kth.sePublications
Change search
Link to record
Permanent link

Direct link
Publications (9 of 9) Show all publications
Li, H., Asta, N., Wang, Z., Pettersson, T. & Wågberg, L. (2024). Reevaluation of the adhesion between cellulose materials using macro spherical beads and flat model surfaces. Carbohydrate Polymers, 332, 121894-121894, Article ID 121894.
Open this publication in new window or tab >>Reevaluation of the adhesion between cellulose materials using macro spherical beads and flat model surfaces
Show others...
2024 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 332, p. 121894-121894, article id 121894Article in journal (Refereed) Published
Abstract [en]

Interactions between dry cellulose were studied using model systems, cellulose beads, and cellulose films, usingcustom-built contact adhesion testing equipment. Depending on the configuration of the substrates in contact,Polydimethylsiloxane (PDMS) film, cellulose films spin-coated either on PDMS or glass, the interaction showsthree distinct processes. Firstly, molecular interlocking is formed between cellulose and cellulose when there is asoft PDMS thin film backing the cellulose film. Secondly, without backing, no initial attraction force between thesurfaces is observed. Thirdly, a significant force increase, ΔF, is observed during the retraction process for cel­lulose on glass, and there is a maximum in ΔF when the retraction rate is increased. This is due to the kinetics of acontacting process occurring in the interaction zone between the surfaces caused by an interdigitation of a finefibrillar structure at the nano-scale, whereas, for the spin-coated cellulose surfaces on the PDMS backing, there isa more direct adhesive failure. The results have generated understanding of the interaction between cellulose-rich materials, which helps design new, advanced cellulose-based materials. The results also show thecomplexity of the interaction between these surfaces and that earlier mechanisms, based on macroscopic materialtesting, are simply not adequate for molecular tailoring.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Interaction, Cellulose thin film, Cellulose bead, Contact adhesion testing
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-344920 (URN)10.1016/j.carbpol.2024.121894 (DOI)001183175200001 ()38431407 (PubMedID)2-s2.0-85184997085 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20240408

Available from: 2024-04-03 Created: 2024-04-03 Last updated: 2024-04-08
Li, H., Kruteva, M., Dulle, M., Wang, Z., Mystek, K., Ji, W., . . . Wågberg, L. (2022). Understanding the Drying Behavior of Regenerated Cellulose Gel Beads: The Effects of Concentration and Nonsolvents. ACS Nano, 16(2), 2608-2620
Open this publication in new window or tab >>Understanding the Drying Behavior of Regenerated Cellulose Gel Beads: The Effects of Concentration and Nonsolvents
Show others...
2022 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 16, no 2, p. 2608-2620Article in journal (Refereed) Published
Abstract [en]

The drying behavior of regenerated cellulose gel beads swollen with different nonsolvents (e.g., water, ethanol, water/ethanol mixtures) is studied in situ on the macroscopic scale with an optical microscope as well as on nanoscale using small-angle/wide-angle X-ray scattering (SAXS/WAXS) techniques. Depending on the cellulose concentration, the structural evolution of beads during drying follows one of three distinct regimes. First, when the cellulose concentration is lower than 0.5 wt %, the drying process comprises three steps and, regardless of the water/ethanol mixture composition, a sharp structural transition corresponding to the formation of a cellulose II crystalline structure is observed. Second, when the cellulose concentration is higher than 5.0 wt %, a two-step drying process is observed and no structural transition occurs for any of the beads studied. Third, when the cellulose concentration is between 0.5 and 5.0 wt %, the drying process is dependent on the nonsolvent composition. A three-step drying process takes place for beads swollen with water/ethanol mixtures with a water content higher than 20%, while a two-step drying process is observed when the water content is lower than 20%. To describe the drying behavior governed by the cellulose concentration and nonsolvent composition, a simplified phase diagram is proposed.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2022
Keywords
regenerated cellulose, gel bead, drying kinetics, nonsolvent, cellulose concentration
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-311536 (URN)10.1021/acsnano.1c09338 (DOI)000776691400078 ()35104108 (PubMedID)2-s2.0-85124278208 (Scopus ID)
Note

QC 20220429

Available from: 2022-04-29 Created: 2022-04-29 Last updated: 2022-06-25Bibliographically approved
Wang, Z., Ouyang, L., Li, H., Wågberg, L. & Hamedi, M. M. (2021). Layer-by-Layer Assembly of Strong Thin Films with High Lithium Ion Conductance for Batteries and Beyond. Small, 17(32), 2100954, Article ID 2100954.
Open this publication in new window or tab >>Layer-by-Layer Assembly of Strong Thin Films with High Lithium Ion Conductance for Batteries and Beyond
Show others...
2021 (English)In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 17, no 32, p. 2100954-, article id 2100954Article in journal (Refereed) Published
Abstract [en]

Polyethylene oxide (PEO) is one of the most widely used polymeric ion conductors which has the potential for a wide range of applications in energy storage. The enhancement of ionic conductivity of PEO-based electrolytes is generally achieved by sacrificing the mechanical properties. Using layer-by-layer (LbL) self-assembly with a nanoscale precision, mechanically strong and self-healable PEO/polyacrylic acid composite thin films with a high Li+ conductivity of 2.3 ± 0.8 × 10−4 S cm−1 at 30 °C, and a strength of 3.7 MPa is prepared. These values make the LbL composite among the best recorded multifunctional solid electrolytes. The electrolyte thin film withstands at least 1000 cycles of striping/plating of Li at 0.05 mA cm−2. It is further shown that the LbL thin films can be used as separators for Li-ion batteries to deliver a capacity of 116 mAh g−1 at 0.1 C in an all-LbL-assembled lithium iron phosphate/lithium titanate battery. Finally, it is demonstrated that the thin films can be used as ion-conducting substrates for flexible electrochemical devices, including micro supercapacitors and electrochemical transistors.

