kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (10 of 12) Show all publications
Sundberg, C., Bergentoft, F., Persson, M. & Danielsson, M. (2025). Methods and systems for coincidence detection in x-ray detectors. Japanese patent 7625687.
Open this publication in new window or tab >>Methods and systems for coincidence detection in x-ray detectors
2025 (English)Patent (Other (popular science, discussion, etc.))
Abstract [ja]

【課題】改良されたX線検出器システムを提供する。【解決手段】X線源からのX線放射を検出するフォトンカウンティングX線検出器(20)、及び前記X線検出器における光子相互作用の時間に関する情報と、前記X線検出器に対する前記X線源の位置に関する情報とに基づいて、前記X線検出器に入射する放射線に関する情報を決定する及び/又は取得する同時計数検出システム(60)を含むX線検出器システム(5)を提供する。このようなX線検出器システムを含むX線イメージングシステム、並びに対応する同時計数検出システム及び対応する方法も提供する。【選択図】図2B

National Category
Medical Imaging
Identifiers
urn:nbn:se:kth:diva-367951 (URN)
Patent
Japanese patent 7625687 (2025-02-03)
Note

Japanese patent  JP7625687B2

QC 20250820

Available from: 2025-07-31 Created: 2025-07-31 Last updated: 2025-08-20Bibliographically approved
Sundberg, C., Persson, M., Wikner, J. J. & Danielsson, M. (2023). Timing resolution in double-sided silicon photon-counting computed tomography detectors. Journal of Medical Imaging, 10(02), Article ID 023502.
Open this publication in new window or tab >>Timing resolution in double-sided silicon photon-counting computed tomography detectors
2023 (English)In: Journal of Medical Imaging, ISSN 2329-4302, E-ISSN 2329-4310, Vol. 10, no 02, article id 023502Article in journal (Refereed) Published
Abstract [en]

Purpose: Our purpose is to investigate the timing resolution in edge-on silicon strip detectors for photon-counting spectral computed tomography. Today, the timing for detection of individual x-rays is not measured, but in the future, timing information can be valuable to accurately reconstruct the interactions caused by each primary photon. Approach: We assume a pixel size of 12 x 500 mu m(2) and a detector with double-sided readout with low-noise CMOS electronics for pulse processing for every pixel on each side. Due to the electrode width in relation to the wafer thickness, the induced current signals are largely dominated by charge movement close to the collecting electrodes. By employing double-sided readout electrodes, at least two signals are generated for each interaction. By comparing the timing of the induced current pulses, the time of the interaction can be determined and used to identify interactions that originate from the same incident photon. Using a Monte Carlo simulation of photon interactions in combination with a charge transport model, we evaluate the performance of estimating the time of the interaction for different interaction positions. Results: Our simulations indicate that a time resolution of 1 ns can be achieved with a noise level of 0.5 keV. In a detector with no electronic noise, the corresponding time resolution is similar to 0.1 ns. Conclusions: Time resolution in edge-on silicon strip CT detectors can potentially be used to increase the signal-to-noise-ratio and energy resolution by helping in identifying Compton scattered photons in the detector.

Place, publisher, year, edition, pages
SPIE-Intl Soc Optical Eng, 2023
Keywords
timing resolution, silicon detector, computed tomography, photon-counting, coincidence detection
National Category
Medical Imaging
Identifiers
urn:nbn:se:kth:diva-329446 (URN)10.1117/1.JMI.10.2.023502 (DOI)000985149800002 ()36969328 (PubMedID)2-s2.0-85159588023 (Scopus ID)
Note

