kth.sePublikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Sterner, Mikael
Publikationer (10 of 39) Visa alla publikationer
Smith, A. D., Niklaus, F., Paussa, A., Schröder, S., Fischer, A. C., Sterner, M., . . . Lemme, M. C. (2016). Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors. ACS Nano, 10(11), 9879-9886
Öppna denna publikation i ny flik eller fönster >>Piezoresistive Properties of Suspended Graphene Membranes under Uniaxial and Biaxial Strain in Nanoelectromechanical Pressure Sensors
Visa övriga...
2016 (Engelska)Ingår i: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 10, nr 11, s. 9879-9886Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Graphene membranes act as highly sensitive transducers in nanoelectromechanical devices due to their ultimate thinness. Previously, the piezoresistive effect has been experimentally verified in graphene using uniaxial strain in graphene. Here, we report experimental and theoretical data on the uni- and biaxial piezoresistive properties of suspended graphene membranes applied to piezoresistive pressure sensors. A detailed model that utilizes a linearized Boltzman transport equation describes accurately the charge-carrier density and mobility in strained graphene and, hence, the gauge factor. The gauge factor is found to be practically independent of the doping concentration and crystallographic orientation of the graphene films. These investigations provide deeper insight into the piezoresistive behavior of graphene membranes.

Ort, förlag, år, upplaga, sidor
American Chemical Society (ACS), 2016
Nyckelord
graphene, nanoelectromechanical system, NEMS, MEMS, strain gauge, transducer, piezoresistive transduction, gauge factor, pressure transducer, (suspended) graphene membranes, uniaxial and biaxial strain
Nationell ämneskategori
Annan teknik
Identifikatorer
urn:nbn:se:kth:diva-198888 (URN)10.1021/acsnano.6b02533 (DOI)000388913100016 ()27797484 (PubMedID)2-s2.0-84997235109 (Scopus ID)
Forskningsfinansiär
EU, Europeiska forskningsrådet, 307311 277879Vetenskapsrådet, E0616001 D0575901 2015-05112
Anmärkning

QC 20170109

Tillgänglig från: 2017-01-09 Skapad: 2016-12-22 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Shah, U., Sterner, M. & Oberhammer, J. (2014). Analysis of Linearity Deterioration in Multidevice RF MEMS Circuits. IEEE Transactions on Electron Devices, 61(5), 1529-1535
Öppna denna publikation i ny flik eller fönster >>Analysis of Linearity Deterioration in Multidevice RF MEMS Circuits
2014 (Engelska)Ingår i: IEEE Transactions on Electron Devices, ISSN 0018-9383, E-ISSN 1557-9646, Vol. 61, nr 5, s. 1529-1535Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents for the first time an RF nonlinearity analysis of complex multidevice radio frequency microelectromechanical system (RF MEMS) circuits. The IIP3 of different RF MEMS multidevice tunable-circuit concepts including digital MEMS varactor banks, MEMS switched capacitor banks, distributed MEMS phase shifters, and MEMS tunable filters, is investigated. Closed-form analytical formulas for the IIP3 of MEMS multidevice circuit concepts are derived. A nonlinearity analysis, based on measured device parameters, is presented for exemplary circuits of the different concepts using a multidevice nonlinear electromechanical circuit model implemented in Agilent Advanced Design System. The results of the nonlinear electromechanical model are also compared with the calculated IIP3 using derived equations for the digital MEMS varactor bank and MEMS switched capacitor bank. The degradation of the overall circuit linearity with increasing number of device stages is also investigated, with the conclusion that the overall circuit IIP3 is reduced by half when doubling the number of stages, if proper design precautions are not taken. Design rules are presented so that the mechanical parameters and thus the IIP3 of the individual device stages can be optimized to achieve a higher overall IIP3 for the whole circuit. In addition, the nonlinearity of a novel MEMS tunable capacitor concept introduced by the authors, based on an MEMS actuator with discrete tuning steps, is discussed and the IIP3 is calculated using derived analytical formulas.

