟨w,x⟩ + b, w ∈ RN , b ∈ R (3.1)

where ⟨⋅,⋅⟩ denotes the inner product in RN , w the weights of the linear function and b
the bias. To ensure that f(x) deviates at most ε from yi we impose the constraints:

yi − ⟨w,xi⟩ − b ≤ ε (3.2)

⟨w,xi⟩ + b − yi ≤ ε (3.3)

The reduction of the complexity of f(x) is often translated into increasing the flatness
[31]. In the case of (3.1) this translates to finding a small w, which can be achieved by
minimizing the norm given by ∣∣w∣∣2 = ⟨w,w⟩. Together with the constraints in (3.2)
and (3.3) this forms a convex optimization problem:

minimize
w

1

2
∣∣w∣∣2

subject to { yi − ⟨w,xi⟩ − b ≤ ε
⟨w,xi⟩ + b − yi ≤ ε

(3.4)

Solving (3.4) rests on the assumption that all input patterns xi are estimated with
ε precision to yi. In most real world scenarios, however, this is not achievable for a
sufficiently small ε since data can be noisy and contain several outliers. To allow for
a minimal number of errors the ”Soft Margin” loss function was developed by Bennett
and Mangasarian [32] and implemented to SV machines by Vapnik and Cortes [33].
It suggests the introduction of slack variables ξi, ξ

∗
i to make the optimization problem

(3.4) feasible in situations where it would otherwise be infeasible. The final formulation
is given:

minimize
w

1

2
∣∣w∣∣2 + C

n

∑
i=1

(ξi + ξ∗i )

subject to

⎧⎪⎪⎪⎨⎪⎪⎪⎩

yi − ⟨w,xi⟩ − b ≤ ε + ξi
⟨w,xi⟩ + b − yi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0

(3.5)

The constant C > 0 controls the penalty on deviations larger than ε and serves as a
trade-off between achieving flatness and minimizing the amount of errors. The role of
the constant C is depicted in Figure 3.1 for illustration purposes. Only the points that
lie outside the ε-tube contribute to the cost associated with C∑n

i=1(ξi + ξ
∗
i ). If C is

9



CHAPTER 3. MATHEMATICAL BACKGROUND

(a) C = 0.1. (b) C = 1000.

Figure 3.1: ”Soft Margin” solution for a linear SV Machine.

large, the corresponding optimal f(x) will reduce the number of points lying outside the
ε-tube at the cost of the flatness of f(x). Contrarily, a low C will focus on achieving
flatness at the cost of falsely predicting some of the training data. While (3.5) presents
a satisfying solution to the linear SV regression, the optimization problem can often be
solved more efficiently in its dual formulation. The dual formulation is also key in that
it will allow the transition to nonlinear prediction functions f(x) for the SV regression.

3.1.2 Dual Formulation

Going from the primal formulation of the optimization problem to its dual formulation
involves the use of Lagrange multipliers. The Lagrange functional for (3.5) is:

L =
1

2
∣∣w∣∣2 + C

n

∑
i=1

(ξi + ξ∗i ) −
n

∑
i=1

(λiξi + λ∗i ξ∗i )

−
n

∑
i=1

αi(ε + ξi − yi + ⟨w,xi⟩ + b)

−
n

∑
i=1

α
∗
i (ε + ξ∗i + yi − ⟨w,xi⟩ − b)

(3.6)

where λi, λ
∗
i , αi, α

∗
i ≥ 0 are Lagrange multipliers. It is known (see for instance work by

Mangasarian [34]) that the solution to (3.5) is given by the saddle point of the Lagrangian
in (3.6), where the objective is to minimize w, b, ξi, ξ

∗
i while at the same time maximizing

λi, λ
∗
i , αi, α

∗
i . The point of minimum is obtained through the partial derivatives of L:

10



3.1. SUPPORT VECTOR REGRESSION

∂L

∂b
=

n

∑
i=1

(α∗i − αi) = 0 (3.7)

∂L

∂w
= w −

n

∑
i=1

(αi − α∗i )xi = 0 (3.8)

∂L

∂ξi
= C − λi − αi = 0 (3.9)

∂L

∂ξ∗i
= C − λ

∗
i − α

∗
i = 0 (3.10)

Inserting (3.7), (3.8), (3.9) and (3.10) to (3.6) yields:

L = −
1

2

n

∑
i=1

n

∑
j=1

(αi − α∗i )(αj − α∗j )⟨xi,xj⟩

− ε
n

∑
i=1

(αi + α∗i ) +
n

∑
i=1

yi(αi − α∗i )

From (3.9) and (3.10) one sees that αi = C−λi and since λi ≥ 0 the Lagrange multipliers
αi, α

∗
i are bounded, αi, α

∗
i ∈ [0, C]. The dual optimization problem is given:

maximize
αi,α

∗
i

−
1

2

n

∑
i=1

n

∑
j=1

(αi − α∗i )(αj − α∗j )⟨xi,xj⟩

− ε
n

∑
i=1

(αi + α∗i ) +
n

∑
i=1

yi(αi − α∗i )

subject to { ∑n
i=1(αi − α

∗
i ) = 0

αi, α
∗
i ∈ [0, C]

(3.11)

In deriving (3.11) the dual variables λi, λ
∗
i were eliminated. Additionally, through the

partial derivative (3.8) w is given, and consequently f(x) can be rewritten:

w =

n

∑
i=1

(αi − α∗i )xi ⟹ f(x) = ⟨w,x⟩ + b =
n

∑
i=1

(αi − α∗i )⟨xi,x⟩ + b

What is remarkable is that w is described as a linear combination of the training patterns
xi weighed by the Lagrange multipliers αi, α

∗
i . As a result the complexity of the function

f(x) is rather independent of the dimensionality of the input features, and instead rests
on the number of nonzero αi, α

∗
i . Note also that the complete optimization problem is

given by scalar multiplications and inner products between the input features, and that
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CHAPTER 3. MATHEMATICAL BACKGROUND

the prediction function f(x) can be evaluated without explicitly computing w. With
these observations in mind, the extension to a nonlinear predictor function f(x) can be
made.

3.1.3 Kernels

Initially, to solve the problem of nonlinear data, the training features xi can be prepro-
cessed by some map Θ ∶ RN ↦ F into feature space F where the SV regression algorithm
outlined in (3.11) can be applied. To give an example, consider the case depicted in
Figure 3.2a. By utilizing the following map [30]:

Θ ∶ R2
↦ R3

(x1, x2)↦ (z1, z2, z3) = (x21,
√

2x1x2, x
2
2)

The training features xi can be approximated by a hyperplane, as seen in Figure 3.2b,
which in the original two-dimensional space corresponds to an ellipse.

x1

x
2

(a) Nonlinear input features xi. (b) Mapping (x1, x2)↦ (x21,
√

2x1x2, x
2
2).

Figure 3.2: Example of nonlinear SV regression.

While the preprocessing serves as a satisfying approach to the aforementioned problem,
other problems may quickly become computationally infeasible. From Cortes and Vapnik
[33]: ”To construct polynomial of degree 4 or 5 in a 200 dimensional space it may be
necessary to construct hyperplanes in a billion dimensional feature space.”

The breakthrough came in 1992 when Boser et al. [35] showed that instead of making
a nonlinear transformation of the input patterns xi followed by dot products in feature
space, two input patterns xi can first be compared in input space through some pre-
defined metric before making a nonlinear transformation of the resulting comparison.
Going back to the previous example, it can be shown that the inner product of the
preprocessed features can be rewritten:
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3.2. DECISION TREE LEARNING

⟨(x21,
√

2x1x2, x
2
2), (x

′
2
1 ,

√
2x

′

1x
′

2, x
′
2
2 )⟩ = ⟨x,x′⟩2

The example shows that an explicit representation for the preprocessing map Θ(x) is not
necessary, as long as the rewritten inner product is a proper inner product. In Section
3.1.2 it was concluded that the SV regression algorithm depended only on inner products
between the input features xi. This allows us to reformulate the problem without using
Θ(x) explicitly, through defining K(x,x′) = ⟨Θ(x),Θ(x′)⟩, where K(x,x′) is known as
a kernel. The nonlinear SV regression is given:

maximize
αi,α

∗
i

−
1

2

n

∑
i=1

n

∑
j=1

(αi − α∗i )(αj − α∗j )K(xi,xj)

− ε
n

∑
i=1

(αi + α∗i ) +
n

∑
i=1

yi(αi − α∗i )

subject to { ∑n
i=1(αi − α

∗
i ) = 0

αi, α
∗
i ∈ [0, C]

(3.12)

where f(x) is given by f(x) = ∑n
i=1(αi − α

∗
i )K(xi,x) + b. The implications of using

a kernel is that the optimization problem now seeks to determine the flattest possible
f(x) in feature space rather than in input space.

