Open this publication in new window or tab >>Show others...
2020 (English)In: Light: Science & Applications, ISSN 2095-5545, E-ISSN 2047-7538, Vol. 9, no 1, article id 184Article in journal (Refereed) Published
Abstract [en]
Since selective detection of multiple narrow spectral bands in the near-infrared (NIR) region still poses a fundamental challenge, we have, in this work, developed NIR photodetectors (PDs) using photon upconversion nanocrystals (UCNCs) combined with perovskite films. To conquer the relatively high pumping threshold of UCNCs, we designed a novel cascade optical field modulation strategy to boost upconversion luminescence (UCL) by cascading the superlensing effect of dielectric microlens arrays and the plasmonic effect of gold nanorods, which readily leads to a UCL enhancement by more than four orders of magnitude under weak light irradiation. By accommodating multiple optically active lanthanide ions in a core-shell-shell hierarchical architecture, developed PDs on top of this structure can detect three well-separated narrow bands in the NIR region, i.e., those centered at 808, 980, and 1540 nm. Due to the large UCL enhancement, the obtained PDs demonstrate extremely high responsivities of 30.73, 23.15, and 12.20 A W-1 and detectivities of 5.36, 3.45, and 1.91 x 10(11) Jones for 808, 980, and 1540 nm light detection, respectively, together with short response times in the range of 80-120 ms. Moreover, we demonstrate for the first time that the response to the excitation modulation frequency of a PD can be employed to discriminate the incident light wavelength. We believe that our work provides novel insight for developing NIR PDs and that it can spur the development of other applications using upconversion nanotechnology. Cascade amplified upconversion luminescence: Applied in narrow band NIR photodetection Selective detection of multiple narrow spectral bands in the near-infrared (NIR) region is still a challenge. Recently, Hongwei Song and Wen Xu at Jilin University/China, Haichun Liu at KTH Royal Institute of Technology/Sweden, and their co-workers have successfully fabricated a novel multiple NIR bands photo-detectors (PDs) by combining multiple-excitation-bands core-shell upconversion nanocrystals (UCNCs) with MAPbI(3) perovskite photoelectric conversion layer. Through a cascade optical field modulation strategy, a combination of microlenses and gold plasmon nanocrystals, the emission intensity of the UCNCs and the photoelectric signal of the PDs can be enhanced four orders of magnitude. Moreover, the excitation frequency of the PD has been employed to discriminate the wavelength of incident light for the first time. This work provides a novel insight for developing multiple bands NIR PDs, and for applications of upconversion nanotechnology.
Place, publisher, year, edition, pages
SPRINGERNATURE, 2020
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:kth:diva-286222 (URN)10.1038/s41377-020-00418-0 (DOI)000585544900001 ()33298830 (PubMedID)2-s2.0-85094655632 (Scopus ID)
Note
QC 20201125
2020-11-252020-11-252022-06-25Bibliographically approved