Nyckelord
Intermodulation distortion (IMD), RF MEMS, tunable capacitor, two-tone IIP3 measurement, MEMS varactor
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-143621 (URN)10.1109/TED.2014.2312215 (DOI)000337753300046 ()2-s2.0-84899994242 (Scopus ID)
Anmärkning

QC 20140813

Tillgänglig från: 2014-03-25 Skapad: 2014-03-25 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Smith, A. D., Niklaus, F., Vaziri, S., Fischer, A. C., Sterner, M., Forsberg, F., . . . Lemme, M. C. (2014). Biaxial strain in suspended graphene membranes for piezoresistive sensing. In: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS): . Paper presented at 27th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2014; San Francisco, CA; United States; 26 January 2014 through 30 January 2014 (pp. 1055-1058). IEEE
Öppna denna publikation i ny flik eller fönster >>Biaxial strain in suspended graphene membranes for piezoresistive sensing
Visa övriga...
2014 (Engelska)Ingår i: 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE , 2014, s. 1055-1058Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Pressure sensors based on suspended graphene membranes have shown extraordinary sensitivity for uniaxial strains, which originates from graphene's unique electrical and mechanical properties and thinness [1]. This work compares through both theory and experiment the effect of cavity shape and size on the sensitivity of piezoresistive pressure sensors based on suspended graphene membranes. Further, the paper analyzes the effect of both biaxial and uniaxial strain on the membranes. Previous studies examined uniaxial strain through the fabrication of long, rectangular cavities. The present work uses circular cavities of varying sizes in order to obtain data from biaxially strained graphene membranes.

Ort, förlag, år, upplaga, sidor
IEEE, 2014
Serie
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), ISSN 1084-6999
Nyckelord
Membranes, MEMS, Pressure sensors, Strain, Biaxial strains, Electrical and mechanical properties, Piezoresistive pressure sensors, Piezoresistive sensing, Rectangular cavity, Strained graphene, Suspended graphene, Uni-axial strains, Graphene
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-145475 (URN)10.1109/MEMSYS.2014.6765826 (DOI)000352217500269 ()2-s2.0-84898971449 (Scopus ID)978-1-4799-3509-3 (ISBN)
Konferens
27th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2014; San Francisco, CA; United States; 26 January 2014 through 30 January 2014
Anmärkning

QC 20140521

Tillgänglig från: 2014-05-21 Skapad: 2014-05-21 Senast uppdaterad: 2024-03-18
Shah, U., Sterner, M. & Oberhammer, J. (2013). Analysis of linearity degradation in multi-stage RF MEMS circuits. In: Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on: . Paper presented at IEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013; Taipei; Taiwan; 20 January 2013 through 24 January 2013 (pp. 749-752). IEEE conference proceedings
Öppna denna publikation i ny flik eller fönster >>Analysis of linearity degradation in multi-stage RF MEMS circuits
2013 (Engelska)Ingår i: Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on, IEEE conference proceedings, 2013, s. 749-752Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper reports for the first time on RF nonlinearity analysis of complex multi-device RF MEMS circuits. The nonlinearity analysis is done for the two most commonly-used RF MEMS tuneable-circuit concepts, i.e. digital MEMS varactor banks and MEMS switched capacitor banks. In addition, the nonlinearity of a novel MEMS tuneable capacitor concept by the authors, based on a MEMS actuator with discrete tuning steps, is discussed. This paper presents closed-form analytical formulas for the IIP3 (nonlinearity) of the three MEMS multi-device circuit concepts, and an analysis of the nonlinearity based on measured device parameters (capacitance, gap), of the different concepts. Finally, this paper also investigates the effect of scaling of the circuit complexity, i.e. the degradation of the overall circuit linearity depending on the number of stages/bits of the MEMS-tuning circuit.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2013
Serie
Proceedings IEEE Micro Electro Mechanical Systems, ISSN 1084-6999
Nyckelord
RF MEMS, Intermodulation distortion, micromachining, tunable capacitor
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-117865 (URN)10.1109/MEMSYS.2013.6474351 (DOI)000320549200190 ()2-s2.0-84875412350 (Scopus ID)978-1-4673-5655-8 (ISBN)
Konferens
IEEE 26th International Conference on Micro Electro Mechanical Systems, MEMS 2013; Taipei; Taiwan; 20 January 2013 through 24 January 2013
Anmärkning

