Open this publication in new window or tab >>2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
The building sector is responsible for about a fifth to a third of global greenhouse gas (GHG) emissions. Therefore, a successful mitigation of GHG emissions over the entire life cycle of buildings is particularly important to achieve climate targets such as the Paris Agreement. This requires measures at multiple levels and from multiple actors, including broad roadmaps for the building sector, policies and regulations, certification and green procurement criteria, and new practices among property owners, architects, developers and manufacturers. Such initiatives are sometimes supported by the introduction of tools and methods to quantitatively assess environmental performance. Life cycle assessment (LCA) is one such tool, used in certification and increasingly in procurement and regulation. To reliably steer towards lower environmental impacts, environmental performance assessment tools need to be precise, accurate and well-adapted to the decision contexts in which they will be used. While a tool like LCA can provide valuable decision support, some methodological issues remain unresolved, and its effect in real decision situations remains understudied.
This thesis aims to support decisions and initiatives to mitigate environmental impacts in the building sector, with a particular focus on fulfilling ambitious climate targets. The thesis addresses two facets of this overarching issue. First, it investigates challenges to the implementation of relevant sustainable practices, at various levels and in various decision contexts. Second, the thesis considers to what extent environmental performance assessments could steer towards low environmental impacts (and in particular low global warming potential (GWP)).
The thesis is based on a combination of quantitative and qualitative approaches. At a strategic level, a quantitative model of buildings’ GWP linked to four backcasting future scenarios is used to spotlight issues for the fulfilment of ambitious climate targets. This helps challenging existing paradigms and images of the future about how buildings are constructed and operated. At a more operational level, multiple qualitative studies explore barriers to specific practices to mitigate environmental impacts, and the roles played by environmental performance assessments. An interview- and workshop study explores important factors for the adoption of space sharing, as a way of optimizing the use of indoor space. A survey- and interview study highlights challenges to the use of requirements by Swedish municipalities to promote low-GWP construction. A third interview study shows how various artefacts mediate work with sustainable design in housing projects. Finally, the thesis addresses more directly the accuracy of environmental performance assessments, and investigates how choices of data and method related to maintenance and replacement affect LCA results, exemplified for façade materials.
The modelling of buildings’ GWP in backcasting scenarios helps challenge current paradigms by drawing attention to some less-discussed issues, such as reducing embodied emissions (including by avoiding new construction) as well as the demand for indoor space. Space sharing can help optimizing the use of indoor space, but several factors limit its adoption. It requires different practices among building users and property managers, including different business models and performance metrics considering occupancy. Ambiguities in national legislation and municipal plans regarding the status of shared and multifunctional buildings also hinder space sharing initiatives (e.g. unclear rights and responsibilities of tenants and property owners, conflicting requirements for fire safety or ventilation, etc.). Similarly, the thesis highlights important regulatory ambiguities regarding to what extent municipalities can set requirements to promote low-GWP construction. Environmental performance requirements in construction also entail barriers related to limited in-house skills, access to data, time and resources. Using such requirements would first require bridging skill and data gaps. Similar barriers are highlighted regarding the use of LCA in public housing projects. In such projects, artefacts such as national regulations, local development plans and internal requirements of the housing organization enforce a certain level of work with sustainable design while limiting the range of design options. Other artefacts simplify the design work and provide standardized default options. In such cases, design choices that strongly influence environmental performance are taken upstream of the project, when these criteria, requirements and default options are developed.
The thesis highlights ways in which quantitative assessments of environmental performance could directly influence building design and management, e.g. through the introduction of environmental performance criteria in regulation and procurement. Besides challenges related to skill, data, time and resources mentioned above, the thesis draws attention to the variability of LCA results due to choices of method and data sources. In the particular case of maintenance and replacement processes, the choice of reference study period (RSP) influences the relative significance of these processes, and longer RSPs favor more durable products. Discrepancies exist between different sources for service life data, indicating a need for more reliable data. The use of a round-up or annualized number of replacements makes little difference in average, but can lead to different outcomes in specific cases. This shows a need to carefully harmonize methodological choices as LCA becomes used more and more broadly in procurement and building regulation.
