kth.sePublications
Change search
Link to record
Permanent link

Direct link
Alternative names
Publications (10 of 483) Show all publications
Huang, P.-H., Lai, L.-L., Iordanidis, T. N., Watanabe, S., Stemme, G., Roxhed, N., . . . Niklaus, F. (2025). 3D Printed Mems. In: Proceedings 2025 IEEE 38th International Conference on Micro Electro Mechanical Systems (MEMS): . Paper presented at 2025 IEEE 38th International Conference on Micro Electro Mechanical Systems (MEMS), Kaohsiung, Taiwan, 19-23 January 2025. Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>3D Printed Mems
Show others...
2025 (English)In: Proceedings 2025 IEEE 38th International Conference on Micro Electro Mechanical Systems (MEMS), Institute of Electrical and Electronics Engineers (IEEE) , 2025Conference paper, Published paper (Refereed)
Abstract [en]

3D printing at the macroscale has evolved from making plastic prototypes to the production of high-performance functional metal parts for industries such as medical and aerospace. By contrast, MEMS devices today are produced in large quantities using semiconductor manufacturing processes. However, the semiconductor manufacturing paradigm is not cost-effective for producing customized MEMS devices in small to medium volumes (tens to thousands of units per year), and related applications are difficult to address efficiently. 3D printing of functional MEMS devices could play an important role in filling this gap. Here, we discuss recent advances in 3D- printed functional MEMS, addressing the challenges of economical customization at smaller production volumes.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2025
National Category
Nanotechnology
Identifiers
urn:nbn:se:kth:diva-361578 (URN)10.1109/MEMS61431.2025.10917711 (DOI)001461007300016 ()2-s2.0-105001661373 (Scopus ID)
Conference
2025 IEEE 38th International Conference on Micro Electro Mechanical Systems (MEMS), Kaohsiung, Taiwan, 19-23 January 2025
Note

Part of ISBN 979-8-3315-0889-0

QC 20250325

Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-10-03Bibliographically approved
Huang, P. H., Lai, L.-L., Stemme, G., Niklaus, F. & Gylfason, K. (2025). 3D-Printed Silica Glass Fiber-Tip Sensor for Aggressive Organic Solvent Measurements. In: 2025 International Conference on Optical MEMS and Nanophotonics, OMN 2025: . Paper presented at 2025 International Conference on Optical MEMS and Nanophotonics, OMN 2025, Chiangmai, Thailand, July 13-18, 2025. Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>3D-Printed Silica Glass Fiber-Tip Sensor for Aggressive Organic Solvent Measurements
Show others...
2025 (English)In: 2025 International Conference on Optical MEMS and Nanophotonics, OMN 2025, Institute of Electrical and Electronics Engineers (IEEE) , 2025Conference paper, Published paper (Refereed)
Abstract [en]

We present a fabrication process for 3D printing of glass sensors directly onto the end of optical fiber tips. Compared to conventional polymeric 3D-printed fiber-tip sensors, our method provides far superior chemical resistance and mechanical durability. We demonstrate the utility of our sensors by reliably measuring the refractive index of aggressive organic solvents - environments where polymer-based sensors are prone to swelling and deformation. This breakthrough opens new avenues for deploying robust glass sensors in demanding industrial settings, such as chemical processing plants and oil refineries, where precise and durable refractive index measurements are essential.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2025
Keywords
3D printing, direct laser writing, fiber-tip, refractive index sensor, silica glass
National Category
Other Physics Topics
Identifiers
urn:nbn:se:kth:diva-370768 (URN)10.1109/OMN65869.2025.11125997 (DOI)2-s2.0-105015665240 (Scopus ID)
Conference
2025 International Conference on Optical MEMS and Nanophotonics, OMN 2025, Chiangmai, Thailand, July 13-18, 2025
Note

