kth.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 14) Visa alla publikationer
Duberg, D., Zhang, Q., Jia, M. & Jensfelt, P. (2024). DUFOMap: Efficient Dynamic Awareness Mapping. IEEE Robotics and Automation Letters, 9(6), 5038-5045
Öppna denna publikation i ny flik eller fönster >>DUFOMap: Efficient Dynamic Awareness Mapping
2024 (Engelska)Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 9, nr 6, s. 5038-5045Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The dynamic nature of the real world is one of the main challenges in robotics. The first step in dealing with it is to detect which parts of the world are dynamic. A typical benchmark task is to create a map that contains only the static part of the world to support, for example, localization and planning. Current solutions are often applied in post-processing, where parameter tuning allows the user to adjust the setting for a specific dataset. In this letter, we propose DUFOMap, a novel dynamic awareness mapping framework designed for efficient online processing. Despite having the same parameter settings for all scenarios, it performs better or is on par with state-of-the-art methods. Ray casting is utilized to identify and classify fully observed empty regions. Since these regions have been observed empty, it follows that anything inside them at another time must be dynamic. Evaluation is carried out in various scenarios, including outdoor environments in KITTI and Argoverse 2, open areas on the KTH campus, and with different sensor types. DUFOMap outperforms the state of the art in terms of accuracy and computational efficiency.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2024
Nyckelord
Mapping, object detection, robotics and automation in construction, segmentation and categorization
Nationell ämneskategori
Robotik och automation Datorgrafik och datorseende
Identifikatorer
urn:nbn:se:kth:diva-366806 (URN)10.1109/LRA.2024.3387658 (DOI)001205782500001 ()2-s2.0-85190348409 (Scopus ID)
Anmärkning

QC 20250710

Tillgänglig från: 2025-07-10 Skapad: 2025-07-10 Senast uppdaterad: 2025-07-10Bibliografiskt granskad
Linard, A., Gautier, A., Duberg, D. & Tumova, J. (2024). Robust MITL planning under uncertain navigation times. In: 2024 IEEE International Conference on Robotics and Automation, ICRA 2024: . Paper presented at 2024 IEEE International Conference on Robotics and Automation, ICRA 2024, May 13-17, 2024, Yokohama, Japan (pp. 2498-2504). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Robust MITL planning under uncertain navigation times
2024 (Engelska)Ingår i: 2024 IEEE International Conference on Robotics and Automation, ICRA 2024, Institute of Electrical and Electronics Engineers (IEEE) , 2024, s. 2498-2504Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In environments like offices, the duration of a robot's navigation between two locations may vary over time. For instance, reaching a kitchen may take more time during lunchtime since the corridors are crowded with people heading the same way. In this work, we address the problem of routing in such environments with tasks expressed in Metric Interval Temporal Logic (MITL)-a rich robot task specification language that allows us to capture explicit time requirements. Our objective is to find a strategy that maximizes the temporal robustness of the robot's MITL task. As the first step towards a solution, we define a Mixed-integer linear programming approach to solving the task planning problem over a Varying Weighted Transition System, where navigation durations are deterministic but vary depending on the time of day. Then, we apply this planner to optimize for MITL temporal robustness in Markov Decision Processes, where the navigation durations between physical locations are uncertain, but the time-dependent distribution over possible delays is known. Finally, we develop a receding horizon planner for Markov Decision Processes that preserves guarantees over MITL temporal robustness. We show the scalability of our planning algorithms in simulations of robotic tasks.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2024
Nyckelord
Formal Methods, Markov Decision Processes, Planning Under Uncertainty, Temporal Robustness
Nationell ämneskategori
Datavetenskap (datalogi) Reglerteknik
Identifikatorer
urn:nbn:se:kth:diva-353565 (URN)10.1109/ICRA57147.2024.10611704 (DOI)2-s2.0-85202431026 (Scopus ID)
Konferens
2024 IEEE International Conference on Robotics and Automation, ICRA 2024, May 13-17, 2024, Yokohama, Japan
Anmärkning