QC 20230621

Available from: 2023-06-21 Created: 2023-06-21 Last updated: 2025-02-09Bibliographically approved
Sundberg, C. (2022). An Event-Reconstructing Silicon Detector for 1 µm Resolution Spectral Computed Tomography. (Doctoral dissertation). Stockholm: KTH Royal Institute of Technology
Open this publication in new window or tab >>An Event-Reconstructing Silicon Detector for 1 µm Resolution Spectral Computed Tomography
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Computed tomography (CT) is a medical imaging modality in which cross-sectional images of the human body are created using x-rays. Commercial CT scanners utilize energy-integrating detectors to measure the x-ray attenuation. However, photon-counting detectors with energy-discriminating abilities have started to emerge. In a photon-counting spectral detector, photons can be counted individually and the photon energy is registered using energy thresholds. In contrast to energy-integrating detectors, which integrate all photon energies during a measurement interval, this allows for an improved detector performance including an increased signal-to-noise ratio, higher spatial resolution, and improved spectral imaging.

One of the current photon-counting systems that is being evaluated for clinical use is the deep silicon detector developed by the Physics of Medical Imaging group at KTH. This Thesis is based on the deep silicon detector concept and focuses on methods to improve the performance of a silicon photon-counting detector for CT and how these might facilitate event reconstruction. In the first part of the Thesis, three different methods to improve the detector performance are presented. One of the methods describes how information about the charge cloud distribution can be used to improve the spatial resolution. With the proposed method, subpixel resolution can be achieved, corresponding to a spatial resolution equivalent of approximately 1 μm in the most accurate dimension. A silicon detector with double-sided readout electrodes is further proposed which enables estimating the time of the photon interaction with high accuracy. The resulting time resolution of approximately 1 ns can potentially be utilized to identify interactions that originate from the same incident photon. With double-sided readout, it is also possible to dramatically improve the spatial resolution in the direction across the silicon wafer thickness. It is also proposed to utilize an adjustable shaping time in the readout electronics to decrease the electronic noise level. This can be used to improve the detector performance with respect to dose efficiency and power consumption.

In the second part of the Thesis, a method to perform event reconstruction is presented. The method consists of a framework of likelihood functions that are used to estimate the incident photon energy and primary interaction position. Based on this framework, the ability of estimating the photon energy and primary interaction position is evaluated for a case in which the incident photons are assumed to be well-separated in time.

In summary, there is potential in increasing the performance with respect to the spatial, temporal, and energy resolution in silicon photon-counting detectors for CT and the results suggest that event reconstruction might be possible in the future.

Abstract [sv]

Datortomografi (CT) är en bildgivande medicinsk teknik som används för att skapa tvärsnittsbilder av människokroppen med hjälp av röntgenstrålning. Kommersiella CT-scannrar använder energiintegrerande detektorer för att mäta röntgenstrålarnas attenuering. Fotonräknande detektorer med spektral upplösningsförmåga har dock börjat introduceras. I en sådan detektor kan fotonerna räknas individuellt och fotonenergin registreras med hjälp av energitrösklar. Jämfört med energiintegrerande detektorer, där energin från de infallande fotonerna integreras under ett visst mätintervall, möjliggör detta en förbättrad detektorprestanda såsom ökat signal-brusförhållande, högre spatiell upplösning samt förbättrad spektral avbildning.

Ett av de fotonräknande system som just nu utvärderas kliniskt är deep silicon-detektorn som utvecklats av gruppen inom Medicinsk Bildfysik vid KTH. Denna avhandling utgår ifrån konceptet för deep silicon-detektorer och studerar metoder för att förbättra prestandan hos en fotonräknande kiseldetektor för CT samt hur dessa skulle kunna möjliggöra rekonstruktion av fotoninteraktioner. I avhandlingens första del presenteras tre olika metoder för att förbättra detektorns prestanda. En av metoderna beskriver hur information om laddningsmolnets fördelning i detektorn kan användas för att förbättra den spatiella upplösningen. Med den föreslagna metoden kan subpixelupplösning uppnås, motsvarande en spatiell upplösning på ungefär 1 μm i den dimension där upplösningen är som högst. För att kunna uppskatta tiden för varje fotoninteraktion med hög noggrannhet föreslås en kiseldetektor med dubbelsidiga avläsningselektroder. Denna konfiguration resulterar i en tidsupplösning på åtminstone 1 ns som potentiellt kan användas för att identifiera interaktioner som härrör från samma infallande foton. Med dubbelsidig avläsning är det också möjligt att förbättra den spatiella upplösningen i riktningen tvärsöver kiselskivans tjocklek. För att påverka den elektroniska brusnivån föreslås användandet av en justerbar pulsbredd i detektorns avläsningselektronik. Detta kan förbättra detektorns doseffektivitet samt energiförbrukning.

