Öppna denna publikation i ny flik eller fönster >>2018 (Engelska)Ingår i: Electric power systems research, ISSN 0378-7796, E-ISSN 1873-2046, Vol. 157, s. 211-226Artikel i tidskrift (Refereegranskat) Published
Abstract [en]
Field observations have shown that the frequency of dangerous lightning events to wind turbines, calculated according to the IEC standard 61400-24:2010, is grossly underestimated. This paper intends to critically revisit the evaluation of the incidence of downward lightning as well as self-initiated and other-triggered upward flashes to offshore wind power plants. Three different farms are used as case studies. The conditions for interception of stepped leaders in downward lightning and the initiation of upward lightning is evaluated with the Self-consistent Leader Inception and Propagation Model (SLIM). The analysis shows that only a small fraction of damages observed in the analysed farms can be attributed to downward lightning. It is also estimated that only a small fraction (less than 19%) of all active thunderstorms in the area of the analysed farms can generate sufficiently high thundercloud fields to self-initiate upward lightning. Furthermore, it is shown that upward flashes can be triggered even under low thundercloud fields once a sufficiently high electric field change is generated by a nearby lightning event. Despite of the uncertainties in the incidence evaluation, it is shown that upward flashes triggered by nearby positive cloud-to-ground flashes produce most of the dangerous lightning events to the case studies.
Ort, förlag, år, upplaga, sidor
Elsevier Ltd, 2018
Nyckelord
Lightning, Lightning damage, Risk assessment, Upward lightning, Wind power farms, Clouds, Damage detection, Electric fields, Standards, Wind power, Wind turbines, Downward lightnings, Field observations, High electric fields, Offshore wind power plants, Positive cloud-to-ground flashes, Propagation modeling, Offshore wind farms
Nationell ämneskategori
Naturresursteknik
Identifikatorer
urn:nbn:se:kth:diva-223115 (URN)10.1016/j.epsr.2017.12.008 (DOI)000425203500021 ()2-s2.0-85039859714 (Scopus ID)
Anmärkning
Export Date: 13 February 2018; Article; CODEN: EPSRD; Correspondence Address: Becerra, M.; KTH Royal Institute of Technology, Department of Electromagnetic EngineeringSweden; email: marley@kth.se. QC 20180327
2018-03-272018-03-272022-06-26Bibliografiskt granskad