Part of ISBN: 9798350384574

QC 20240926

Tillgänglig från: 2024-09-19 Skapad: 2024-09-19 Senast uppdaterad: 2024-09-26Bibliografiskt granskad
Zhang, Q., Duberg, D., Geng, R., Jia, M., Wang, L. & Jensfelt, P. (2023). A Dynamic Points Removal Benchmark in Point Cloud Maps. In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023: . Paper presented at 26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023, Bilbao, Spain, Sep 24 2023 - Sep 28 2023 (pp. 608-614). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>A Dynamic Points Removal Benchmark in Point Cloud Maps
Visa övriga...
2023 (Engelska)Ingår i: 2023 IEEE 26th International Conference on Intelligent Transportation Systems, ITSC 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023, s. 608-614Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In the field of robotics, the point cloud has become an essential map representation. From the perspective of downstream tasks like localization and global path planning, points corresponding to dynamic objects will adversely affect their performance. Existing methods for removing dynamic points in point clouds often lack clarity in comparative evaluations and comprehensive analysis. Therefore, we propose an easy-to-extend unified benchmarking framework for evaluating techniques for removing dynamic points in maps. It includes refactored state-of-art methods and novel metrics to analyze the limitations of these approaches. This enables researchers to dive deep into the underlying reasons behind these limitations. The benchmark makes use of several datasets with different sensor types. All the code and datasets related to our study are publicly available for further development and utilization.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2023
Nationell ämneskategori
Robotik och automation
Identifikatorer
urn:nbn:se:kth:diva-344365 (URN)10.1109/ITSC57777.2023.10422094 (DOI)2-s2.0-85186537890 (Scopus ID)
Konferens
26th IEEE International Conference on Intelligent Transportation Systems, ITSC 2023, Bilbao, Spain, Sep 24 2023 - Sep 28 2023
Anmärkning

Part of ISBN 9798350399462

QC 20240315

Tillgänglig från: 2024-03-13 Skapad: 2024-03-13 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Nguyen, T.-M., Duberg, D., Jensfelt, P., Yuan, S. & Xie, L. (2023). SLICT: Multi-Input Multi-Scale Surfel-Based Lidar-Inertial Continuous-Time Odometry and Mapping. IEEE Robotics and Automation Letters, 8(4), 2102-2109
Öppna denna publikation i ny flik eller fönster >>SLICT: Multi-Input Multi-Scale Surfel-Based Lidar-Inertial Continuous-Time Odometry and Mapping
Visa övriga...
2023 (Engelska)Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 8, nr 4, s. 2102-2109Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

While feature association to a global map has significant benefits, to keep the computations from growing exponentially, most lidar-based odometry and mapping methods opt to associate features with local maps at one voxel scale. Taking advantage of the fact that surfels (surface elements) at different voxel scales can be organized in a tree-like structure, we propose an octree-based global map of multi-scale surfels that can be updated incrementally. This alleviates the need for recalculating, for example, a k-d tree of the whole map repeatedly. The system can also take input from a single or a number of sensors, reinforcing the robustness in degenerate cases. We also propose a point-to-surfel (PTS) association scheme, continuous-time optimization on PTS and IMU preintegration factors, along with loop closure and bundle adjustment, making a complete framework for Lidar-Inertial continuous-time odometry and mapping. Experiments on public and in-house datasets demonstrate the advantages of our system compared to other state-of-the-art methods.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2023
Nyckelord
Laser radar, Feature extraction, Optimization, Costs, Robot kinematics, Source coding, Octrees, Localization, mapping, sensor fusion
Nationell ämneskategori
Datorgrafik och datorseende
Identifikatorer
urn:nbn:se:kth:diva-325223 (URN)10.1109/LRA.2023.3246390 (DOI)000942347900010 ()2-s2.0-85149417556 (Scopus ID)
Anmärkning

QC 20230403

Tillgänglig från: 2023-04-03 Skapad: 2023-04-03 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Duberg, D. (2022). Flexible, Efficient, and Scalable Autonomous Exploration and Volumetric Mapping. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Öppna denna publikation i ny flik eller fönster >>Flexible, Efficient, and Scalable Autonomous Exploration and Volumetric Mapping
2022 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Flexibel, effektiv och skalbar autonom utforskning och volymetrisk kartläggning
Abstract [en]

Autonomous mobile robots have in recent years started to enter households in the form of autonomous vacuum cleaners and lawn mowers. The applicability of more advanced and general purpose service robots is almost endless. That is, robots that can perform a variety of tasks, instead of being specialized for a single task. To this end, there are some fundamental challenges that need to be addressed. One of the key capabilities of an autonomous mobile robot is navigation. To achieve truly autonomous navigation, the robot has to be able to localize itself, plan, execute, and update a path that takes it to its desired location, and to generate a map on-the-fly of its environment if the environment is unknown or changing. This thesis focuses on the latter two of these challenges, planning and mapping. More specifically, we investigate in the scenario where the robot lacks any prior knowledge of the environment, referred to as autonomous exploration.