Furthermore, the thesis also draws attention to more complex effects of environmental performance assessments in housing projects. Widespread certification systems can become de-facto definitions of sustainability for actors, influencing design even in projects that are not certified. Environmental performance assessments can hide or reveal certain aspects of sustainability. Widely used assessment tools can act as “black boxes”, where criteria for what constitutes a sustainable building are hidden and no longer contested. This process helps operationalize sustainability in building projects. However, it can lead to some important aspects being disregarded. For instance, conventional energy performance metrics are often normalized for floor area, ignoring occupancy and space efficiency. On the other hand, quantitative assessments can also highlight important aspects of the multifaceted issue of sustainability. The thesis exemplifies this by using a quantitative model of buildings’ GWP to draw attention to key mitigation strategies, and by reviewing energy metrics highlighting occupancy and space efficiency.
Abstract [sv]
Byggsektorn står för mellan en femtedel och en tredjedel av globala växthusgasutsläppen. En framgångsrik minskning av växthusgasutsläppen under byggnaders hela livscykel är därför väsentlig för att uppnå klimatmålen, såsom Parisavtalet. Detta kräver åtgärder på olika nivåer och av olika aktörer, inklusive övergripande färdplaner för byggsektorn, policies och regelverk, kriterier för certifiering och grön upphandling, samt ny praxis bland fastighetsägare, byggherrar, arkitekter och byggmaterialtillverkare. Ibland stöds sådana initiativ av verktyg och metoder för kvantitativ miljöbedömning. Livscykelanalys (LCA) är ett sådant verktyg som används för certifiering, och i ökande grad i upphandling och regelverk. För att styra mot lägre miljöpåverkan på ett robust sätt måste miljöbedömningsverktyg ha god precision och vara väl anpassade till de beslutssammanhang där de ska användas. LCA kan ge värdefullt beslutsstöd, men vissa metodfrågor återstår fortfarande, och det saknas kunskap om hur användning av LCA kan få effekt i verkliga beslutssituationer.
Denna avhandling syftar till att stödja beslut och initiativ för att minska miljöpåverkan inom byggsektorn, med särskilt fokus på ambitiösa klimatmål. Avhandlingen undersöker två aspekter av denna övergripande fråga. För det första utreder den utmaningar i relation till genomförandet av relevanta hållbarhetsinitiativ inom byggsektorn, på olika nivåer och i olika beslutssammanhang. För det andra utforskar avhandlingen i vilken utsträckning kvantitativa miljöbedömningar kan styra mot lägre miljöpåverkan (och särskilt klimatpåverkan).
Avhandlingen bygger på en kombination av kvantitativa och kvalitativa studier. En kvantitativ modell av byggnaders växthusgasutsläpp nyttjas på en strategisk nivå i fyra framtidsscenarier med backcastingmetodik, för att belysa viktiga aspekter för att nå ambitiösa klimatmål. Modellen bidrar med att ifrågasätta befintliga paradigm och framtidsbilder om hur byggnader byggs, förvaltas och används. Ett antal kvalitativa studier undersöker hinder för några specifika hållbarhetsinitiativ på en mer operativ nivå, samt vilken roll miljöbedömningar kan ha för dessa. I en intervju- och workshopstudie undersöks viktiga faktorer för delning av byggnadsytor, för att optimera deras användning. En enkät- och intervjustudie understryker utmaningar för svenska kommuners användning av miljökrav för att främja byggande med låg klimatpåverkan. En tredje intervjustudie visar hur olika artefakter medierar arbetet med hållbar design i bostadsprojekt. Slutligen undersöker avhandlingen precisionen i miljöprestandabedömningar och visar hur osäkerheter och metodval relaterade till beräkning av underhåll och utbyte påverkar LCA- resultat, exemplifierat för fasadmaterial.