QC 20130212

Tillgänglig från: 2013-03-22 Skapad: 2013-02-05 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Smith, A., Niklaus, F., Paussa, A., Vaziri, S., Fischer, A. C., Sterner, M., . . . Lemme, M. (2013). Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes. Nano letters (Print), 13(7), 3237-3242
Öppna denna publikation i ny flik eller fönster >>Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes
Visa övriga...
2013 (Engelska)Ingår i: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 13, nr 7, s. 3237-3242Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Monolayer graphene exhibits exceptional electronic and mechanical properties, making it a very promising material for nanoelectromechanical devices. Here, we conclusively demonstrate the piezoresistive effect in graphene in a nanoelectromechanical membrane configuration that provides direct electrical readout of pressure to strain transduction. This makes it highly relevant for an important class of nanoelectromechanical system (NEMS) transducers. This demonstration is consistent with our simulations and previously reported gauge factors and simulation values. The membrane in our experiment acts as a strain gauge independent of crystallographic orientation and allows for aggressive size scalability. When compared with conventional pressure sensors, the sensors have orders of magnitude higher sensitivity per unit area.

Nyckelord
Graphene, pressure sensor, piezoresistive effect, nanoelectromechanical systems (NEMS), MEMS
Nationell ämneskategori
Nanoteknik
Identifikatorer
urn:nbn:se:kth:diva-124556 (URN)10.1021/nl401352k (DOI)000321884300038 ()23786215 (PubMedID)2-s2.0-84880160546 (Scopus ID)
Forskningsfinansiär
EU, Europeiska forskningsrådet, 228229 277879 307311
Anmärkning

QC 20130711

Tillgänglig från: 2013-07-10 Skapad: 2013-07-10 Senast uppdaterad: 2024-03-18Bibliografiskt granskad
Shah, U., Sterner, M. & Oberhammer, J. (2013). High-Directivity MEMS-Tunable Directional Couplers for 10–18-GHz Broadband Applications. IEEE transactions on microwave theory and techniques, 61(9), 3236-3246
Öppna denna publikation i ny flik eller fönster >>High-Directivity MEMS-Tunable Directional Couplers for 10–18-GHz Broadband Applications
2013 (Engelska)Ingår i: IEEE transactions on microwave theory and techniques, ISSN 0018-9480, E-ISSN 1557-9670, Vol. 61, nr 9, s. 3236-3246Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper reports on two novel concepts of areaefficient, ultra-wideband, MEMS-reconfigurable coupled line directional couplers, whose coupling is tuned by mechanically changing the geometry of 3-D micromachined coupled transmission lines, utilizing integrated MEMS electrostatic actuators. Concept 1 is based on symmetrically changing the geometry of the ground coupling of each signal line, while Concept 2 is simultaneously varying both the ground coupling and the coupling between the two signal lines. This enables uniform and well predictable performance over a very large frequency range, in particular a constant coupling ratio while maintaining an excellent impedance match, along with high isolation and a very high directivity. For an implemented micromachined prototype 3-to-6 dB coupler based on Concept 1, the measured isolation is better than 16 dB, and the return loss and directivity are better than 10 dB over the entire bandwidth from 10 to 18 GHz. Concept 2 presents an even more significant improvement. For an implemented 10-to-20 dB prototype based on Concept 2, the measured isolation is better than 40 dB and the return loss is better than 15 dB over the entire bandwidth from 10 to 18 GHz for both states. The directivities for both states are better than 22 dB and 40 dB, respectively, over the whole frequency range. The measured data fits the simulation very well, except for higher through-port losses of the prototype devices. All devices have been implemented in an SOI RF MEMS fabrication process. Measured actuation voltages of the different actuators are lower than 35 V. Reliability tests were conducted up to 500 million cycles without device degradation.

Ort, förlag, år, upplaga, sidor
IEEE Press, 2013
Nyckelord
Coupled-line coupler, RF microelectromechanical systems (MEMS), micromachined transmission line, micromachining, tunable directional coupler
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-129308 (URN)10.1109/TMTT.2013.2273763 (DOI)000325655900009 ()2-s2.0-84883741451 (Scopus ID)
Anmärkning