The family of functions K(x,x′) that corresponds to inner products in some feature
space F must obey Mercer’s Theorem [36], outlined in Appendix A. Commonly used
kernels include polynomial, sigmoid and radial basis function (RBF) kernels, refer to
Table 3.1 for details.

Kernel Name K(x,x′) Parameters

Polynomial (⟨x,x′⟩ + c)p p ∈ N, c ≥ 0

Sigmoid tanh(γ⟨x,x′⟩ + r) γ > 0, r < 0

RBF e
−γ∣∣x−x′∣∣2

γ > 0

Table 3.1: List of commonly used kernel functions.

3.2 Decision Tree Learning

Random Forests stem from decision tree learning, a predictive modeling approach used
in statistics and machine learning. Decision trees are a type of classifier or regressor
that splits the training data into smaller subsets until a predefined criterion is met, and
make a viable tool for visualizing decision making. Traditionally, decision trees have
been created manually using human expertise and domain knowledge. As problems
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CHAPTER 3. MATHEMATICAL BACKGROUND

grew more complex, several algorithms for automated rule extraction were developed as
a solution. Some of the earliest papers on automated rule extraction for decision trees
concentrate on classification [37, 38]. Perhaps one of the most influential references until
this day remains the CART algorithm by Breiman et al. [39], short for Classification and
Regression Trees. In the book the authors provide a thorough description of decision
trees used for classification and regression respectively.

The rest of this section is structured as follows. In 3.2.1 decision trees used for regression
will be explained in detail. Following the training and evaluation of a regression tree,
3.2.2 describes how an ensemble of regression trees can form what is known as a Random
Forest.

3.2.1 Regression Trees

Regression trees are directed graphs, and like SVR, serve the purpose of approximating
a function f(x) that minimizes the deviations from the true values yi. However, in
contrast with the wide spectrum of available functions for SVR defined by the kernel,
function approximation provided by regression trees is highly non-smooth due to the
additive nature of the model. Regression trees partition the input space to a set of
regions and fit a constant value within each region that represents the approximation
f(x). The partitioning is represented by the shape of the regression tree, where each
path from the root of the tree to a leaf node corresponds to a region. To get a prediction,
the feature vector xi passes a series of logical tests at the inner nodes and subsequently
progresses down different paths of the tree depending on the characteristics of xi. An
example of a regression tree is given in Diagram 3.1.

xi

xi1 ≥ 10

f(xi) = 1.5 xi2 ≥ 3.6

xi1 ≥ 5

f(xi) = 1.4 f(xi) = 7.1

f(xi) = 4.2

Diagram 3.1: Example of a regression tree in a setting with xi ∈ R2
, f(xi) ∈ R.

The challenge lies in constructing the regression tree, that is, determining the logical
tests and the constant values at the leaf nodes that minimize the deviations of the
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3.2. DECISION TREE LEARNING

approximation f(x) from the true values yi, given by the mean squared error:

1

N

N

∑
i=1

(yi − f(xi))2

f(x) can only take on a finite number of values given by the leaf nodes l. Let cl denote
the constant belonging to leaf node l, then the error associated with a leaf node with
prediction value cl is given by:

MSEl =
1

Nl
∑
yi∈Dl

(yi − cl)2

where Nl is the number of training samples in leaf node l and Dl a set containing the
training samples in l. The error for the whole tree T is defined as a weighed average of
the error in its leaves:

MSET =
1

N
∑
l∈T

∑
yi∈Dl

(yi − cl)2 (3.13)

It has been shown that for regression trees based on least squares, the cl that minimize
the expected value of the mean squared error is the mean of the target variables yi:

cl =
1

Nl
∑
yi∈Dl

yi

A proof is given in Appendix B. The implications are that test samples ending up in leaf
node l should be assigned the value cl which is the average of the target values for the
training samples belonging to l.

We are now in a position to build an optimal regression tree. The tree starts with a root
node which contains all the training samples. The predicted value for any test sample
is given by the average of of all target values in the training data. The training data
is split into two subsets if there exists a split that decreases the error given by (3.13).
The best split is the one that maximizes the decrease in error, given by the difference in
MSE between the tree with and without the split:

∆MSE = MSEt −
Ntl

Nt
MSEtl −

Ntr

Nt
MSEtr

where tl is the left child node of t and tr the right child node containing Ntl and Ntr

samples respectively. This is a greedy algorithm that searches exhaustively through all
splitting criteria for all features in xi and selects the one with the largest ∆MSE. The
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CHAPTER 3. MATHEMATICAL BACKGROUND

tree is grown until no further splits can be done. As the tree grows, the training set is
split into increasingly smaller samples. Intuitively, the tree will continue to split its nodes
until there is only one sample in each leaf node, where the error is zero. Unsurprisingly,
building such an overly large regression tree will not generalize well when testing with
previously unseen samples. This phenomenon is known as overfitting.

To combat overfitting there are primarily two remedies available to regression trees.
First, the tree can be pre-pruned, meaning that the tree is only grown until it reaches a
certain length, or until the leaf nodes contain a predefined number of training samples.
On the other hand, the tree can be post-pruned. In the second case the full tree is
built at first, meaning that the leaf nodes each contain just one sample. Then, using a
validation set, nodes are removed from the bottom of the tree if the accuracy is at least
as good as the accuracy of the unpruned tree. Pre- and post-pruning are adequate tools
for avoiding overfitting of decision trees, nonetheless in the pursuance of high-performing
models decision trees lag behind. The next part extends the single decision tree to an
ensemble of decision trees with the ambition of establishing a rigorous model.

3.2.2 Random Forests

In 1996 Breiman proposed a method to improve accuracy of decision trees, where several
decision trees are generated using bootstrapped replicates DB of the training set D. The
size of DB is the same as the training set size, but the samples are usually drawn with
replacement. The prediction of a test sample is achieved by averaging the predictions
of the bootstrapped decision trees. The method is known as bagging, coined from the
term ”bootstrap aggregating”. Bagging was shown to outperform a single decision tree
both in the case of classification and regression [40], the rationale being that averaging
the prediction from several trees reduces the variance without changing the bias [41].

Continuing the study on bagging, Breiman [42] proposed an extension by only consid-
ering a random subset of the available predictors at each split when building the tree.
The underlying reason is to decorrelate the trees: In a case where a dataset has one very
strong predictor and several other moderately strong predictors, almost all of the bagged
trees will use the strong predictor as the first splitting criterion, yielding very similar
and hence correlated trees. The point of bagging is to reduce variance, and averaging
highly correlated trees does not reduce variance as much as averaging uncorrelated trees
does. Thus, when considering only a subset of predictors, the problem is overcome.
Using bagging together with random subset selection yields what is known as a Random
Forest.

The building of a Random Forest rests primarily on the selection of two hyperparameters:
the number of trees in the forest and the number of features to consider when evaluating
the best split. For each additional tree, a new bootstrapped dataset DB is constructed
from the training set D. As the number of trees in the forest increases, the more chance
there is that trees have overlapping training sets. The advantage however is that more
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3.3. K-MEANS CLUSTERING

votes are cast in the prediction process, decreasing the generalization error. It has been
shown that as the number of trees increases, the accuracy approaches the theoretical
limit of the forest [42]. The number of features considered at each split controls the
variation between trees. By considering all features at each split every tree will select
its global optimal feature, rendering similar trees. Lowering the number of features
considered at each split increases the chance that the global optimal feature is left out
of the subset of features tested. The ambition is to create a mixture of decision trees
split in a variety of different ways, resulting in a range of predictions.