Part of ISBN 9798331599225

QC 20251001

Available from: 2025-10-01 Created: 2025-10-01 Last updated: 2025-10-01Bibliographically approved
Liu, X., Dubois, V. J., Raja, S. N., Cheng, S., Yeh, Y., Juang, Y., . . . Niklaus, F. (2025). Integrated Nanopore Device for Electronic Single Molecule Trapping in Femtolitre Cavities Fabricated by Self-Aligned Etching. In: 2025 IEEE 38th International Conference on Micro Electro Mechanical Systems, MEMS 2025: . Paper presented at 38th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2025, Kaohsiung, Taiwan, January 19-23, 2025 (pp. 1229-1232). Institute of Electrical and Electronics Engineers (IEEE)
Open this publication in new window or tab >>Integrated Nanopore Device for Electronic Single Molecule Trapping in Femtolitre Cavities Fabricated by Self-Aligned Etching
Show others...
2025 (English)In: 2025 IEEE 38th International Conference on Micro Electro Mechanical Systems, MEMS 2025, Institute of Electrical and Electronics Engineers (IEEE) , 2025, p. 1229-1232Conference paper, Published paper (Refereed)
Abstract [en]

Single-molecule trapping and analysis are critical in understanding biomolecular processes at an unprecedented resolution. Traditional nanopore systems often face limitations in scalability and integration with electronic components, which complicates their use in compact, high-density applications. Addressing these challenges, we introduce a novel on-chip nanopore array system integrated with a silver (Ag) electrode and self-aligned femtolitersized cavities, representing an innovative approach for electronic single-molecule trapping. Our design utilizes a wafer-scale fabrication process with a buried electrode architecture, enabling the scalable production of high-density nanopore arrays without the need for through-wafer etching. Successful DNA translocation measurements demonstrate the system's potential as a versatile platform for single-molecule trapping and reaction studies.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2025
Keywords
entropic trapping, femtoliter cavity, integrated electrode, Nanopore, single molecule
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Condensed Matter Physics
Identifiers
urn:nbn:se:kth:diva-362213 (URN)10.1109/MEMS61431.2025.10917579 (DOI)2-s2.0-105001666086 (Scopus ID)
Conference
38th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2025, Kaohsiung, Taiwan, January 19-23, 2025
Note

Part of ISBN 9798331508890

QC 20250414

Available from: 2025-04-09 Created: 2025-04-09 Last updated: 2025-04-14Bibliographically approved
Leva, C. V., Jain, S., Kistermann, K., Sakurai, K., Stemme, G., Herland, A., . . . Raja, S. N. (2025). Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown. ACS Applied Materials and Interfaces, 17(5), 8737-8748
Open this publication in new window or tab >>Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown
Show others...
2025 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 17, no 5, p. 8737-8748Article in journal (Refereed) Published
Abstract [en]

Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution. However, these approaches require elaborate and expensive cleanroom-based lithography processes or involve intricate procedures using custom-made equipment. Here, we present a rapid cleanroom-free approach using single pulse femtosecond laser exposures of 50 nm thick silicon nitride membranes in air to localize the site of nanopore formation by subsequent controlled breakdown to an area less than 500 nm in diameter on the membrane. The precise positioning of the nanopores on the membrane could be produced both using laser exposure powers which caused significant thinning of the silicon nitride membrane (up to 60% of the original thickness locally), as well as at laser powers which caused no visible modification of the membrane at all. We show that nanopores made using our approach can work as single-molecule sensors by performing dsDNA translocation experiments. Due to the applicability of femtosecond laser processing to a wide range of membrane materials, we expect our approach to simplify the fabrication of localized nanopores by controlled breakdown in a variety of thin film material stacks, thereby enabling more sophisticated nanopore sensors.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2025
Keywords
solid state nanopore, femtosecond-laser irradiation, laser processing, controlled breakdown, dielectric breakdown, DNA translocation, nanopore
National Category
Nanotechnology for/in Life Science and Medicine
Identifiers
urn:nbn:se:kth:diva-359693 (URN)10.1021/acsami.5c00255 (DOI)001408096000001 ()39870574 (PubMedID)2-s2.0-85216500112 (Scopus ID)
Funder
Swedish Research Council, 2018-06169
Note

QC 20250210

Available from: 2025-02-07 Created: 2025-02-07 Last updated: 2025-05-27Bibliographically approved
Iordanidis, T. N., Spyrou, A., Roudi, S., Swartling, F. J., Stemme, G., EL Andaloussi, S. & Roxhed, N. (2025). Rolling Ultrasharp Microneedle Spheres Enable Topical Delivery of Biologics Through the Skin. Advanced Healthcare Materials
Open this publication in new window or tab >>Rolling Ultrasharp Microneedle Spheres Enable Topical Delivery of Biologics Through the Skin
Show others...
2025 (English)In: Advanced Healthcare Materials, ISSN 2192-2640, E-ISSN 2192-2659Article in journal (Refereed) Published
Abstract [en]