QC 20131022

Tillgänglig från: 2013-09-25 Skapad: 2013-09-25 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Baghchehsaraei, Z., Sterner, M., Åberg, J. & Oberhammer, J. (2013). Integration of microwave MEMS devices into rectangular waveguide with conductive polymer interposers. Journal of Micromechanics and Microengineering, 23(12), 125020
Öppna denna publikation i ny flik eller fönster >>Integration of microwave MEMS devices into rectangular waveguide with conductive polymer interposers
2013 (Engelska)Ingår i: Journal of Micromechanics and Microengineering, ISSN 0960-1317, E-ISSN 1361-6439, Vol. 23, nr 12, s. 125020-Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper investigates a novel method of integrating microwave microelectromechanical systems (MEMS) chips into millimeter-wave rectangular waveguides. The fundamental difficulties of merging micromachined with macromachined microwave components, in particular, surface topography, roughness, mechanical stress points and air gaps interrupting the surface currents, are overcome by a double-side adhesive conductive polymer interposer. This interposer provides a uniform electrical contact, stable mechanical connection and a compliant stress distribution interlayer between the MEMS chip and a waveguide frame. The integration method is successfully implemented both for prototype devices of MEMS-tuneable reflective metamaterial surfaces and for MEMS reconfigurable transmissive surfaces. The measured insertion loss of the novel conductive polymer interface is less than 0.4 dB in the E-band (60-90 GHz), as compared to a conventional assembly with an air gap of 2.5 dB loss. Moreover, both dc biasing lines and mechanical feedthroughs to actuators outside the waveguide are demonstrated in this paper, which is achieved by structuring the polymer sheet xurographically. Finite element method simulations were carried out for analyzing the influence of different parameters on the radio frequency performance.

Nyckelord
waveguide integration, conductive polymer interposer, microwave MEMS, RF MEMS
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-104311 (URN)10.1088/0960-1317/23/12/125020 (DOI)000327437000020 ()2-s2.0-84889026540 (Scopus ID)
Forskningsfinansiär
EU, FP7, Sjunde ramprogrammet, 224197
Anmärkning

QC 20140113.  Updated from accepted to published.

Tillgänglig från: 2012-10-31 Skapad: 2012-10-31 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Oberhammer, J., Shah, U., Baghchehsaraei, Z., Töpfer, F., Sterner, M., Somjit, N. & Chekurov, N. (2013). Monocrystalline‐Silicon Microwave MEMS. In: Proceedings of PIERS 2013 in Stockholm, August 12-15, 2013: . Paper presented at PIERS Progress In Electromagnetics Research Symposium, Stockholm, Sweden, 12-15 August 2013 (pp. 1933-1941). Cambridge, MA: The Electromagnetics Academy
Öppna denna publikation i ny flik eller fönster >>Monocrystalline‐Silicon Microwave MEMS
Visa övriga...
2013 (Engelska)Ingår i: Proceedings of PIERS 2013 in Stockholm, August 12-15, 2013, Cambridge, MA: The Electromagnetics Academy , 2013, s. 1933-1941Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper gives an overview of recent achievements in microwave micro‐electromechanical systems (microwave MEMS) at KTH Royal Institute of Technology, Stockholm, Sweden. The first topic is a micromachined W‐band phase shifter based on a micromachined dielectric block which is vertically moved by integrated MEMS actuators to achieve a tuning of the propagation constant of a micromachined transmission line. The second topic is W‐band MEMStuneable microwave high‐impedance metamaterial surfaces conceptualized for local tuning of the electromagnetic resonance properties of surface waves on a high‐impedance surface. The third topic covers 3‐dimensional micromachined coplanar transmission lines with integrated MEMS actuators which move the sidewalls of these transmission lines. Multi‐stable switches, tuneable capacitors, tuneable couplers, and tuneable filters have been implemented and characterized for 1‐40 GHz frequencies. As a forth topic, micromachined waveguide switches are presented. Finally, silicon‐micromachined near‐field and far‐field sensor and antenna interfaces are shown, including a micromachined planar lens antenna and a tapered dielectric rod measurement probe for medical applications.

Ort, förlag, år, upplaga, sidor
Cambridge, MA: The Electromagnetics Academy, 2013
Serie
PIERS PROCEEDINGS ; 1559-9450
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-131763 (URN)000361384200409 ()978-1-934142-26-4 (ISBN)
Konferens
PIERS Progress In Electromagnetics Research Symposium, Stockholm, Sweden, 12-15 August 2013
Anmärkning