Modellering av byggnaders växthusgasutsläpp i backcasting-scenarierna bidrar till att ifrågasätta befintliga paradigm genom att peka på ett antal mindre diskuterade klimatstrategier, såsom behovet att minska inbyggd klimatpåverkan (bland annat genom att undvika nybyggnation) samt minska efterfrågan på byggnadsytor. Delning av ytor kan bidra till att optimera användningen av byggnadsytor inomhus, men flera faktorer begränsar sådana initiativ. Det kräver ändrade rutiner bland byggnadsanvändare och fastighetsförvaltare, såsom nya affärsmodeller och prestandamått som bättre kan synliggöra hur byggnader används. Otydligheter i regelverk och kommunala planer när det gäller hur de hanterar delade och multifunktionella byggnader hindrar också delningsinitiativ (till exempel otydlighet kring rättigheter och ansvar för hyresgäster och fastighetsägare, motsägelsefulla krav på brandsäkerhet eller ventilation, och så vidare). På samma sätt finns det regulatoriska oklarheter kring i vilken utsträckning kommuner, som myndigheter, får ställa krav för att främja låg klimatpåverkan. Miljöprestandakrav på byggprojekt medför också hinder i form av att de kräver mer intern kompetens, tillgång till data, tid och resurser. För att kunna ställa klimatkrav för nybyggnation, krävs att kommuner först löser kompetens- och dataluckor. Liknande hinder visades när det gäller användningen av LCA i offentliga bostadsprojekt. I sådana projekt upprätthåller artefakter, såsom regelverk, detaljplaner och interna krav hos beställarorganisationen, en viss nivå av hållbarhetsarbete samtidigt som de också kan begränsa designmöjligheter. Andra artefakter förenklar designarbetet och skapar standardiserade basalternativ. I sådana fall tas, för miljöprestandan, kritiska designbeslut utanför projektet, det vill säga när dessa kriterier, krav och standardalternativ utvecklas.
Avhandlingen visar också hur kvantitativa miljöbedömningar kan påverka byggprojekt och fastighetsförvaltning, till exempel genom införande av miljöprestandakriterier i regelverk och upphandling. Förutom utmaningar relaterade till kunskap, data, tid och resurser som nämns ovan, understryker avhandlingen variationer i LCA-resultat på grund av val av metod och datakällor. När det gäller klimatpåverkan från underhåll och utbyte av byggnadsmaterial påverkar valet av referensstudieperiod (RSP) den relativa betydelsen av dessa processer, där en längre RSP gynnar produkter med längre livslängder. Livslängsdata skiljer sig mellan olika källor, vilket tyder på ett behov av mer tillförlitliga data. Användningen av ett avrundat eller årligt antal operationer gör dessutom liten skillnad i genomsnitt, men kan leda till tydligt olika resultat i specifika fall. Detta visar på att det finns ett behov av att harmonisera och förfina detaljer i metodval nu när LCA i allt högre grad börjar komma in i upphandling och regelverk för byggnader.
Vidare uppmärksammar avhandlingen också mer komplexa effekter av miljöprestandabedömningar i bostadsprojekt. Populära certifieringssystem kan bli de facto definitioner av hållbarhet för vissa aktörer, och påverkar designval även i projekt som inte är certifierade. Dessutom kan miljöbedömningssystem dölja eller synliggöra vissa aspekter av hållbarhet. Allmänt använda verktyg kan fungera som "svarta lådor", där kriterier för vad det betyder för en byggnad att vara hållbar döljs och inte längre ifrågasätts. Denna process bidrar till att operationalisera hållbarhet i byggprojekt, men kan leda till att viktiga aspekter också ignoreras. Till exempel är konventionella energiprestandamått vanligen normaliserade för golvarea, vilket ignorerar hur ytan används och hur yteffektiv byggnaden är. Å andra sidan kan kvantitativa bedömningar också belysa viktiga aspekter av den mångfacetterade hållbarhetsfrågan. Avhandlingen exemplifierar detta genom kvantitativ modellering av backcasting-scenarier för att synliggöra viktiga klimatstrategier, och genom att visa på energimått som tar hänsyn till användning och yteffektivitet.
Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2021. p. 102
Series
TRITA-ABE-DLT ; 2142
Keywords
building, sustainability, environmental performance assessment, life cycle assessment, decision making, byggnad, hållbarhet, miljöprestandabedömning, livscykelanalys, beslutsstöd
National Category
Environmental Management
Research subject
Planning and Decision Analysis, Strategies for sustainable development
Identifiers
urn:nbn:se:kth:diva-304018 (URN)978-91-8040-031-2 (ISBN)
Public defence
2021-11-30, F3, Lindstedtsvägen 26, KTH Campus, Kontakt tove.malmqvist@abe.kth.se Zoom: https://kth-se.zoom.us/j/63782880770?pwd=Vk5aaHZRcEViaWtjbEhPUEVLY2ZWZz09, Stockholm, 13:30 (English)
Opponent
Supervisors
Note
QC 211104
2021-11-042021-10-252025-02-10Bibliographically approved