One of the most important insights throughout the thesis is that these challenges should not be examined in isolation. As these are generally not the main tasks, a truly autonomous mobile robot shall perform; instead, they are necessities to fulfill higher-level tasks. Therefore, aspects such as flexibility and scalability should be regarded higher than simply accomplishing the task as efficiently or quickly as possible.

Another insight, specifically regarding mapping, comes from surveying both consumers, the ones using the maps, and producers, the ones creating the maps. Ideally, a mapping framework should be optimized towards both, as it is pointless creating maps that cannot be used as well as assuming data can be extracted from a map in ways that are unfeasible. However, in existing works this is rare. 

A third insight, specifically regarding exploration, comes from breaking down typical assumptions and simplifications that are generally applied to make the problem tractable. We show that the problem is often formulated such that it leads to unnecessary greedy behavior, where the expected information gain has too high priority. Not only do we show that with a more general formulation we can achieve better results, but also that the information gain is not important from a long-term perspective.

In this thesis, we present a mapping framework as well as an exploration framework. With these frameworks, we show that flexibility and scalability do not necessarily have to come at the cost of efficiency. We contribute the mapping framework, UFOMap, and the exploration framework, UFOExplorer, open-source to the community such that others can further develop and build upon them.

Abstract [sv]

Autonoma mobila robotar har på senare år börjat komma in i hushållen i form av autonoma dammsugare och gräsklippare. Tillämpbarheten av mer avancerade och generella servicerobotar är nästan oändlig. Det vill säga robotar som kan utföra en mängd olika uppgifter, istället för att vara specialiserade för en enskild uppgift. För detta ändamål finns det några grundläggande utmaningar som måste lösas. En av nyckelfunktionerna hos en autonom mobil robot är navigering. För att uppnå verklig autonom navigering måste roboten kunna lokalisera sig själv, planera, utföra och uppdatera en plan som tar den till dess önskade plats, och generera en karta i farten över sin miljö om miljön är okänd, eller förändras. Denna avhandling fokuserar på de två senare av dessa utmaningar, planering och kartläggning. Närmare bestämt undersöker vi scenariot där roboten saknar förkunskaper om miljön, så kallad autonom utforskning.

En av de viktigaste insikterna genom hela avhandlingen är att dessa utmaningar inte bör granskas isolerat. Eftersom dessa i allmänhet inte är huvuduppgifterna en verklig autonom mobil robot ska utföra; istället är de nödvändigheter för att utföra uppgifter på högre nivå. Därför bör aspekter som flexibilitet och skalbarhet ses som högre än att bara utföra uppgiften så effektivt eller snabbt som möjligt.

En annan insikt, specifikt när det gäller kartläggning, kommer från kart-läggning av både konsumenter, de som använder kartorna, och producenter, de som skapar kartorna. Helst bör ett kartramverk optimeras för båda, eftersom det är meningslöst att skapa kartor som inte kan användas samt att anta att data kan extraheras från en karta på sätt som är omöjliga. I befintligt arbete är detta sällsynt.

En tredje insikt, specifikt angående utforskning, kommer från att bryta ner typiska antaganden och förenklingar som generellt tillämpas för att göra problemet löst. Vi visar att problemet ofta formaliseras så att det leder till onödigt girigt beteende, där den förväntade informationsvinsten har för hög prioritet. Vi visar inte bara att vi med en mer generell formalisering kan nå bättre resultat utan också att informationsvinsten inte är viktig ur ett långsiktigt perspektiv.

I denna avhandling presenterar vi ett kartläggningsramverk samt ett utforskningsramverk. Med dessa ramverk visar vi att flexibilitet och skalbarhet inte nödvändigtvis behöver ske på bekostnad av effektivitet. Vi bidrar med kartläggningsramverket, UFOMap, och utforkninsramverket, UFOExplorer, öppen källkod till samhället så att andra kan utveckla och bygga vidare på dem.