3.3 K-Means Clustering

Clustering refers to the method of grouping observations in a dataset into subgroups,
or clusters, where observations that belong to the same cluster are more similar to each
other compared to those in other clusters. The perception of similarity is often domain-
specific, however common similarity measures include Euclidean distance, correlation-
based distance and cosine similarity. Clustering can be very useful in that it allows
finding subgroups within the dataset, and in relation to the current thesis this translates
into finding similar households in terms of electrical consumption. In contrast to SVR
and Random Forest, who are both supervised algorithms, clustering is an unsupervised
problem. In the supervised case we are trying to infer a relationship between the features
and the target variable by training the algorithm with samples where the target is known.
In an unsupervised case we are also trying to discover a structure or relationship, however
there is no true answer to how the clustering should be performed or what the correct
answer is.

Among the best-known clustering methods is K-Means Clustering, also known as Lloyd’s
algorithm after Stuart Lloyd who proposed the algorithm in 1957. With K-Means Clus-
tering the objective is to partition the dataset into a predefined number of clusters
K. After the number K is chosen, each observation is assigned to exactly one of
the K clusters. The best clustering is the one that minimizes the within-cluster dis-
similarity, measured by the squared Euclidean distance. Given a set of observations
X = {x1,x2, . . . ,xn} ⊂ RN and a set of K clusters C = {C1, C2, . . . , CK}, for cluster j
the within-cluster dissimilarity is given by:

∑
xi∈Cj

∣∣xi −µµµj∣∣2

where µµµj =
1
Nj

∑xi∈Cj
xi is the mean of the observations in Cj and Nj the number

of observations belonging to Cj . The complete optimization problem that is K-Means
Clustering is given by:
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minimize
C

K

∑
j=1

∑
xi∈Cj

∣∣xi −µµµj∣∣2 (3.14)

Solving 3.14 is computationally very difficult, since the observations of X can be grouped
in a large amount of ways. Yet there exists a greedy algorithm for solving the optimiza-
tion problem given by (3.14) that allows the finding of a local optimal solution. The
algorithm, elegant in its simplicity, is given as follows where the superscript m indicates
iteration m of the algorithm:

1. Given a predefined number of clusters K, randomly assign an initial set of cluster

means µµµ
(0)
1 ,µµµ

(0)
2 , . . . ,µµµ

(0)
K .

2. Assign each observation xi to the cluster whose mean is most similar to the ob-
servation. Here this translates into finding the closest cluster mean since we are
computing the squared Euclidean distance:

cluster(xi) = argmin
j

{∣∣xi −µµµ
(m)
j ∣∣2}

The complete set of observations belonging to cluster j are given by:

C
(m)
j = {xi ∶ ∣∣xi −µµµ

(m)
j ∣∣2 ≤ ∣∣xk −µµµ

(m)
j ∣∣2 ∀j, 1 ≤ j ≤ K}

3. For each cluster K compute the cluster centroid, which is the new mean of the
cluster:

µµµ
(m+1)
j =

1

N
(m)
j

∑
xi∈C

(m)
j

xi

4. Return to step 2 and iterate until the cluster assignments stop changing.

The algorithm is guaranteed to converge, however due to the arbitrary initialization of
the cluster centroids not always to the desired result. Therefore, the algorithm is often
run several times, after which the best result in terms of (3.14) can be chosen. Figure
3.3 shows one iteration of K-Means Clustering along with the updated assignments after
one iteration of the algorithm. As can be seen, in spite of an initial random assignment
of the clusters, the algorithm quickly converges to a desirable result.
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3.3. K-MEANS CLUSTERING

(a) (b)

(c) (d)

Figure 3.3: Example of the K-Means Clustering algorithm on Gaussian data using K = 3
clusters. (a) The observations of the dataset are given by black dots. In the first step
three cluster centroids are randomly generated, visualized by the triangles. (b) In the
second step of the algorithm, each observation is assigned to the centroid to which it is
closest. The partitions represent the Voronoi regions generated by the clusters. (c) After
assigning the observations, the third step computes the new cluster centroids. The old
centroids are shown in a transparent color. (d) The algorithm returns to the second step
and again assigns observations to the centroid to which they are closest. As can be seen,
several samples lying near the border between the green and blue Voronoi regions change
cluster assignment. Therefore, the algorithm will continue to iterate until it reaches the
final cluster assignments.
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Chapter 4

Model Formulation

Chapter 4 builds on the theory presented in Chapter 3 and formulates the two forecast-
ing models implemented in the thesis: Support Vector Regression with a RBF kernel and
Random Forest. Section 4.1 introduces the Pecan Street dataset, part of an extensive
research project in Texas, US. Section 4.2 describes how different households are grouped
into clusters before training. Continuing, Section 4.3 describes the evaluation of the two
models, before Section 4.4 gives an overview of the features included in each model. Sec-
tion 4.5 ends the chapter, where the strategy for selecting the optimal hyperparameters
is presented.

4.1 Pecan Street Dataset

The Pecan Street dataset consists of 1390 households
1
. For each household, the hourly

average energy consumption is given in kilowatt-hours (kWh). Out of the 1390 house-
holds, 861 reside in Austin, Texas. The remaining households are from other cities in
Texas, e.g. Houston and Dallas. To be able to cluster households and include exogenous
features such as the outside temperature, only households in Austin are considered. Of
the 861 households in Austin, 605 are still part of the Pecan Street program. To have
a sufficient amount of data to work with, a requirement is set that rules out households
that have less than 18 months worth of data. The requirement leaves 546 households in
the dataset, 373 from which there is data available to download. The data was collected
from 00:00 15 October 2014 to 06:00 16 April 2016.

For several households a few hourly measurements are missing, primarily caused by
malfunctioning of the physical measurement devices. A rolling mean with a window size
of six was used to fill missing data points if there existed at least one data point in
the window. Households with any remaining missing measurements were left out from

1
As of the descriptive metadata document, visited on 05.05.2016.
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the data set. The final dataset consists of 187 households. An example of the energy
consumption for one of the households is given in Figure 4.1.
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Figure 4.1: Hourly average energy consumption for household ID 77, measured over a
period of one week.

4.2 Clustering

One of the main objectives of the thesis is investigating the impact of clustering on the
prediction accuracy of the energy consumption for a customer base. The Pecan Street
dataset provides 187 households to work with, and as a result there are primarily two
intuitive ways in which to model the customer base: (1) Each household can be modeled
independently which allows forecasting of individual households. This approach requires
187 models, one for each household, after which the forecasts of each household can be
summed to get the aggregate consumption. (2) The households’ energy consumption
can be summed before developing a model. This is interpreted as modeling the behavior
of the customer base as a whole and only requires a single model.

With the aforementioned modeling approaches, a third option rises in which similar
households can be grouped together, leading to developing a model for each cluster of
households. Each cluster is forecast separately, and the forecasts are aggregated to form
the total forecast. The amount of clusters K to distribute the households into can be any
number from one to the total number of households. Effectively, options (1) and (2) are
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CHAPTER 4. MODEL FORMULATION

merely special cases of clustering the households using K = 187 and K = 1 respectively.
In [20] Humeau et al. cluster households by considering the average consumption of each
household in each hour. With this, every household is defined by a 24-dimensional vector
that represents the consumption profile of the household. Using K-Means Clustering to
group the different households is consequently performed in a 24-dimensional space.
Clustering is tested using a number of clusters K ∈ {1, 2, 3, 4, 6, 8, 16, 32, 64, 187}, and
for each cluster size the algorithm is run 10 times with different cluster initializations.
The final clustering will be the best outcome of 10 runs in terms of (3.14). An example
of the distribution of households among K = 16 clusters is given in Figure 4.2. For the
remaining distributions, see Appendix C.
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Figure 4.2: Distribution of households among K = 16 clusters.