I avhandlingens andra del presenteras en metod för att utföra rekonstruktion av fotoninteraktioner. Metoden består av ett ramverk av sannolikhetsfunktioner som används för att estimera den infallande fotonenergin och den primära interaktionspositionen. Baserat på detta ramverk utvärderas förmågan att uppskatta fotonenergin för ett fall där de infallande fotonerna antas vara väl åtskilda i tiden.

Sammanfattningsvis finns det potential i att förbättra prestandan med avseende på spatiell, tids- och energiupplösning i fotonräknande kiseldetektorer för CT och resultaten tyder på att händelserekonstruktion kan vara möjlig i framtiden.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 65
Series
TRITA-SCI-FOU ; 2022:06
Keywords
photon-counting, silicon detector, spectral computed tomography, subpixel resolution, dose efficiency, coincidence tracking, event reconstruction, fotonräknande, kiseldetektor, spektral datortomografi, subpixelupplösning, doseffektivitet, koincidensspårning, händelserekonstruktion
National Category
Medical Instrumentation
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-310335 (URN)978-91-8040-181-4 (ISBN)
Public defence
2022-04-29, FA32, Roslagstullsbacken 21, AlbaNova Universitetscentrum, Stockholm, 09:15
Opponent
Supervisors
Note

QC 220329

Available from: 2022-03-29 Created: 2022-03-29 Last updated: 2025-02-10Bibliographically approved
Sundberg, C., Danielsson, M. & Persson, M. (2022). Compton coincidence in silicon photon-counting CT detectors. Journal of Medical Imaging, 9(01)
Open this publication in new window or tab >>Compton coincidence in silicon photon-counting CT detectors
2022 (English)In: Journal of Medical Imaging, ISSN 2329-4302, E-ISSN 2329-4310, Vol. 9, no 01Article in journal (Refereed) Published
Place, publisher, year, edition, pages
SPIE-Intl Soc Optical Eng, 2022
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-309506 (URN)10.1117/1.jmi.9.1.013501 (DOI)000765762300002 ()35155716 (PubMedID)2-s2.0-85125744746 (Scopus ID)
Note

QC 20220325

Available from: 2022-03-06 Created: 2022-03-06 Last updated: 2022-06-25Bibliographically approved
Sundberg, C., Persson, M., Wikner, J. J. & Danielsson, M. (2021). 1-mu m spatial resolution in silicon photon-counting CT detectors. Journal of Medical Imaging, 8(6), Article ID 063501.
Open this publication in new window or tab >>1-mu m spatial resolution in silicon photon-counting CT detectors
2021 (English)In: Journal of Medical Imaging, ISSN 2329-4302, E-ISSN 2329-4310, Vol. 8, no 6, article id 063501Article in journal (Refereed) Published
Abstract [en]

Purpose: Spatial resolution for current scintillator-based computed tomography (CT) detectors is limited by the pixel size of about 1 mm. Direct conversion photon-counting detector prototypes with silicon- or cadmium-based detector materials have lately demonstrated spatial resolution equivalent to about 0.3 mm. We propose a development of the deep silicon photon-counting detector which will enable a resolution of 1  μm, a substantial improvement compared to the state of the art.

