kth.sePublications KTH
Change search
Link to record
Permanent link

Direct link
Publications (2 of 2) Show all publications
Kotol, D., Woessmann, J., Hober, A., Alvez, M. B., Tran Minh, K. H., Pontén, F., . . . Edfors, F. (2023). Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma. Cancers, 15(19), Article ID 4764.
Open this publication in new window or tab >>Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma
Show others...
2023 (English)In: Cancers, ISSN 2072-6694, Vol. 15, no 19, article id 4764Article in journal (Refereed) Published
Abstract [en]

Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.

Place, publisher, year, edition, pages
MDPI AG, 2023
Keywords
DIA, multiple myeloma, precision medicine, targeted proteomics
National Category
Cancer and Oncology Hematology
Identifiers
urn:nbn:se:kth:diva-338876 (URN)10.3390/cancers15194764 (DOI)001086709700001 ()37835457 (PubMedID)2-s2.0-85173822408 (Scopus ID)
Note

QC 20231115

Available from: 2023-10-31 Created: 2023-10-31 Last updated: 2023-12-07Bibliographically approved
Woessmann, J., Petrosius, V., Üresin, N., Kotol, D., Aragon-Fernandez, P., Hober, A., . . . Schoof, E. M. (2023). Assessing the Role of Trypsin in Quantitative Plasma and Single-Cell Proteomics toward Clinical Application. Analytical Chemistry, 95(36), 13649-13658
Open this publication in new window or tab >>Assessing the Role of Trypsin in Quantitative Plasma and Single-Cell Proteomics toward Clinical Application
Show others...
2023 (English)In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 95, no 36, p. 13649-13658Article in journal (Refereed) Published
Abstract [en]

Mass spectrometry-based bottom-up proteomics is rapidly evolving and routinely applied in large-scale biomedical studies. Proteases are a central component of every bottom-up proteomics experiment, digesting proteins into peptides. Trypsin has been the most widely applied protease in proteomics due to its characteristics. With ever-larger cohort sizes and possible future clinical application of mass spectrometry-based proteomics, the technical impact of trypsin becomes increasingly relevant. To assess possible biases introduced by trypsin digestion, we evaluated the impact of eight commercially available trypsins in a variety of bottom-up proteomics experiments and across a range of protease concentrations and storage times. To investigate the universal impact of these technical attributes, we included bulk HeLa cell lysate, human plasma, and single HEK293 cells, which were analyzed over a range of selected reaction monitoring (SRM), data-independent acquisition (DIA), and data-dependent acquisition (DDA) instrument methods on three LC-MS instruments. The quantification methods employed encompassed both label-free approaches and absolute quantification utilizing spike-in heavy-labeled recombinant protein fragment standards. Based on this extensive data set, we report variations between commercial trypsins, their source, and their concentration. Furthermore, we provide suggestions on the handling of trypsin in large-scale studies.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2023
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:kth:diva-349635 (URN)10.1021/acs.analchem.3c02543 (DOI)001121982900001 ()2-s2.0-85171594219 (Scopus ID)
Note

QC 20240703

Available from: 2024-07-03 Created: 2024-07-03 Last updated: 2025-02-20Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-2283-7237

Search in DiVA

Show all publications