4.3 Validation

The following section deals with the evaluation of STLF algorithms, and provides an
overview of the most commonly used error metrics along with a benchmark model.

4.3.1 Performance Metrics

In the literature there are primarily three metrics used in evaluating the performance of
forecasting models, and these are: Coefficient of Variance (CV) [10, 16, 19], Mean Bias
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Error (MBE) [10, 16, 17] and Mean Absolute Percentage Error (MAPE) [10, 21, 23].
The CV is defined as:

CV =
σ
µ =

√
1

N−1
∑N
i=1 (yi − f(xi))

2

ȳ

where σ and µ are the variance and mean respectively, f(xi) the predicted energy
consumption, yi the actual consumption and ȳ another notation for the average energy
consumption. The CV measures to what extent the overall prediction varies with respect
to the mean of the actual consumption, where a low CV value indicates that a model has
precise forecasts. The CV can be seen as an extension of the Root Mean Squared Error
(RMSE), which is maybe one of the most commonly used metrics in a regression setting.
Continuing, the MBE measures how likely a model is to overestimate or underestimate
the energy consumption. The MBE is given by:

MBE =

1
N−1

∑N
i=1 (yi − f(xi))

ȳ

An optimal MBE is achieved when the value is close to zero, corresponding to a model
that neither is too conservative nor too aggressive in its predictions. The MAPE simply
measures the percentage error in each measurement, and is commonly used due to its
simplicity:

MAPE =
1

N

∑N
i=1 ∣yi − f(xi)∣

yi

In this study the overall performance of a model will be assessed using the CV metric.
In situations where the CV metrics are similar, the MBE will serve as a tie breaker.
In cases where none of the mentioned metrics can tell the models apart, the decision
is based on the MAPE. The advantage of using as many as three metrics to assess the
error of a model is that is gives a comprehensive view of each model, outlining possible
flaws that would not be visible with only one metric.

4.3.2 Benchmarking

Along with the measurements of the performance of the models, defined by the three
aforementioned metrics, a baseline model is created with the purpose of serving as a
benchmark. The baseline predicts in every instance, that the energy consumption in the
next hour will be equal to the currently observed energy consumption. Mathematically
speaking, this is equal to the predictions:

f(xi) = yi−1

given that the subscripts denote the timestep. The baseline prediction model will there-
fore be a delayed version of the actual energy consumption, with a one hour lag.
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4.4 Feature Selection

A key component in building a rigorous machine learning model is selecting appropriate
features to include in the model. Common practice includes using prior domain knowl-
edge to select the features assumed to influence the target variable, however algorithms
exist where the best set of features are selected from a large feature space.

4.4.1 Historical Load

With the electric load being a time series, we intuitively want to add historic loads as
features. Specifically, the consumption from the last 48 hours should be of particular
interest. Returning to Figure 4.1, for any single household the load series displays high
volatility. In fact, the usage pattern seems rather chaotic and is not following any pattern
in particular. Figure 4.3a and Figure 4.3b shows the autocorrelation for a randomly
selected household and for the aggregation of all households. The autocorrelation is a
measure of the correlation between values of a random process at different times, and is
defined by:

ρ(s, t) = E [(Xs − µs)(Xt − µt)]
σsσt

where Xi is the value given by the process or time series at time i, µi is the mean of the
process at time i and σi is the standard deviation of the process at time i.

Made visible by the figures is that consumption is highly correlated to consumption
the previous hour and the consumption from the hour before the last. Likewise for
the aggregated load of all households, the consumption is strongly correlated with the
consumption at the same hour the previous day and the day before the last. The
conclusions are further reinforced by previous studies [10, 19], where considering the
consumption of the last two hours has shown significant results in the case of hourly
single-step predictions.
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Figure 4.3: Autocorrelation over one week, where the horizontal lines correspond to the
95% and 99% confidence bands where the dashed line is the 99% confidence band, for
(a) household ID 2532 (b) an aggregation of all household loads.
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4.4.2 Calendar Features

Figure 4.4 shows the hourly consumption for one week, averaged over all weeks and
households and is a representation of the load profile for the average household an
average week. The weekdays are clearly distinguishable from the weekends, where the
load peaks as people wake up and get ready for work, before dropping until people
start to arrive home from work. For all days of the week the load peaks around 19:00,
likewise every other hour of the day seems to follow a pattern. With these observations
in mind, a binary feature is added indicating whether the current day is a weekday or
a weekend alternatively a public holiday. Additionally, the current hour of the day is
added as a feature. When adding features, thought should be given to how the features
are represented in feature space. Two feature vectors that are similar should be close in
the Euclidean sense in feature space, hence the feature vector with the current hour set
to 23 should be close to the feature vector with current hour 00. The sine and cosine
make a representation of the clock, which allows us to represent the current hour with
the help of two features:

CurrentHour(h) = {sin(2πh

24
), cos(2πh

24
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Figure 4.4: Weekly average energy consumption, averaged over all households.
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4.4.3 Temperatures

It should come as no surprise that home electricity usage is highly correlated with the
outside temperature. To test this hypothesis, temperature data for Austin, TX was
gathered for the period of the dataset through the National Centers for Environmental
Information (NCEI) [43]. The name of the weather station from which the data was
gathered is Austin 33 NW, and Figure 4.5 shows the historic temperatures. A rolling
mean with a window size of three was used to fill missing data points if there existed
at least one data point in the window. For any remaining missing values, temperatures
were taken from the nearby Austin-Bergstrom Intl Airport weather station.

December
 2014

March
 2015

June
 2015

September
 2015

December
 2015

March
 2016

20

40

60

80

100

Te
m

pe
ra

tu
re

 (°
F)

Figure 4.5: Hourly temperature in Austin, TX between November 2014 and May 2016.

Figure 4.6a shows that there is a correlation between the load and the corresponding
temperature for a single household at 20:00 over the full period of the dataset. To
further confirm the hypothesis Figure 4.6b displays an equal relationship, however the
average load is taken for each date at 20:00 for all households. Summer days in Austin
are characterized by high temperatures, and many stay inside during the hottest part
of the day. The steady increase in usage as the temperature rises suggests that air
conditioners are the impelling cause of the trend. With the aforementioned correlation
in mind, the temperature is added as a feature. For simplicity, real temperatures have
been used when predicting load instead of modeling the temperature and predicting its
future evolution.
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Figure 4.6: Consumption at 20:00 and the corresponding temperature (a) household ID
744 (b) averaged over all households.

4.4.4 Summary

In the previous sections, prior domain knowledge has been a tool in hypothesizing fea-
ture candidates, after which an analysis has been made to confirm and lay out the
exact features to be used. In summarizing, the feature vector to be used in all coming
experiments is the following:

x(t) = [Load(t − 1), Load(t − 2), Load(t − 24), Load(t − 48),

Weekday(t), sin(2πh

24
), cos(2πh

24
), T(t)]

where Load(⋅) is the electricity consumption at time ⋅, Weekday(t) a binary variable
indicating whether the current day is a working day or a weekend alternatively a public
holiday, sin(2πh

24
) the sine of the current hour, cos(2πh

24
) the cosine of the current hour,

and T (t) the temperature at time t. For each target y(t) = Load(t) there will be a
corresponding eight-dimensional x(t), and it is with these eight features that the model
aims to predict the future load.

4.5 Hyperparameter Optimization

In Section 3.1 and 3.2 the Support Vector Regression and Random Forest algorithms
were outlined, both of which depend on several hyperparameters. A recapitulation of
the hyperparameters is given in Table 4.1.
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Model Name Hyperparameter Description

SVR C Penalty on errors in the
approximation function

SVR γ Influence of a single train-
ing sample using a RBF
kernel

Random Forest ntrees Number of trees in the for-
est

Random Forest nfeatures Number of features to con-
sider at each split

Table 4.1: List of hyperparameters for SVR and Random Forest.