Topical drug delivery offers a localized and patient-friendly method for treating skin diseases and subcutaneous lesions. However, the outermost skin barrier - the stratum corneum (SC) - hinders the delivery of large molecules such as biopharmaceuticals. This study introduces rolling ultraminiaturized microneedle spheres (RUMS) as a novel solution that enables topical delivery of messenger RNA (mRNA) without the need for chemical enhancers or techniques like electroporation, iontophoresis, or microneedle patches. RUMS are engineered spherical microparticles that gently roll over the skin, creating numerous micropores while minimizing tissue damage. In ex vivo porcine skin experiments, 25 RUMS generated approximately 4,500 pores within 10 seconds, achieving penetration depths of around 20 micrometers and increasing skin permeability by up to 100-fold. In vivo studies in mice showed that combining RUMS with topical doxycycline led to a ~50% tumor size reduction within two weeks and full recovery by four weeks. In contrast, doxycycline or RUMS alone offered limited therapeutic benefit. Rapid skin healing was observed due to the small pore size. Additionally, topical delivery of lipid nanoparticle-encapsulated luciferase (luc)-encoding mRNA was successfully demonstrated in mice. Overall, use of RUMS presents a simple, painless, and potentially well-tolerated technique for enabling transdermal topical delivery of biologics.

Place, publisher, year, edition, pages
Wiley, 2025
Keywords
biopharmaceuticals, drug delivery, microneedle, rolling particles, transdermal
National Category
Dermatology and Venereal Diseases
Identifiers
urn:nbn:se:kth:diva-369058 (URN)10.1002/adhm.202500990 (DOI)001533143700001 ()40692395 (PubMedID)2-s2.0-105011279746 (Scopus ID)
Note

QC 20250916

Available from: 2025-09-16 Created: 2025-09-16 Last updated: 2025-11-06Bibliographically approved
De Ferrari, F., Raja, S. N., Herland, A., Niklaus, F. & Stemme, G. (2025). Sub-5 nm Silicon Nanopore Sensors: Scalable Fabrication via Self-Limiting Metal-Assisted Chemical Etching. ACS Applied Materials and Interfaces, 17(6), 9047-9058
Open this publication in new window or tab >>Sub-5 nm Silicon Nanopore Sensors: Scalable Fabrication via Self-Limiting Metal-Assisted Chemical Etching
Show others...
2025 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 17, no 6, p. 9047-9058Article in journal (Refereed) Published
Abstract [en]

Solid-state nanopores offer unique possibilities for biomolecule sensing; however, scalable production of sub-5 nm pores with precise diameter control remains a manufacturing challenge. In this work, we developed a scalable method to fabricate sub-5 nm nanopores in silicon (Si) nanomembranes through metal-assisted chemical etching (MACE) using gold nanoparticles. Notably, we present a previously unreported self-limiting effect that enables sub-5 nm nanopore formation from both 10 and 40 nm nanoparticles in the 12 nm thick monocrystalline device layer of a silicon-on-insulator substrate. This effect reveals distinctive etching dynamics in ultrathin Si nanomembranes, enabling precise control over nanopore dimensions. The resulting nanopore sensor, suspended over self-aligned spheroidal oxide undercuts with diameters of just a few hundred nanometers, exhibited low electrical noise and high stability due to encapsulation within dielectric layers. In DNA translocation experiments, our nanopore platform could distinguish folded and unfolded DNA conformations and maintained stable baseline conductance for up to 6 h, demonstrating both sensitivity and robustness. Our scalable nanopore fabrication method is compatible with wafer-level and batch processing and holds promise for advancing biomolecular sensing and analysis.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2025
Keywords
nanopores sensing nanofluidic devices MACE DNA translocation
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-359677 (URN)10.1021/acsami.4c19750 (DOI)001409913500001 ()39882662 (PubMedID)2-s2.0-85216612370 (Scopus ID)
Funder
Swedish Research Council, 2018-06169Swedish Research Council, 2021-00171Knut and Alice Wallenberg Foundation, KAW 2003.0198
Note