Approach: With the deep silicon sensor, it is possible to integrate CMOS electronics and reduce the pixel size at the same time as significant on-sensor data processing capability is introduced. A Gaussian curve can then be fitted to the charge cloud created in each interaction.We evaluate the feasibility of measuring the charge cloud shape of Compton interactions for deep silicon to increase the spatial resolution. By combining a Monte Carlo photon simulation with a charge transport model, we study the charge cloud distributions and induced currents as functions of the interaction position. For a simulated deep silicon detector with a pixel size of 12  μm, we present a method for estimating the interaction position.

Results: Using estimations for electronic noise and a lowest threshold of 0.88 keV, we obtain a spatial resolution equivalent to 1.37  μm in the direction parallel to the silicon wafer and 78.28  μm in the direction orthogonal to the wafer.

Conclusions: We have presented a simulation study of a deep silicon detector with a pixel size of 12  ×  500  μm2 and a method to estimate the x-ray interaction position with ultra-high resolution. Higher spatial resolution can in general be important to detect smaller details in the image. The very high spatial resolution in one dimension could be a path to a practical implementation of phase contrast imaging in CT.

Place, publisher, year, edition, pages
SPIE, the international society for optics and photonics, 2021
National Category
Radiology, Nuclear Medicine and Medical Imaging Medical Imaging
Identifiers
urn:nbn:se:kth:diva-309507 (URN)10.1117/1.jmi.8.6.063501 (DOI)000773685200002 ()34805448 (PubMedID)2-s2.0-85125706296 (Scopus ID)
Note

QC 20220620

Available from: 2022-03-06 Created: 2022-03-06 Last updated: 2025-02-09Bibliographically approved
Sundberg, C., Danielsson, M. & Persson, M. (2021). Compton coincidence in silicon photon-counting CT detectors. In: Proceedings Volume 11595, Medical Imaging 2021: . Paper presented at SPIE MEDICAL IMAGING 15-20 February 2021 Online Only, California, United States. , 11595, Article ID 115950C.
Open this publication in new window or tab >>Compton coincidence in silicon photon-counting CT detectors
2021 (English)In: Proceedings Volume 11595, Medical Imaging 2021, 2021, Vol. 11595, article id 115950CConference paper, Published paper (Refereed)
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-292429 (URN)10.1117/12.2581031 (DOI)000672731900008 ()2-s2.0-85103692405 (Scopus ID)
Conference
SPIE MEDICAL IMAGING 15-20 February 2021 Online Only, California, United States
Note

QC 20210407

Available from: 2021-04-04 Created: 2021-04-04 Last updated: 2024-03-18Bibliographically approved
Danielsson, M. & Sundberg, C. (2021). X-ray imaging system for phase contrast imaging using photon-counting events. us US11150361B2.
Open this publication in new window or tab >>X-ray imaging system for phase contrast imaging using photon-counting events
2021 (English)Patent (Other (popular science, discussion, etc.))
Abstract [en]

An x-ray imaging system includes an x-ray source and detector. The detector is a photon counting x-ray detector, enabling detection of photon-counting events. The system acquires at least one phase contrast image based on photon-counting events. The detector includes x-ray detector sub-modules, also referred to as wafers, each including detector elements. The sub-modules are oriented in edge-on geometry with their edge directed towards the x-ray source, assuming the x-rays enter through the edge. Each sub-module or wafer has a thickness with two opposite sides of different potentials to enable charge drift towards the side, where the detector elements/pixels, are arranged. The system estimates charge diffusion from a Compton interaction or an interaction through photoeffect related to an incident x-ray photon in a sub-module or wafer of the x-ray detector, and estimates a point of interaction of the x-ray photon sub-module based on the determined estimate of charge diffusion.