The selection of appropriate values for the hyperparameters is an important task, where
depending on the dataset at hand, different values will result in the most robust model.
The hyperparameter combinations {C, γ} and {ntrees, nfeatures} can be optimized by a
cross-validated grid-search in hyperparameter space. First, a range of hyperparameter
values are selected, after which a model is trained on each combination of the selected
values. The performance of the model is assessed by performing k-fold cross-validation
on the training set, and averaging the performance of the k folds. In the end, the set of
parameters that results in the best performing model is selected.

In this thesis, 5-fold cross-validation is used to assess the accuracy of the hyperparameter
combinations, since this is equal to 80% of the samples being used for training and 20%
as a validation set. The model performance is assessed by the CV metric. For SVR, the
parameter C is tested using a set of values {1, 10, 10

2
, 10

3}, while γ is tested using a set

of values {2
−7
, 2
−5
, 2
−3
, 2
−1
, 2

0}. For the Random Forest, the parameter ntrees is tested
using a set of values {50, 100, 200, 300}, whereas nfeatures is tested using a set of values
{1, 2, 3, 4, 5, 6, 7, 8}.

An issue rises in that the computation time increases drastically for individual households
when C ≥ 1000, while at the same time γ ≥ 0.5. The aggregated load curve does not
suffer from the same issue as individual households: As the households are aggregated the
load curve is smoothened out, in contrast to the load curves of the individual households
who display a high amount of variability. Therefore SVR requires a longer period of
time to solve the optimization problem for individual households. We see a particularly
large computation time when the penalty on errors (C) is large. Figure 4.7 displays
CV on the validation set for SVR and Random Forest, and computation time for the
set of parameter combinations {C, γ} for a individual household selected at random. In
Appendix D, an equal analysis is done for four randomly selected households.
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Figure 4.7: Household ID 946: (a) CV (%) for various SVR hyperparameter combinations
{C, γ} with 5-fold cross-validation on the training data. (b) Computation time in seconds
for various SVR hyperparameter combinations {C, γ} with 5-fold cross-validation on the
training data. (c) CV (%) for various Random Forest hyperparameter combinations
{ntrees, nfeatures} with 5-fold cross-validation on the training data.

What can be inferred is that the choice of hyperparameter combinations {C, γ} and
{ntrees, nfeatures} does not result in significant variations in the CV metric, however it
strongly affects the computation time. Based on these findings the hyperparameters are
set to C = 100 and γ = 2

−3
for SVR and ntrees = 200 and nfeatures = 2 for Random

Forest for all individual households.

On the contrary, for the aggregation of all households the choice of hyperparameters
strongly affects the outcome of the predictions on the validation set. Figure 4.8 dis-
plays the CV on the validation set in addition to the computation time for the set of
hyperparameter combinations. For the aggregation of all households, we let C = 1000
and γ = 2

−7
for SVR and ntrees = 300 and nfeatures = 7 for Random Forest. The same

hyperparameter values are also used when clustering households beyond K = 1 clusters,
since intuitively for a small number of clusters the load curves should be smooth and
display similar behavior to the aggregated case.
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Figure 4.8: Aggregated households: (a) CV (%) for various SVR hyperparameter com-
binations {C, γ} with 5-fold cross-validation on the training data. (b) CV (%) for var-
ious Random Forest hyperparameter combinations {ntrees, nfeatures} with 5-fold cross-
validation on the training data.
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Chapter 5

Results

Chapter 5 presents the consumption forecasts of SVR and Random Forest. Section
5.1 introduces the general procedure of the forecast algorithm, before sections 5.1.1,
5.1.2 and 5.1.3 present the forecast results from forecasting individual households, the
aggregate and a number of clusters consisting of similar households. Section 5.2 proposes
an adjustment to the aggregate model, providing the model with more information to
be able to capture cluster characteristics. Finally, Section 5.3 provides a discussion of
the results.

5.1 Forecasting on Pecan Street Dataset

The Pecan Street dataset, consisting of 187 households, is split into a training and a test
set where the training amounts to two thirds of the full dataset. The first year of data is
used for training, leaving the last half year of data for testing. The training set is shuffled
and normalized before training the models. In the following sections, the households are
aggregated into a number of different clusters using K-Means Clustering, whereupon each
cluster is trained using the aggregated training set of the households belonging to said
cluster. After training, each cluster predicts its future energy consumption using the part
of the test set belonging to that cluster, after which the predictions from each cluster are
summed. The performance metrics are always calculated on the aggregate consumption,
which effectively allows comparison of models based on a different number of underlying
clusters K. The complete process is described in Algorithm 1. The baseline model is
independent of the number of clusters, and the duplicate results showed for the baseline
are merely a help for the reader to compare the performance of SVR and Random Forest
with the performance of the baseline model.
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Algorithm 1 Forecast Process for SVM and Random Forest

Require: 0 < K < NumHouseholds
do Cluster households to K different clusters
for i = 1 to i = K do
Datai(t)← Aggregate load(t) of households belonging to cluster i
Datai(t)← Add features for all entries t
Datai(t)← Scale Datai(t) to be [0, 1]
Traini(t), T esti(t)← Split Datai(t) into a training and a test set
Traini(t) ← Shuffle the observations of the training set, i.e. create a random
permutation
for SVR and Random Forest do

Train Model with training set Traini(t)
end for
f
SV R
i (t)← Make predictions on Testi(t)
f
SV R
i (t)← Rescale predictions

f
RandomForest
i (t)← Make predictions on Testi(t)
f
RandomForest
i (t)← Rescale predictions

end for
f
SV R(t)← ∑K

i=1 f
SV R
i (t)

f
RandomForest(t)← ∑K

i=1 f
RandomForest
i (t)
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5.1.1 Forecasting: Individual Households

In the following section, a separate model is created for each household in the Pecan
Street dataset, resulting in 187 models to be trained and evaluated both for SVR and
Random Forest. Individual forecasting is achieved by setting K = 187, resulting in not
performing any clustering at all on the dataset. Table 5.1 displays the performance
of SVR, Random Forest and the baseline model, assessed by the metrics outlined in
Section 4.3. Additionally the mean and the variance of the errors in the predictions,
εi = yi− f(xi), are given by µε and σε. To give a graphical representation of the results,
Figure 5.1 shows the predicted load curves in comparison with the true load curve over
a sample period of one week. The reason for not displaying the full test set is that the
period is too large to give a meaningful and understandable plot. Figures 5.2, 5.3 and 5.4
allow for an in-depth analysis of the predictions, showing a scatterplot of the predicted
load versus the true load and a density plot of the resulting prediction errors εi for each
of the models.

CV (%) MBE (%) MAPE (%) µε(kWh) σε(kWh)
SVR 23.06 -18.80 23.14 -31.11 22.11

Random Forest 11.56 -2.28 9.24 -3.77 18.75
Baseline 12.22 -0.03 9.38 -0.05 20.22

Table 5.1: Performance metrics for K = 187 clusters.
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Figure 5.1: Hourly energy predictions for K = 187 clusters over a sample period of one
week.
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Figure 5.2: SVR with K = 187 clusters: (a) Scatterplot of the predicted load versus the
true load on the test set, where the black line indicates a perfect fit. (b) Density plot of
the errors εi = yi − f(xi).
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Figure 5.3: Random Forest with K = 187 clusters: (a) Scatterplot of the predicted load
versus the true load on the test set, where the black line indicates a perfect fit. (b)
Density plot of the errors εi = yi − f(xi).
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Figure 5.4: Baseline with K = 187 clusters: (a) Scatterplot of the predicted load versus
the true load on the test set, where the black line indicates a perfect fit. (b) Density
plot of the errors εi = yi − f(xi).
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5.1.2 Forecasting: Aggregate Level

In the following section, the households are aggregated before training resulting in one
single model, which is the equivalent of using K = 1 clusters. Table 5.2 displays the
performance of SVR, Random Forest and the baseline model, assessed by the metrics
outlined in Section 4.3. Additionally the mean and the variance of the errors in the
predictions, εi = yi − f(xi), are given by µε and σε. To give a graphical representation
of the results, Figure 5.5 shows the predicted load curves in comparison with the true
load curve over a sample period of one week. The reason for not displaying the full test
set is that the period is too large to give a meaningful and understandable plot. Figures
5.6, 5.7 and 5.8 allow for an in-depth analysis of the predictions, showing a scatterplot
of the predicted load versus the true load and a density plot of the resulting prediction
errors εi for each of the models.