QC 20250214

Available from: 2025-02-07 Created: 2025-02-07 Last updated: 2025-05-27Bibliographically approved
Spyrou, A., Sandell, M., Grankvist, R., Iordanidis, T. N., Stemme, G., Holmin, S. & Roxhed, N. (2025). Ultraminiaturized neural implanted constructs display minimal immunologic response. MATERIALS TODAY BIO, 32, Article ID 101819.
Open this publication in new window or tab >>Ultraminiaturized neural implanted constructs display minimal immunologic response
Show others...
2025 (English)In: MATERIALS TODAY BIO, ISSN 2590-0064, Vol. 32, article id 101819Article in journal (Refereed) Published
Abstract [en]

Biocompatibility of medical implants poses a significant challenge in medical technology. Neural implants, integral to curative therapies, initially exhibit efficacy but can lead to unforeseen long-term side effects. The material composition and dimensions of implants are critical factors influencing their biocompatibility within brain tissue. Typically, neural implants are identified as foreign entities by the patient's immune system, triggering persistent inflammation and severe adverse effects. In this study, we investigate the host response in mouse brain tissue of implanted microscale constructs measuring 0.1 x 0.1 x 1 mm3 fabricated from common microfabrication materials. Magnetic Resonance Imaging (MRI) analysis reveals rapid recovery of brain parenchyma at 6 week interval post-implantation, accompanied by negligible or mild adverse immune responses during the experimental period. Histological assessments and cell marker stainings targeting astroglia, macrophages, and microglia demonstrate minimal impacts of the microconstructs on mouse brain tissue throughout the 24-week implantation period. Our findings indicate that untethered microimplants of this scale may have potential applications in medical technology and medical treatment for various brain diseases. In summary, this study supports the development of potentially biocompatible brain microimplants that could be useful for the long-term management of chronic brain disorders.

Place, publisher, year, edition, pages
Elsevier BV, 2025
Keywords
Biocompatibility, Microimplants, Fabrication, Brain, Constructs
National Category
Neurosciences
Identifiers
urn:nbn:se:kth:diva-364053 (URN)10.1016/j.mtbio.2025.101819 (DOI)001487034500001 ()40391020 (PubMedID)2-s2.0-105003918976 (Scopus ID)
Note

QC 20250602

Available from: 2025-06-02 Created: 2025-06-02 Last updated: 2025-11-06Bibliographically approved
Lai, L.-L., Huang, P.-H., Stemme, G., Niklaus, F. & Gylfason, K. B. (2024). 3D Printing of Glass Micro-Optics with Subwavelength Features on Optical Fiber Tips. ACS Nano, 18(16), 10788-10797
Open this publication in new window or tab >>3D Printing of Glass Micro-Optics with Subwavelength Features on Optical Fiber Tips
Show others...
2024 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 18, no 16, p. 10788-10797Article in journal (Refereed) Published
Abstract [en]

Integration of functional materials and structures on the tips of optical fibers has enabled various applications in micro-optics, such as sensing, imaging, and optical trapping. Direct laser writing is a 3D printing technology that holds promise for fabricating advanced micro-optical structures on fiber tips. To date, material selection has been limited to organic polymer-based photoresists because existing methods for 3D direct laser writing of inorganic materials involve high-temperature processing that is not compatible with optical fibers. However, organic polymers do not feature stability and transparency comparable to those of inorganic glasses. Herein, we demonstrate 3D direct laser writing of inorganic glass with a subwavelength resolution on optical fiber tips. We show two distinct printing modes that enable the printing of solid silica glass structures (“Uniform Mode”) and self-organized subwavelength gratings (“Nanograting Mode”), respectively. We illustrate the utility of our approach by printing two functional devices: (1) a refractive index sensor that can measure the indices of binary mixtures of acetone and methanol at near-infrared wavelengths and (2) a compact polarization beam splitter for polarization control and beam steering in an all-in-fiber system. By combining the superior material properties of glass with the plug-and-play nature of optical fibers, this approach enables promising applications in fields such as fiber sensing, optical microelectromechanical systems (MEMS), and quantum photonics.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
National Category
Nano Technology
Identifiers
urn:nbn:se:kth:diva-345881 (URN)10.1021/acsnano.3c11030 (DOI)001194459400001 ()38551815 (PubMedID)2-s2.0-85189353165 (Scopus ID)
Funder
Swedish Foundation for Strategic Research, SSF GMT14-0071Swedish Foundation for Strategic Research, SSF STP19-0014
Note