Ort, förlag, år, upplaga, sidor
Stockholm: KTH Royal Institute of Technology, 2022. s. 39
Serie
TRITA-EECS-AVL ; 2022:14
Nyckelord
Exploration, Mapping, Autonomous Exploration, Volumetric Mapping
Nationell ämneskategori
Robotik och automation
Identifikatorer
urn:nbn:se:kth:diva-309219 (URN)978-91-8040-144-9 (ISBN)
Disputation
2022-03-18, U1, Brinellvägen 26, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF), FACTVetenskapsrådet, Xplore3D
Anmärkning

QC 20220224

Tillgänglig från: 2022-02-24 Skapad: 2022-02-23 Senast uppdaterad: 2025-02-09Bibliografiskt granskad
Khoche, A., Wozniak, M. K., Duberg, D. & Jensfelt, P. (2022). Semantic 3D Grid Maps for Autonomous Driving. In: 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC): . Paper presented at IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), OCT 08-12, 2022, Macau, PEOPLES R CHINA (pp. 2681-2688). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Semantic 3D Grid Maps for Autonomous Driving
2022 (Engelska)Ingår i: 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), Institute of Electrical and Electronics Engineers (IEEE) , 2022, s. 2681-2688Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Maps play a key role in rapidly developing area of autonomous driving. We survey the literature for different map representations and find that while the world is threedimensional, it is common to rely on 2D map representations in order to meet real-time constraints. We believe that high levels of situation awareness require a 3D representation as well as the inclusion of semantic information. We demonstrate that our recently presented hierarchical 3D grid mapping framework UFOMap meets the real-time constraints. Furthermore, we show how it can be used to efficiently support more complex functions such as calculating the occluded parts of space and accumulating the output from a semantic segmentation network.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2022
Serie
IEEE International Conference on Intelligent Transportation Systems-ITSC, ISSN 2153-0009
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-326399 (URN)10.1109/ITSC55140.2022.9922537 (DOI)000934720602102 ()2-s2.0-85141822719 (Scopus ID)
Konferens
IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), OCT 08-12, 2022, Macau, PEOPLES R CHINA
Anmärkning

QC 20230502

Tillgänglig från: 2023-05-02 Skapad: 2023-05-02 Senast uppdaterad: 2023-05-02Bibliografiskt granskad
Duberg, D. & Jensfelt, P. (2022). UFOExplorer: Fast and Scalable Sampling-Based Exploration With a Graph-Based Planning Structure. IEEE Robotics and Automation Letters, 7(2), 2487-2494
Öppna denna publikation i ny flik eller fönster >>UFOExplorer: Fast and Scalable Sampling-Based Exploration With a Graph-Based Planning Structure
2022 (Engelska)Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 7, nr 2, s. 2487-2494Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We propose UFOExplorer, a fast and efficient exploration method that scales well with the environment size. An exploration paradigm driven by map updates is proposed to enable the robot to react quicker and to always move towards the optimal exploration goal. For each map update, a dense graph-based planning structure is updated and extended. The planning structure is then used to generate a path using a simple exploration heuristic, which guides the robot towards the closest exploration goal. The proposed method scales well with the environment size, as the planning cost is amortized when updating and extending the planning structure. The simple exploration heuristic performs on par with the most recent state-of-the-art methods in smaller environments and outperforms them in larger environments, both in terms of exploration speed and computational efficiency. The implementation of the method is made available for future research.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2022
Nyckelord
Notion and path planning, mapping
Nationell ämneskategori
Robotik och automation Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-308802 (URN)10.1109/LRA.2022.3142923 (DOI)000748371300017 ()2-s2.0-85123278372 (Scopus ID)
Anmärkning

QC 20220214

Tillgänglig från: 2022-02-14 Skapad: 2022-02-14 Senast uppdaterad: 2025-02-05Bibliografiskt granskad
Bonnevie, R., Duberg, D. & Jensfelt, P. (2021). Long-Term Exploration in Unknown Dynamic Environments. In: 2021 7Th International Conference On Automation, Robotics And Applications (Icara 2021): . Paper presented at International Conference on Automation, Robotics and Applications, ICARA 2021, Virtual, Prague, 4 February 2021 - 6 February 2021 (pp. 32-37). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Long-Term Exploration in Unknown Dynamic Environments
2021 (Engelska)Ingår i: 2021 7Th International Conference On Automation, Robotics And Applications (Icara 2021), Institute of Electrical and Electronics Engineers (IEEE) , 2021, s. 32-37Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The task of exploration does not end when the robot has covered the entire environment. The world is dynamic and to model this property and to keep the map up to date the robot needs to re-explore. In this work, we present an approach to long-term exploration that builds on prior work on dynamic mapping, volumetric representations of space, and exploration planning. The main contribution of our work is a novel formulation of the information gain function that controls the exploration so that it trades off revisiting highly dynamic areas where changes are very likely with covering the rest of the environment to ensure both coverage and up-to-date estimates of the dynamics. We provide experimental validation of our approach in three different simulated environments.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2021
Nyckelord
Autonomous exploration, Dynamic environment, Long-term mapping
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-299705 (URN)10.1109/ICARA51699.2021.9376367 (DOI)000668755500007 ()2-s2.0-85103740460 (Scopus ID)
Konferens
International Conference on Automation, Robotics and Applications, ICARA 2021, Virtual, Prague, 4 February 2021 - 6 February 2021
Anmärkning