QC 20131217

Tillgänglig från: 2013-10-17 Skapad: 2013-10-17 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Shah, U., Sterner, M. & Oberhammer, J. (2013). Multi-Position RF MEMS Tunable Capacitors Using Laterally Moving Sidewalls of 3-D Micromachined Transmission Lines. IEEE transactions on microwave theory and techniques, 61(6), 2340-2352
Öppna denna publikation i ny flik eller fönster >>Multi-Position RF MEMS Tunable Capacitors Using Laterally Moving Sidewalls of 3-D Micromachined Transmission Lines
2013 (Engelska)Ingår i: IEEE transactions on microwave theory and techniques, ISSN 0018-9480, E-ISSN 1557-9670, Vol. 61, nr 6, s. 2340-2352Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents a novel concept of RF microelectromechanical systems (MEMS) tunable capacitors based on the lateral displacement of the sidewalls of a 3-D micromachined coplanar transmission line. The tuning of a single device is achieved in multiple discrete and well-defined tuning steps by integrated multi-stage MEMS electrostatic actuators that are embedded inside the ground layer of the transmission line. Three different design concepts, including devices with up to seven discrete tuning steps up to a tuning range of 58.6 to 144.5 fF, (C-max/C-min = 2.46) have been fabricated and characterized. The highest Q factor, measured by a weakly coupled transmission-line resonator, was determined as 88 at 40 GHz and was achieved for a device concept where the mechanical suspension elements were completely de-coupled from the RF signal path. These devices have demonstrated high self-actuation robustness with self-actuation pull-in occurring at 41.5 and 47.8 dBm for mechanical spring constants of 5.8 and 27.7 N/m, respectively. Nonlinearity measurements revealed that the third-order intermodulation intercept point (IIP3) for all discrete device states is above the measurement-setup limit of 68.5 dBm for our 2.5-GHz IIP3 setup, with a dual-tone separation of 12 MHz. Based on capacitance/gap/spring measurements, the IIP3 was calculated for all states to be between 71-91 dBm. For a mechanical spring design of 5.8 N/m, the actuation and release voltages were characterized as 30.7 and 21.15 V, respectively, and the pull-in time for the actuator bouncing to drop below 8% of the gap was measured to be 140 mu s. The mechanical resonance frequencies were measured to be 5.3 and 17.2 kHz for spring constant designs of 5.8 and 27.7 N/m, respectively. Reliability characterization exceeded 1 billion cycles, even in an uncontrolled atmospheric environment, with no degradation in the pull-in/pull-out hysteresis behavior being observed over these cycling tests.

Ort, förlag, år, upplaga, sidor
IEEE Press, 2013
Nyckelord
RF MEMS, switched capacitor, tunable capacitor, micromachined transmission line, micromachining
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-104307 (URN)10.1109/TMTT.2013.2259499 (DOI)000319979300009 ()2-s2.0-84878800249 (Scopus ID)
Anmärkning

QC 20130710

Tillgänglig från: 2012-10-31 Skapad: 2012-10-31 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Shah, U., Sterner, M. & Oberhammer, J. (2013). Nonlinearity Determination and Linearity Degradation in RF MEMS Multi-Device Circuits. In: : . Paper presented at 14th International Symposium on RF MEMS and RF Microsystems (MEMSWAVE 2013); Potsdam, Germany, July 1-3, 2013.
Öppna denna publikation i ny flik eller fönster >>Nonlinearity Determination and Linearity Degradation in RF MEMS Multi-Device Circuits
2013 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper reports for the first time on RF nonlinearity analysis of complex multi-device RF MEMS circuits. The nonlinearity analysis is done for the two most commonly-used RF MEMS tuneable-circuit concepts, i.e. digital MEMS varactor banks and MEMS switched capacitor banks. In addition, the nonlinearity of a novel MEMS tuneable capacitor concept by the authors, based on a MEMS actuator with discrete tuning steps, is discussed. This paper presents closed-form analytical formulas for the IIP3 (nonlinearity) of the three MEMS multi-device circuit concepts, and an analysis of the nonlinearity based on measured device parameters (capacitance, gap), of the different concepts. Finally, this paper also investigates the effect of scaling of the circuit complexity, i.e. the degradation of the overall circuit linearity depending on the number of stages/bits of the MEMS-tuning circuit.

Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
urn:nbn:se:kth:diva-123164 (URN)
Konferens
14th International Symposium on RF MEMS and RF Microsystems (MEMSWAVE 2013); Potsdam, Germany, July 1-3, 2013
Anmärkning

QC 20140523

Tillgänglig från: 2013-06-03 Skapad: 2013-06-03 Senast uppdaterad: 2024-03-15Bibliografiskt granskad
Organisationer

Sök vidare i DiVA

Visa alla publikationer