CV (%) MBE (%) MAPE (%) µε(kWh) σε(kWh)
SVR 11.10 2.21 9.08 3.65 18.00

Random Forest 10.05 0.74 7.78 1.22 16.58
Baseline 12.22 -0.03 9.38 -0.05 20.22

Table 5.2: Performance metrics for K = 1 clusters.
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Figure 5.5: Hourly energy predictions for K = 1 clusters over a sample period of one
week.
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Figure 5.6: SVR with K = 1 clusters: (a) Scatterplot of the predicted load versus the
true load on the test set, where the black line indicates a perfect fit. (b) Density plot of
the errors εi = yi − f(xi).
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Figure 5.7: Random Forest with K = 1 clusters: (a) Scatterplot of the predicted load
versus the true load on the test set, where the black line indicates a perfect fit. (b)
Density plot of the errors εi = yi − f(xi).
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Figure 5.8: Baseline with K = 1 clusters: (a) Scatterplot of the predicted load versus
the true load on the test set, where the black line indicates a perfect fit. (b) Density
plot of the errors εi = yi − f(xi).
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5.1.3 Forecasting: Cluster-based

The two previous sections, forecasting individual households and the aggregate, were
both special cases of K-Means Clustering using K = 187 and K = 1 clusters respectively.
In this section, a number of different clusters are explored in order to assess the optimal
cluster size. Table 5.3 displays the performance of SVR, Random Forest and the baseline
model, assessed by the metrics outlined in Section 4.3. Additionally the mean and the
variance of the errors in the predictions, εi = yi − f(xi), are given by µε and σε. Figures
5.9 and 5.10 give a visual representation of the performance metrics as a function of the
cluster size K.

K CV (%) MBE (%) MAPE (%) µε(kWh) σε(kWh)
Baseline 12.22 -0.03 9.38 -0.05 20.22

1 SVR 11.10 2.21 9.08 3.65 18.00
Random Forest 10.05 0.74 7.78 1.22 16.58

2 SVR 9.45 1.39 7.32 2.30 15.48
Random Forest 9.75 0.75 7.60 1.25 16.09

3 SVR 9.41 1.60 7.28 2.65 15.34
Random Forest 9.57 1.13 7.49 1.87 15.73

4 SVR 9.74 2.08 7.44 3.45 15.75
Random Forest 9.76 2.44 7.44 4.04 15.63

6 SVR 9.49 -0.30 7.72 -0.50 15.70
Random Forest 9.58 1.44 7.40 2.38 15.68

8 SVR 9.41 -0.66 7.62 -1.10 15.54
Random Forest 9.33 1.30 7.17 2.15 15.29

16 SVR 9.31 -1.24 7.61 -2.06 15.26
Random Forest 9.10 2.02 6.91 3.35 14.68

32 SVR 10.50 -3.70 9.25 -6.12 16.26
Random Forest 8.89 1.43 6.77 2.37 14.52

64 SVR 13.27 -7.96 12.68 -13.17 17.57
Random Forest 9.20 0.07 7.21 0.12 15.23

187 SVR 23.06 -18.80 23.14 -31.11 22.11
Random Forest 11.56 -2.28 9.24 -3.77 18.75

Table 5.3: Performance metrics for all models and cluster sizes.
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Figure 5.9: Performance metrics as a function of the cluster size K for SVR: (a) CV (%)
(b) MBE (%) (c) MAPE (%). The baseline model is included as a benchmark.
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Figure 5.10: Performance metrics as a function of the cluster size K for Random Forest:
(a) CV (%) (b) MBE (%) (c) MAPE (%). The baseline model is included as a benchmark.
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5.1.4 Analysis

From the results a general trend can be inferred: Random Forest shows a stable per-
formance for all cluster sizes and outperforms the baseline for all tested cases. SVR on
the other hand, while in some cases better than the Random Forest, diverges when the
cluster size increases and is beaten by the baseline. The experiments were run several
times with different seeds, where Random Forest showed no significant variations in the
performance. Additionally, as the performance of SVR is independent of the randomness
involved in the forecasting, any variations are omitted from the results.

For the approach of forecasting individual households, Random Forest yields the most
desirable results, followed by the baseline model. SVR performs significantly worse
than the aforementioned models in this case, as can be seen in Table 5.1. A possible
explanation might be that SVR is quite sensitive to the choice of hyperparameters, and
that using the same hyperparameter values for all different households might not be
optimal. In addition to high CV and MAPE values, SVR also heavily overshoots in
its predictions, as is seen in Figure 5.2 where the average prediction is off by over 30
kWh where the true values range from approximately 80 to 800 kWh. Random Forest
also overshoots slightly in its predictions, however this model captures the trend in the
consumption to a significantly higher degree.

Table 5.2 shows that forecasting on the aggregate level is preferably done with a Ran-
dom Forest. Contrary to individual forecasting, SVR here outperforms the baseline
model. Figures 5.6 and 5.7 along with Table 5.2 indicate that SVR is undershooting
slightly, whereas Random Forest does not seem to either overshoot nor undershoot in
its predictions.

The cluster-based forecasting approach yields results that indicate that for some number
of clusters K, both SVR and Random Forest outperform the individual and aggregate
approaches respectively. By looking at the CV value in Table 5.3, the optimal model is
found using Random Forest with K = 32 different clusters, followed by Random Forest
with K = 16 and K = 64 clusters, after which SVR with K = 16 clusters is chosen. The
performance measured by the MAPE also indicates that Random Forest with K = 32
clusters is preferred. By the MAPE, SVR obtains its optimal performance using K = 3
clusters. The optimal Random Forests are for all mentioned cluster sizes K = 32, 16 and
64 undershooting somewhat, whereas SVR with K = 16 is slightly overshooting. While
CV is used as the primary metric to determine the optimal model, the MBE can play an
important role if a desired strategy is to either always be conservative and underpredict
the consumption or to be confident and make sure the predictions are always capturing
the load peaks.
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5.2 Accounting for Cluster Characteristics in Aggregate
Forecasting

A question rises whether or not the models are given enough information. In the in-
troduction it was hypothesized that in theory individual forecasting should outperform
aggregate forecasting since we are able to account for each individual’s consumption
pattern. To test this hypothesis, an alteration of the aggregate model is given where
households are first grouped into a number of clusters K. Then, using the original eight
features given in 4.4.4, Load(t − 1), Load(t − 2), Load(t − 24), Load(t − 48) are added
as features to the aggregate model for each cluster K. Finally, the aggregate model is
trained and predictions are made on the aggregate level. Effectively, the aggregate model
makes predictions based on its eight original features along with four new features for
each additional cluster K, resulting in a total of 8 + 4K features.

Table 5.4 displays the performance of SVR, Random Forest and the baseline model,
assessed by the metrics outlined in Section 4.3. Additionally the mean and the variance
of the errors in the predictions, εi = yi− f(xi), are given by µε and σε. Figures 5.11 and
5.12 give a visual representation of the performance metrics as a function of the cluster
size K.