National Category
Medical Instrumentation
Identifiers
urn:nbn:se:kth:diva-322661 (URN)
Patent
US US11150361B2 (2021-10-19)
Note

QC 20230131

Available from: 2022-12-27 Created: 2022-12-27 Last updated: 2025-02-10Bibliographically approved
Sundberg, C., Persson, M., Wikner, J. & Danielsson, M. (2020). 1 μm spatial resolution in silicon photon-counting CT detectors by measuring charge diffusion. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE: . Paper presented at Medical Imaging 2020: Physics of Medical Imaging; Houston; United States; 16 February 2020 through 19 February 2020. , 11312, Article ID 113120E.
Open this publication in new window or tab >>1 μm spatial resolution in silicon photon-counting CT detectors by measuring charge diffusion
2020 (English)In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2020, Vol. 11312, article id 113120EConference paper, Published paper (Other academic)
Abstract [en]

One of the existing prototype detector systems for full-field photon-counting CT is a silicon detector developed by our group. Spatial resolution is clinically important to resolve small details and can enable more efficient phase-contrast imaging. However, improving the resolution is difficult as decreasing the pixel size is associated with technical challenges. By integrating CMOS electronics into the silicon sensor, it is possible to reduce the pixel size drastically while also introducing on-sensor data processing capabilities. In this work, we evaluate the feasibility of measuring the charge cloud shape of Compton interactions in a silicon strip detector to increase the spatial resolution. With an incident spectrum of 140 kVp, Compton interactions constitute 66.2% of the detected interactions. By combining a Monte Carlo photon simulation with a charge transport model, we study the charge cloud distributions and induced currents as functions of the interaction position. For a simulated silicon strip detector with a pixel size of 12×500 µm2, we present a method in which the interaction position can be determined. For an ideal case without electronic noise an average absolute error of 0.65 µm is obtained in the direction along the wafer and 13.08 µm in the trans-wafer direction. With simulated electronic noise and a lowest threshold of 0.88 keV the corresponding values are 1.38 µm and 122.83 µm. Our results show that the proposed method has the potential to very significantly increase the spatial resolution in a full-field photon-counting detector for CT. 

Series
Progress in Biomedical Optics and Imaging - Proceedings of SPIE
National Category
Medical Imaging
Identifiers
urn:nbn:se:kth:diva-283340 (URN)10.1117/12.2549480 (DOI)000671890600013 ()2-s2.0-85086744732 (Scopus ID)
Conference
Medical Imaging 2020: Physics of Medical Imaging; Houston; United States; 16 February 2020 through 19 February 2020
Note

QC 20210202

Available from: 2020-10-06 Created: 2020-10-06 Last updated: 2025-02-09Bibliographically approved
Sundberg, C., Persson, M., Sjölin, M., Wikner, J. & Danielsson, M. (2020). Silicon photon-counting detector for full-field CT usingan ASIC with adjustable shaping time. Journal of Medical Imaging, 7(5), Article ID 053503.
Open this publication in new window or tab >>Silicon photon-counting detector for full-field CT usingan ASIC with adjustable shaping time
Show others...
2020 (English)In: Journal of Medical Imaging, ISSN 2329-4302, E-ISSN 2329-4310, Vol. 7, no 5, article id 053503Article in journal (Refereed) Published
Abstract [en]

Purpose: Photon-counting silicon strip detectors are attracting interest for use in next-generation CT scanners. For CT detectors in a clinical environment, it is desirable to have a low power consumption. However, decreasing the power consumption leads to higher noise. This is particularly detrimental for silicon detectors, which require a low noise floor to obtain a good dose efficiency. The increase in noise can be mitigated using a longer shaping time in the readout electronics. This also results in longer pulses, which requires an increased deadtime, thereby degrading the count-rate performance. However, as the photon flux varies greatly during a typical CT scan, not all projection lines require a high count-rate capability. We propose adjusting the shaping time to counteract the increased noise that results from decreasing the power consumption.

Approach: To show the potential of increasing the shaping time to decrease the noise level, synchrotron measurements were performed using a detector prototype with two shaping time settings. From the measurements, a simulation model was developed and used to predict the performance of a future channel design.