Place, publisher, year, edition, pages
Wiley, 2021
Keywords
ionic conduction, lithium-ion batteries, mechanical strength, self-assembly, Energy storage, Ions, Iron compounds, Lithium compounds, Nanocomposite films, Polyethylene oxides, Self assembly, Solid electrolytes, Thin film lithium ion batteries, Composite thin films, Electrochemical transistors, Electrolyte thin film, Layer by layer self assembly, Layer-by-layer assemblies, Lithium iron phosphates, Micro supercapacitors, Polyethylene oxide (PEO), Thin films
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-310407 (URN)10.1002/smll.202100954 (DOI)000668744600001 ()34212496 (PubMedID)2-s2.0-85109300382 (Scopus ID)
Note

QC 20220331

Available from: 2022-03-31 Created: 2022-03-31 Last updated: 2022-12-07Bibliographically approved
Ouyang, L., Buchmann, S., Benselfelt, T., Musumeci, C., Wang, Z., Khaliliazar, S., . . . Hamedi, M. (2021). Rapid prototyping of heterostructured organic microelectronics using wax printing, filtration, and transfer. Journal of Materials Chemistry C, 9(41), 14596-14605
Open this publication in new window or tab >>Rapid prototyping of heterostructured organic microelectronics using wax printing, filtration, and transfer
Show others...
2021 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 9, no 41, p. 14596-14605Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Royal Society of Chemistry (RSC), 2021
National Category
Organic Chemistry Materials Chemistry Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-307127 (URN)10.1039/d1tc03599a (DOI)000698441100001 ()34765224 (PubMedID)2-s2.0-85118600456 (Scopus ID)
Funder
EU, European Research Council, 715268
Note

QC 20220128

Available from: 2022-01-13 Created: 2022-01-13 Last updated: 2024-03-15Bibliographically approved
Li, H., Roth, S. V., Freychet, G., Zhernenkov, M., Asta, N., Wågberg, L. & Pettersson, T. (2021). Structure Development of the Interphase between Drying Cellulose Materials Revealed by In Situ Grazing-Incidence Small-Angle X-ray Scattering. Biomacromolecules, 22(10), 4274-4283
Open this publication in new window or tab >>Structure Development of the Interphase between Drying Cellulose Materials Revealed by In Situ Grazing-Incidence Small-Angle X-ray Scattering
Show others...
2021 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 22, no 10, p. 4274-4283Article in journal (Refereed) Published
Abstract [en]

The nano- to microscale structures at the interface between materials can define the macroscopic material properties. These structures are extremely difficult to investigate for complex material systems, such as cellulose-rich materials. The development of new model cellulose materials and measuring techniques has opened new possibilities to resolve this problem. We present a straightforward approach combining micro-focusing grazing-incidence small-angle X-ray scattering and atomic force microscopy (AFM) to investigate the structural rearrangements of cellulose/cellulose interfaces in situ during drying. Based on the results, we propose that molecular interdiffusion and structural rearrangement play a major role in the development of the properties of the cellulose/cellulose interphase; this model is representative of the development of the properties of joint/contact points between macroscopic cellulose fibers.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2021
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-304560 (URN)10.1021/acs.biomac.1c00845 (DOI)000708389300020 ()34541856 (PubMedID)2-s2.0-85116551335 (Scopus ID)
Note

QC 20211108

Available from: 2021-11-08 Created: 2021-11-08 Last updated: 2024-04-05Bibliographically approved
Li, H., Mystek, K., Wågberg, L. & Pettersson, T. (2020). Development of mechanical properties of regenerated cellulose beads during drying as investigated by atomic force microscopy. Soft Matter, 16(28), 6457-6462
Open this publication in new window or tab >>Development of mechanical properties of regenerated cellulose beads during drying as investigated by atomic force microscopy
2020 (English)In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 16, no 28, p. 6457-6462Article in journal (Refereed) Published
Abstract [en]

The mechanical properties as well as the size changes of swollen cellulose beads were measured in situ during solvent evaporation by atomic force microscopy (AFM) indentation measurement combined with optical microscopy. Three factors are proposed to govern the mechanical properties of the cellulose beads in the swollen state and during drying: (i) the cellulose concentration, (ii) the interaction between the cellulose entities, (iii) the heterogeneity of the network structure within the cellulose beads.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2020
National Category
Bio Materials
Identifiers
urn:nbn:se:kth:diva-278921 (URN)10.1039/d0sm00866d (DOI)000551334600022 ()32583840 (PubMedID)2-s2.0-85088492614 (Scopus ID)
Note