K CV (%) MBE (%) MAPE (%) µε(kWh) σε(kWh)
Baseline 12.22 -0.03 9.38 -0.05 20.22

1 SVR 11.10 2.21 9.08 3.65 18.00
Random Forest 10.05 0.74 7.78 1.22 16.58

2 SVR 11.70 3.40 9.41 5.62 18.52
Random Forest 9.59 1.60 7.34 2.64 15.65

3 SVR 11.32 2.19 8.92 3.63 18.38
Random Forest 9.27 0.85 7.08 1.40 15.28

4 SVR 11.10 2.53 8.55 4.18 17.89
Random Forest 9.53 1.90 7.12 3.14 15.46

6 SVR 12.39 4.62 9.39 7.65 19.02
Random Forest 9.88 3.51 7.20 5.81 15.28

8 SVR 13.71 7.06 9.88 11.69 19.44
Random Forest 11.26 6.35 8.09 10.50 15.39

16 SVR 16.30 11.18 11.55 18.51 19.63
Random Forest 14.85 10.75 10.76 17.79 16.95

32 SVR 20.76 16.22 15.10 26.84 21.45
Random Forest 21.51 18.02 17.02 29.82 19.44

Table 5.4: Performance metrics for aggregate models with information from K clusters.
K = 1 refers to the original aggregate model from Section 5.1.2.
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FORECASTING
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Figure 5.11: Performance metrics for the aggregate as a function of the information from
K clusters for SVR: (a) CV (%) (b) MBE (%) (c) MAPE (%). The baseline model is
included as a benchmark. K = 1 refers to the original aggregate model from Section
5.1.2.
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Figure 5.12: Performance metrics for the aggregate as a function of the information from
K clusters for Random Forest: (a) CV (%) (b) MBE (%) (c) MAPE (%). The baseline
model is included as a benchmark. K = 1 refers to the original aggregate model from
Section 5.1.2.
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CHAPTER 5. RESULTS

5.2.1 Analysis

The extension of the original aggregate model provides some interesting results. As
is seen in Table 5.4, adding additional information in the form of extra features can
provide a stronger model. Compared to the original aggregate model, which is the case
with K = 1, Random Forest provides an improvement when historic load is added based
on K = 3 clusters. Increasing the number of clusters increases the CV value, up to
K = 8 clusters where the extension is worse than the original, and K = 16 clusters
where Random Forest is outperformed by the baseline. While the CV and MAPE is
better for Random Forest with K = 3 compared to the original case, the model’s MBE
is higher, indicating that it is undershooting to a larger extent than in the original case.

SVR shows no significant improvements when adding additional information, the CV
value of the original model is matched when using K = 4 clusters, however at the cost
of an increased MBE. It is possible that SVR suffers from the previously described
drawback, namely that the hyperparameters {C, γ} should be recalibrated with an ex-
haustive grid-search for each new model. This disadvantage is further discussed in the
next section.

5.3 Discussion

The results were briefly commented in 5.1.4 and 5.2.1, however in what follows is a
more thorough discussion of the outcome of the experiments, potential explanations for
certain behavior and advantages of selecting specific model setups.

For the initial results on investigating the impact of the number of clusters on load
forecasting, both SVR and Random Forest showed improved results when using a small
number of clusters K compared to the aggregate case with K = 1 clusters. As both
Figure 5.9 and 5.10 display, the CV value reaches a minimum as the number of clusters
increases from K = 1, before increasing and reaching a maximum at K = 187. The best
performing model was found for Random Forest with K = 32 clusters, and for SVR with
K = 16 clusters.

The best performing model, a Random Forest with K = 32 clusters, indicates that group-
ing the households based on the daily load profile of each household is preferably done
by dividing the 187 households into 32 different clusters. In Appendix C the grouping
of households among the 32 clusters is showed, and what can be inferred is that there is
primarily 10 large groups of typical households, followed by a number of very specialized
households. Grouping by the average daily load profile of each household is definitely
an interesting and intuitive way to cluster households, however using other representa-
tions to cluster households would be interesting to see how it affects the outcome of the
predictions.

Although the behavior is similar for SVR and Random Forest, Random Forest shows
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5.3. DISCUSSION

a much more stable performance. Where the difference in CV values depending on
the cluster size differs only 3% for Random Forest, the maximum and minimum are
separated by over 13% for SVR. In addition, SVR is outperformed by the baseline model
as K ≥ 64. As was mentioned briefly in previous sections, Random Forests are rather
insensitive to the choice of hyperparameters which explains the stable performance.
The large variations in model performance for SVR could be due to the fact that the
hyperparameters {C, γ} were limited to only two different pairs of values, depending
on whether the model was for individual households or a cluster of similar households.
Even though the analysis in 4.5 suggested otherwise, SVR might be quite sensitive to
parameter selection, especially considering when small errors from many households are
added together resulting in an overall bad performance. To test the true potential of
SVR, an exhaustive parameter search would have to be done for each of the models
(in the case of individual load forecasting this results in 187 models having to find its
optimal hyperparameters), requiring a vast amount of computational power.

In an attempt to provide the model with more information about the individual house-
hold’s consumption, the load of several clusters was added to the aggregate model,
resulting in a single model with 8 + 4K features instead of the original eight, K being
the number of clusters to group the households into. The rationale for taking this ap-
proach is to improve performance in terms of lowered CV values, but also to increase
computational efficiency. In the original model setup, a model has to be trained for
each cluster K, where we tested values from K = 1 up to K = 187. Intuitively, it is
more desirable having to handle a single model compared to training and optimizing
187 different models. Still, as households are aggregated we lose information about the
individual households, which is the reason for wishing to add features that conserve
the individual patterns while at the same time enabling training and forecasting on the
aggregate level.

With this approach, the number of clusters used to provide additional information to
the aggregate model had a significant impact on the outcome of the predictions. In con-
tradiction with the optimal cluster-size for cluster-based forecasting, this new approach
prefers grouping to a smaller number of clusters. Random Forest showed an improvement
compared to the aggregate model, and the best model was attained when information
was added based on the grouping into K = 3 clusters, resulting in predictions based
on 20 features. This result is also, although not an improvement, comparable with the
outcome of the cluster-based forecasting. SVR showed no significant improvement when
providing the model with more information, instead the results quickly became worse
compared to the baseline model. An underlying reason for the decline of SVR could be
similar to what was recently discussed, namely that the model might require an exhaus-
tive parameter search. Another reason for the stagnating performance of Random Forest
and SVR as more information is added could be that the number of features increases to
a level where significant overfitting takes place. Adding information from K = 32 clusters
results in models with 136 features, compared to just having eight features originally.
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Chapter 6

Conclusion

The last chapter discusses the most important findings of the thesis. Section 6.1 reviews
the objectives presented in 1.1. Section 6.2 concludes the thesis.

6.1 Follow-up of Objectives

With the results of the load forecasting presented, the objectives that were set at the
beginning of the thesis are reviewed. Four objectives were stated relatively general,
describing statements that we hoped to be able to answer. Here, the results are connected
with the objectives in an attempt to clarify the outcome of the thesis and structure the
main findings.

1. Analyze historical residential energy consumption data
Given historical time series of energy consumption from individual households,
conduct a statistical analysis to highlight the behavior of the individual series and
the dependence between different series.

Short-term load forecasting is a highly volatile and non-linear problem, as was
indicated by the difficulties of producing accurate forecasts of the future energy
consumption and visualized through example figures of individual households.
However, we saw that by grouping households the load curve was smoothened
out resulting in a somewhat more recurring pattern. The advantages of grouping
households in different ways was also presented in the prediction accuracy, indi-
cating that a relationship exists between different households. As the number of
families in the customer base increases the aggregate should become easier to pre-
dict from a mathematical perspective, since the load curve smoothes out. Several
factors were shown to correlate with the load, in particular the load was shown to
be periodic following the rather routine lifestyle of many households. The addition
of exogenous features such as the outside temperature provides a valuable insight
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6.1. FOLLOW-UP OF OBJECTIVES

suggesting that the consumption of a household is based on a number of factors.
Including more exogenous features, may it be social or economic, would yield an
interesting experiment in which we could learn more about the underlying factors
for different consumption patterns.

2. Review and select appropriate mathematical models
Review and evaluate mathematical models, emphasizing their ability to capture load
dynamics and successfully forecast the future load.