QC 20210818

Tillgänglig från: 2021-08-18 Skapad: 2021-08-18 Senast uppdaterad: 2022-06-25Bibliografiskt granskad
Ericson, L., Duberg, D. & Jensfelt, P. (2021). Understanding greediness in map-predictive exploration planning. In: 2021 10th European Conference on Mobile Robots, ECMR 2021 - Proceedings: . Paper presented at 10th European Conference on Mobile Robots, ECMR 2021, 31 August 2021 through 3 September 2021, Virtual, Bonn, Germany. Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Understanding greediness in map-predictive exploration planning
2021 (Engelska)Ingår i: 2021 10th European Conference on Mobile Robots, ECMR 2021 - Proceedings, Institute of Electrical and Electronics Engineers (IEEE) , 2021Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

In map-predictive exploration planning, the aim is to exploit a-priori map information to improve planning for exploration in otherwise unknown environments. The use of map predictions in exploration planning leads to exacerbated greediness, as map predictions allow the planner to defer exploring parts of the environment that have low value, e.g., unfinished corners. This behavior is undesirable, as it leaves holes in the explored space by design. To this end, we propose a scoring function based on inverse covisibility that rewards visiting these low-value parts, resulting in a more cohesive exploration process, and preventing excessive greediness in a map-predictive setting. We examine the behavior of a non-greedy map-predictive planner in a bare-bones simulator, and answer two principal questions: a) how far beyond explored space should a map predictor predict to aid exploration, i.e., is more better; and b) does shortest-path search as the basis for planning, a popular choice, cause greediness. Finally, we show that by thresholding covisibility, the user can trade-off greediness for improved early exploration performance.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2021
Nyckelord
Economic and social effects, Covisibility, Exploration process, Performance, Predictive exploration, Scoring functions, Shortest path searches, Thresholding, Trade off, Unknown environments, Forecasting
Nationell ämneskategori
Robotik och automation
Identifikatorer
urn:nbn:se:kth:diva-313229 (URN)10.1109/ECMR50962.2021.9568793 (DOI)000810510000010 ()2-s2.0-85118981841 (Scopus ID)
Konferens
10th European Conference on Mobile Robots, ECMR 2021, 31 August 2021 through 3 September 2021, Virtual, Bonn, Germany
Anmärkning

Part of proceedings: ISBN 978-166541213-1

QC 20220602

Tillgänglig från: 2022-06-02 Skapad: 2022-06-02 Senast uppdaterad: 2025-05-06Bibliografiskt granskad
Duberg, D. & Jensfelt, P. (2020). UFOMap: An Efficient Probabilistic 3D Mapping Framework That Embraces the Unknown. IEEE Robotics and Automation Letters, 5(4), 6411-6418
Öppna denna publikation i ny flik eller fönster >>UFOMap: An Efficient Probabilistic 3D Mapping Framework That Embraces the Unknown
2020 (Engelska)Ingår i: IEEE Robotics and Automation Letters, E-ISSN 2377-3766, Vol. 5, nr 4, s. 6411-6418Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

3D models are an essential part of many robotic applications. In applications where the environment is unknown a-priori, or where only a part of the environment is known, it is important that the 3D model can handle the unknown space efficiently. Path planning, exploration, and reconstruction all fall into this category. In this letter we present an extension to OctoMap which we call UFOMap. UFOMap uses an explicit representation of all three states in the map, i.e., unknown, free, and occupied. This gives, surprisingly, a more memory efficient representation. We provide methods that allow for significantly faster insertions into the octree. Furthermore, UFOMap supports fast queries based on occupancy state using so called indicators and based on location by exploiting the octree structure and bounding volumes. This enables real-time colored octree mapping at high resolution (below 1 cm). UFOMap is contributed as a C++ library that can be used standalone but is also integrated into ROS.

Ort, förlag, år, upplaga, sidor
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2020
Nyckelord
Mapping, RGB-D perception, motion and path planning
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:kth:diva-280194 (URN)10.1109/LRA.2020.3013861 (DOI)000560644500008 ()2-s2.0-85089875450 (Scopus ID)
Anmärkning

QC 20201118

Tillgänglig från: 2020-11-18 Skapad: 2020-11-18 Senast uppdaterad: 2024-01-17Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-4815-9689

Sök vidare i DiVA

Visa alla publikationer