QC 20240425

Available from: 2024-04-24 Created: 2024-04-24 Last updated: 2025-10-25Bibliographically approved
Huang, P.-H., Chen, S., Hartwig, O., Marschner, D. E., Duesberg, G. S., Stemme, G., . . . Niklaus, F. (2024). 3D Printing of Hierarchical Structures Made of Inorganic Silicon-Rich Glass Featuring Self-Forming Nanogratings. ACS Nano, 18(43), 29748-29759
Open this publication in new window or tab >>3D Printing of Hierarchical Structures Made of Inorganic Silicon-Rich Glass Featuring Self-Forming Nanogratings
Show others...
2024 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 18, no 43, p. 29748-29759Article in journal (Refereed) Published
Abstract [en]

Hierarchical structures are abundant in nature, such as in the superhydrophobic surfaces of lotus leaves and the structural coloration of butterfly wings. They consist of ordered features across multiple size scales, and their advantageous properties have attracted enormous interest in wide-ranging fields including energy storage, nanofluidics, and nanophotonics. Femtosecond lasers, which are capable of inducing various material modifications, have shown promise for manufacturing tailored hierarchical structures. However, existing methods, such as multiphoton lithography and three-dimensional (3D) printing using nanoparticle-filled inks, typically involve polymers and suffer from high process complexity. Here, we demonstrate the 3D printing of hierarchical structures in inorganic silicon-rich glass featuring self-forming nanogratings. This approach takes advantage of our finding that femtosecond laser pulses can induce simultaneous multiphoton cross-linking and self-formation of nanogratings in hydrogen silsesquioxane. The 3D printing process combines the 3D patterning capability of multiphoton lithography and the efficient generation of periodic structures by the self-formation of nanogratings. We 3D-printed micro-supercapacitors with large surface areas and a high areal capacitance of 1 mF/cm<sup>2</sup> at an ultrahigh scan rate of 50 V/s, thereby demonstrating the utility of our 3D printing approach for device applications in emerging fields such as energy storage.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2024
Keywords
additive manufacturing, cross-linking, femtosecond laser direct writing, glass, hydrogen silsesquioxane (HSQ), laser-induced periodic structure, micro-supercapacitor
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-366356 (URN)10.1021/acsnano.4c09339 (DOI)001335838300001 ()39383314 (PubMedID)2-s2.0-85206478719 (Scopus ID)
Note

QC 20250707

Available from: 2025-07-07 Created: 2025-07-07 Last updated: 2025-10-08Bibliographically approved
Enrico, A., Buchmann, S., De Ferrari, F., Lin, Y., Wang, Y., Yue, W., . . . Zeglio, E. (2024). Cleanroom‐Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors. Advanced Science, 11(27)
Open this publication in new window or tab >>Cleanroom‐Free Direct Laser Micropatterning of Polymers for Organic Electrochemical Transistors in Logic Circuits and Glucose Biosensors
Show others...
2024 (English)In: Advanced Science, E-ISSN 2198-3844, Vol. 11, no 27Article in journal (Refereed) Published
Abstract [en]

Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.

Place, publisher, year, edition, pages
Wiley, 2024
Keywords
conjugated polymer, direct writing, organic electrochemical transistor, poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate, ultrashort pulsed lasers
National Category
Organic Chemistry Other Electrical Engineering, Electronic Engineering, Information Engineering Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-342521 (URN)10.1002/advs.202307042 (DOI)001142422700001 ()38225700 (PubMedID)2-s2.0-85182492139 (Scopus ID)
Funder
Swedish Research Council, 2018‐03483Swedish Research Council, 2022‐04060Swedish Research Council, 2022‐02855Knut and Alice Wallenberg Foundation, 2015.0178Knut and Alice Wallenberg Foundation, 2020.0206Knut and Alice Wallenberg Foundation, 2021.0312Swedish Research Council, 2022-00374
Note

QC 20240123

Available from: 2024-01-23 Created: 2024-01-23 Last updated: 2025-02-18Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-9552-4234

Search in DiVA

Show all publications