A thorough and extensive study was made on existing literature in the field of
short-term load forecasting, both within the commercial and residential sector.
The studies presented a range of methods and approaches used for STLF, however
in our interest to take a data-driven approach, we narrowed in on machine learn-
ing methods to be able to handle the non-linearity that presents itself in STLF
series. Within machine learning, some methods clearly stood out and in particular
Support Vector Machines for regression and Artificial Neural Networks had shown
satisfying results, with the first being superior. In addition a Random Forest was
suggested to test a previously unseen algorithm. Based on the performed experi-
ments, Random Forest provided successful forecasts and was to a large extent more
accurate and stable compared to SVR. The advantages of using a Random Forest
are manifold: The algorithm is rather independent of the choice of hyperparam-
eters as was shown in an experiment, which removes the need for an exhaustive
parameter search and reduces computational strain. Due to the structure of the
algorithm, it is exempt from a high degree of overfitting which is a common issue
for many algorithms. The structure also allows Random Forests to scale well with
large datasets and high-dimensional feature vectors.

3. Experiment with clustering and cluster sizes
Conduct experiments to assess the impact of clustering and the cluster size on the
accuracy of the load forecast.

Clustering was performed to group similar households by looking at the average
daily load profile of households. The selected cluster feature provides an intu-
itive way of grouping households since the average daily load profile represents the
consumption a typical day for every family. Therefore, similar households should
display similar average daily load profiles. A question rises whether or not this is
the best way to cluster households. While we can be certain that on average the
grouped households show a similar load, behavior of extremities such as peaks or
longer periods of absence due to holidays could differ vastly. In much the same
way the strategy of an electric utility affects if we prefer an over- or underpre-
dicting model, the cluster feature could be set depending on the preferences of
the utility. In the scope of this thesis, clustering based on the average daily load
profile provided favorable results that outperformed the models where no cluster-
ing was undertaken. We found that Random Forest and SVR yielded the most
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CHAPTER 6. CONCLUSION

accurate results with respect to the CV value when clustering with K = 32 and
K = 16 clusters respectively. In an attempt to reduce the number of models and
see if the aggregate model could be improved by adding more features, historic
load from clusters was added as features to the aggregate model. While the ex-
tended aggregate model did not provide improvements compared the cluster-based
models, it improved the results compared to the original aggregate model using
Random Forest with information added based on the grouping into K = 3 clusters.
The extended aggregate model indicates that, rather than performing cluster-based
forecasting, by adding more information in terms of features, we can create a single
strong predictive model which has the benefit of reducing computation time.

4. Discuss implications on short-term load forecasting
Given results of the above points, discuss strengths and weaknesses of outlined mod-
els and propose adjustments to allow for future studies to advance research within
STLF.

It was shown that households can be grouped into a number of typical consumption
patterns, which effectively improved the prediction accuracy compared to tradi-
tional methods. The introduction of Random Forests for load forecasting showed
impressive results and stable performance across all different approaches taken,
and is a method that should be tested to a larger extent in future work. A major
disappointment was the accuracy of SVR, however as has been discussed in detail,
it could be due to the decision that was made to omit an exhaustive hyperpa-
rameter search due to the lack of computational power. The results in this thesis
have demonstrated the effectiveness of a cluster-based approach, however to fur-
ther research within STLF future work could include using algorithms to select the
best features from a large feature space (Feature selection), implement ANNs
and compare to the findings of this thesis (ANNs), test other cluster features and
methods (Cluster features and methods), experiment with new datasets to
assess if the results are similar (New datasets), extend the single-step forecasts
to multi-step forecasts (Multi-step forecasts) and analyze the impact of the size
of the customer base on the prediction accuracy (Size of customer base).

6.2 Concluding Remarks

In this thesis a model was developed for predicting the hourly residential energy con-
sumption of a customer base consisting of 187 households in Austin, Texas. To arrive
at the aggregate predictions of the customer base, three different approaches were taken
to building the model. First, each households was modeled independently, yielding a
total number of 187 models whose predictions were aggregated to form the total pre-
diction. Secondly, the households were aggregated and a single model was developed,
treating the customer base as a single unit. A third option consisted of grouping similar
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households based on the average daily load profile of each household. Comparing the
approaches, using both Random Forest and Support Vector Regression, showed that
the most accurate results were achieved using Random Forest and clustering households
into 32 different clusters. In an attempt to improve the aggregate model, it was shown
that by adding features describing the clusters’ historic load, the performance of the
aggregate model was improved using Random Forest with information added based on
the grouping into K = 3 clusters. The extended aggregate model did not outperform
the cluster-based models.

Deciding the characteristics of a short-term load forecasting model in a real world sce-
nario will be heavily influenced by the requirements of the utility, where factors such as
the risk appetite, supply requirements and finances will play an important role. It is
without doubt a topic that will grow more important as the smart grid develops, where
all parties involved should reap the environmental and economic benefits of progressing
short-term load forecasting.
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Appendix A

Mercer’s Theorem

Theorem 1. Let F be a compact subset of RN . Suppose K ∶ F× F→ R is a continuous
and symmetric function, which is square-integrable in F × F and satisfies:

∫
F×F

K(x,y)f(x)f(y)dxdy ≥ 0 ∀f ∈ L2(F)

then there exist functions φi ∶ F→ R and numbers λi ≥ 0 such that

K(x,y) =
∞

∑
i=1

λiφi(x)φi(y) ∀x,y ∈ F
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Appendix B

Optimizing the Leaf Node Value
of a Regression Tree

Let Y be a continuous random variable with probability density function f(y). We want
to minimize the expected value of the mean squared error with respect to cl:

ε = E[(Y − cl)2]

= ∫
+∞

−∞
(y − cl)2f(y)dy

= ∫
+∞

−∞
(y2 − 2ycl + c

2
l )f(y)dy

= ∫
+∞

−∞
y
2
f(y)dy − 2cl ∫

+∞

−∞
yf(y)dy + c2l

Since ∫+∞−∞ f(y)dy = 1. Minimize ε with respect to cl:

∂ε

∂cl
= 0 − 2∫

+∞

−∞
yf(y)dy + 2cl = 0

↔

cl = ∫
+∞

−∞
yf(y)dy

This is the definition of the expected value of Y , hence:

cl = E[Y ] ■
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Appendix C

Distribution of Households with
K-Means Clustering
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(a) Distribution of households amongK = 2
clusters.
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(b) Distribution of households among K =

3 clusters.
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(c) Distribution of households among K = 4
clusters.
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(d) Distribution of households among K =

6 clusters.
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APPENDIX C. DISTRIBUTION OF HOUSEHOLDS WITH K-MEANS
CLUSTERING
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(e) Distribution of households among K = 8
clusters.
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(f) Distribution of households among K =

16 clusters.
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(g) Distribution of households among K =

32 clusters.
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64 clusters.
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Appendix D

Hyperparameter Search for
Individual Households
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Figure D.1: Household ID 946: (a) CV (%) for various SVR hyperparameter com-
binations {C, γ} with 5-fold cross-validation on the training data. (b) Computation
time in seconds for various SVR hyperparameter combinations {C, γ} with 5-fold cross-
validation on the training data. (c) CV (%) for various Random Forest hyperparameter
combinations {ntrees, nfeatures} with 5-fold cross-validation on the training data.
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Figure D.2: Household ID 1718: (a) CV (%) for various SVR hyperparameter com-
binations {C, γ} with 5-fold cross-validation on the training data. (b) Computation
time in seconds for various SVR hyperparameter combinations {C, γ} with 5-fold cross-
validation on the training data. (c) CV (%) for various Random Forest hyperparameter
combinations {ntrees, nfeatures} with 5-fold cross-validation on the training data.
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Figure D.3: Household ID 744: (a) CV (%) for various SVR hyperparameter com-
binations {C, γ} with 5-fold cross-validation on the training data. (b) Computation
time in seconds for various SVR hyperparameter combinations {C, γ} with 5-fold cross-
validation on the training data. (c) CV (%) for various Random Forest hyperparameter
combinations {ntrees, nfeatures} with 5-fold cross-validation on the training data.
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Figure D.4: Household ID 9921: (a) CV (%) for various SVR hyperparameter com-
binations {C, γ} with 5-fold cross-validation on the training data. (b) Computation
time in seconds for various SVR hyperparameter combinations {C, γ} with 5-fold cross-
validation on the training data. (c) CV (%) for various Random Forest hyperparameter
combinations {ntrees, nfeatures} with 5-fold cross-validation on the training data.
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