QC 20201118

Available from: 2020-11-18 Created: 2020-11-18 Last updated: 2024-03-15Bibliographically approved
Li, H., Kruteva, M., Mystek, K., Dulle, M., Ji, W., Pettersson, T. & Wågberg, L. (2020). Macro- and microstructural evolution during drying of regenerated cellulose beads. ACS Nano, 14(6), 6774-6784
Open this publication in new window or tab >>Macro- and microstructural evolution during drying of regenerated cellulose beads
Show others...
2020 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 14, no 6, p. 6774-6784Article in journal (Refereed) Published
Abstract [en]

The macro- and microstructural evolution of water swollen and ethanol swollen regenerated cellulose gel beads have been determined during drying by optical microscopy combined with analytical balance measurements, small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS). Two characteristic length scales, which are related to the molecular dimension of cellulose monomer and elongated aggregates of these monomers, could be identified for both types of beads by SAXS. For ethanol swollen beads, only small changes to the structures were detected in both the SAXS and WAXS measurements during the entire drying process. However, the drying of cellulose from water follows a more complex process when compared to drying from ethanol. As water swollen beads dried, they went through a structural transition where elongated structures changed to spherical structures and their dimensions increased from 3.6 to 13.5 nm. After complete drying from water, the nanostructures were characterized as a combination of rodlike structures with an approximate size of cellulose monomers (0.5 nm), and spherical aggregates (13.5 nm) without any indication of heterogeneous meso- or microporosity. In addition, WAXS shows that cellulose II hydrate structure appears and transforms to cellulose II during water evaporation, however it is not possible to determine the degree of crystallinity of the beads from the present measurements. This work sheds lights on the structural changes that occur within regenerated cellulose materials during drying and can aid in the design and application of cellulosic materials as fibers, adhesives, and membranes.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020
Keywords
cellulose, gel bead, drying structural evolution, X-ray scattering
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-278617 (URN)10.1021/acsnano.0c00171 (DOI)000543744100036 ()32383585 (PubMedID)2-s2.0-85085690637 (Scopus ID)
Note

QC 20200729

Available from: 2020-07-29 Created: 2020-07-29 Last updated: 2022-06-26Bibliographically approved
Mystek, K., Li, H., Pettersson, T., Francon, H., Svagan, A. J., Larsson, P. A. & Wågberg, L. (2020). Wet-expandable capsules made from partially modified cellulose. Green Chemistry, 22(14), 4581-4592
Open this publication in new window or tab >>Wet-expandable capsules made from partially modified cellulose
Show others...
2020 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 22, no 14, p. 4581-4592Article in journal (Refereed) Published
Abstract [en]

Preparation of lightweight and biocompatible hollow capsules holds great promise for various advanced engineering applications. Here, we use a heterogeneously modified structure of cellulose, which on the molecular level increases the flexibility of the capsule shell, to form hollow capsules. These capsules expand in the wet state when they are exposed to an external stimulus, in the present case a decreased external pressure. The capsules were prepared by a dropwise precipitation of a propane-saturated solution of cellulose partially modified to dialcohol cellulose, dissolved in a mixture ofN,N-dimethylacetamide and lithium chloride, into a non-solvent. The mechanical properties of the capsules were determined by measuring the expansion of the capsules upon a controlled decrease in external pressure. In addition, indentation measurements using atomic force microscopy were used to independently quantify the moduli of the capsule walls. The results show that the wet, modified cellulose capsules are much softer and, upon the same pressure change, expand significantly more than those made from unmodified cellulose. The greatest expansion observed for the modified capsules was 1.9 times the original volume, which corresponds to a final density of the expanded capsules of about 14 kg m(-3). These capsules therefore hold great potential to form green and lightweight foam-like materials.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2020
National Category
Other Chemistry Topics
Identifiers
urn:nbn:se:kth:diva-278915 (URN)10.1039/d0gc01523g (DOI)000550567200018 ()2-s2.0-85089284846 (Scopus ID)
Note

QC 20201118

Available from: 2020-11-18 Created: 2020-11-18 Last updated: 2022-06-25Bibliographically approved
Li, H., Pettersson, T. & Wågberg, L. (2019). Internal structural evolution of regenerated cellulose beads during drying. Paper presented at National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL. Abstracts of Papers of the American Chemical Society, 257
Open this publication in new window or tab >>Internal structural evolution of regenerated cellulose beads during drying
2019 (English)In: Abstracts of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 257Article in journal, Meeting abstract (Other academic) Published
Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2019
National Category
Paper, Pulp and Fiber Technology
Identifiers
urn:nbn:se:kth:diva-257606 (URN)000478860502706 ()
Conference
National Meeting of the American-Chemical-Society (ACS), MAR 31-APR 04, 2019, Orlando, FL
Note

QC 20190919

Available from: 2019-09-19 Created: 2019-09-19 Last updated: 2024-03-15Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-0974-9638

Search in DiVA

Show all publications