Results: Based on the synchrotron measurements, we show that increasing the shaping time from 28.1 to 39.4 ns decreases the noise and increases the signal-to-noise ratio with 6.5% at low count rates. With the developed simulation model, we predict that a 50% decrease in power can be attained in a proposed future detector design by increasing the shaping time with a factor of 1.875.

Conclusion: Our results show that the shaping time can be an important tool to adapt the pulse length and noise level to the photon flux and thereby optimize the dose efficiency of photon-counting silicon detectors.

Place, publisher, year, edition, pages
SPIE - International Society for Optical Engineering, 2020
National Category
Medical Imaging Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-283218 (URN)10.1117/1.JMI.7.5.053503 (DOI)000590135500006 ()33033734 (PubMedID)2-s2.0-85096574745 (Scopus ID)
Note

QC 20210201

Available from: 2020-10-06 Created: 2020-10-06 Last updated: 2025-02-09Bibliographically approved
Sundberg, C., Persson, M., Ehliar, A., Sjölin, M., Wikner, J. & Danielsson, M. (2019). Increased count-rate performance and dose efficiency for silicon photon-counting detectors for full-field CT using an ASIC with adjustable shaping time. In: Schmidt, TG Chen, GH Bosmans, H (Ed.), MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING. Paper presented at Conference on Medical Imaging - Physics of Medical Imaging, FEB 17-20, 2019, San Diego, CA. SPIE-Intl Soc Optical Eng, Article ID 109481W.
Open this publication in new window or tab >>Increased count-rate performance and dose efficiency for silicon photon-counting detectors for full-field CT using an ASIC with adjustable shaping time
Show others...
2019 (English)In: MEDICAL IMAGING 2019: PHYSICS OF MEDICAL IMAGING / [ed] Schmidt, TG Chen, GH Bosmans, H, SPIE-Intl Soc Optical Eng , 2019, article id 109481WConference paper, Published paper (Refereed)
Abstract [en]

Photon-counting silicon strip detectors are attracting interest for use in next generation CT scanners. For silicon detectors, a low noise floor is necessary to obtain a good dose efficiency. A low noise floor can be achieved by having a filter with a long shaping time in the readout electronics. This also increases the pulse length, resulting in a long deadtime and thereby a degraded count-rate performance. However, as the flux typically varies greatly during a CT scan, a high count-rate capability is not required for all projection lines. It would therefore be desirable to use more than one shaping time within a single scan. To evaluate the potential benefit of using more than one shaping time, it is of interest to characterize the relation between the shaping time, the noise, and the resulting pulse shape. In this work we present noise and pulse shape measurements on a photon-counting detector with two different shaping times along with a complementary simulation model of the readout electronics. We show that increasing the shaping time from 28.1 ns to 39.4 ns decreases the noise and increases the signal-to-noise ratio (SNR) with 6.5% at low count rates and we also present pulse shapes for each shaping time as measured at a synchrotron source. Our results demonstrate that the shaping time plays an important role in optimizing the dose efficiency in a photon-counting x-ray detector.

Place, publisher, year, edition, pages
SPIE-Intl Soc Optical Eng, 2019
Series
Proceedings of SPIE, ISSN 0277-786X ; 10948
Keywords
dose efficiency, silicon detector, shaping time, ASIC, photon-counting
National Category
Radiology, Nuclear Medicine and Medical Imaging
Identifiers
urn:nbn:se:kth:diva-260218 (URN)10.1117/12.2512826 (DOI)000483585700064 ()2-s2.0-85068419335 (Scopus ID)
Conference
Conference on Medical Imaging - Physics of Medical Imaging, FEB 17-20, 2019, San Diego, CA
Note

QC 20190930

Part of ISBN 978-1-5106-2544-0

Available from: 2019-09-30 Created: 2019-09-30 Last updated: 2024-10-25Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-3326-944x

Search in DiVA

Show all publications