kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Methods for brain MRI image synthesis and analysis
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems, Medical Imaging.ORCID iD: 0000-0003-4175-395X
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 3: Good Health and Well-Being, SDG 12: Responsible consumption and production, SDG 17: Partnerships for the goals
Abstract [en]

Magnetic resonance imaging (MRI) technology has made it possible to observe the inside of the brain in vivo, providing a window for researchers to better understand the processes of human brain development and aging, as well as neurological diseases and their underlying mechanisms. With the development of human brain imaging technology and the accumulation of neuroimaging data, the demand for automated computational algorithms has also increased. The success of machine learning technology in the field of computer vision has promoted its application and development in brain imaging. However, the field of medical imaging faces a series of unique challenges that have not been systematically addressed by the broad deep learning research community. In this thesis, the challenges faced in the context of three specific neuroimaging research problems are tackled. For each problem, the specific challenges are first explained, followed by the proposed solutions.

First, I focus on the specific challenges of using neuroimaging for research in the field of Alzheimer's disease (AD). In the study of AD, one difficulty is to distinguish the effects of normal aging and disease on the anatomical structure of the brain to achieve more accurate and earlier identification. Longitudinal data are an important source for understanding how normal aging affects the brain. However, the cost of collecting longitudinal data can be prohibitive, and current public longitudinal datasets still suffer from inconsistent time intervals and missing scans due to logistical constraints. To address this, I propose in the first study a diffeomorphic registration-based approach to fill in missing time points within current longitudinal datasets. To help distinguish between normal aging and disease-induced morphological changes, I propose in the second study a generative framework that can predict future brain MRI changes along healthy or pathological trajectories based on any given MRI scan. This framework is designed with diffeomorphic constraints to ensure the topological consistency of predicted morphological changes. Finally, in the third study I develop and validate a new deformation-based morphometry (DBM) framework that leverages registration-derived deformation fields for comparisons between healthy and AD groups. This new framework explicitly decomposes deformation into components attributable to normal aging and disease, providing a more nuanced understanding of their interaction.

Secondly, I focus on the pressing challenges in pediatric brain tumor segmentation. Due to the rarity of pediatric brain tumors and the high level of expertise required for tumor labeling—especially when multi-modality imaging is necessary—creating accurate automated segmentation algorithms is challenging. In response, I propose in the fourth study an unsupervised domain adaptation (UDA) framework for segmentation, utilizing relatively abundant adult brain tumor data and labels to assist in pediatric tumor segmentation.

Finally, in this thesis, I tackle the challenge of accurately registering longitudinal neuroimaging. Registration is the most fundamental and core task in the neuroimaging analysis pipelines, and its accuracy often has a serious impact on an array of subsequent analysis steps and downstream tasks. In longitudinal neuroimaging analysis, rigid registration is commonly employed to align scans obtained from the same individual. However, the deep learning-based registration community has largely focused on cross-sectional registration applications, with insufficient accuracy observed in longitudinal data. For this reason, I optimize a state-of-the-art model in the fifth study to make it more accurate for longitudinal registration.

Abstract [sv]

Magnetresonanstomografi (MRT) har gjort det möjligt att observera hjärnans inre strukturer i realtid och erbjuder forskare en inblick i hur den mänskliga hjärnan utvecklas och åldras, samt de mekanismer som ligger till grund för neurologiska sjukdomar. Med den tekniska utvecklingen inom hjärnavbildning och ökningen av neuroimagingdata har efterfrågan på automatiserade algoritmer också vuxit. Den snabba utvecklingen inom djupinlärning och datorseende har lett till framsteg även vid dess tillämpning på hjärnavbildning. Medicinsk avbildning har dock sina egna specifika utmaningar, vilka hittills inte systematiskt har behandlats (removed duplicated "har") av generell forskning inom djupinlärning. I denna avhandling är målet att bemöta utmaningarna som uppstår inom tre specifika forskningsproblem inom neuroimaging. För varje problem kommer de specifika utmaningarna först att förklaras och därefter presenteras föreslagna lösningar.

De första studierna behandlar de specifika utmaningar som uppstår vid neuroimaging av Alzheimers patienter. Ett stort problem inom AD-forskning är att kunna särskilja effekterna av normalt åldrande och sjukdomsrelaterade förändringar på hjärnans anatomi för tidigare sjukdomsidentifiering. Longitudinell data är en viktig grund för att förstå hur normalt åldrande påverkar hjärnan. Insamlingen av sådana data är dock ofta mycket kostsam, och många öppna dataset har oregelbundna tidsintervall och avhopp från försökspersoner. I den första studien utvecklades därför en metod baserad på diffeomorfisk registrering för att fylla i saknade tidpunkter i longitudinella dataset. För att ytterligare kunna skilja mellan åldersrelaterade och sjukdomsrelaterade morfologiska förändringar presenterar den andra studien en generativ modell som förutsäger hjärnförändringar baserat på en enda MRI-resultat, enligt antingen frisk eller patologisk utveckling. Modellen är utformad med diffeomorfiska begränsningar för att garantera att de predikterade morfologiska förändringarna överensstämmer med hjärnans topologi. I den tredje studien introduceras och valideras istället ett nytt deformationsbaserat morfometri-framework som använder deformationsfält från registrering för att utföra jämförelser mellan olika grupper. Deformationen delas, i detta framework, upp i komponenter som kan tillskrivas normalt åldrande respektive patologiska förändringar vilket möjliggör en mer nyanserad förståelse av hur de interagerar.

Det andra problemområdet som avhandlingen behandlar är pediatrisk hjärntumörssegmentering. Annoterade dataset för pediatriska hjärntumörer är generellt små eftersom annoteringen kräver hög precision och kompetens vilket leder till att utvecklingen av övervakade segmenteringsalgoritmer är utmanande. I den fjärde studien föreslår vi istället en modell för domänanpassning med annoterad data för vuxna hjärntumörspatienter till den pediatriska kontexten. Modellen tränas utan annoterade pediatriska tumörer. 

Det tredje problemet som avhandlingen behandlar är registrering av longintudinell neuroimagingdata. Registrering är en grundläggande och central uppgift i neuroimaginganalys, och dess noggrannhet har ofta stor påverkan på efterföljande analyser. Vid analys av longitudinella neuroimagingdata kan rigid registrering ofta erhålla högre spatiell precision eftersom datan härrör från samma individ. Tidigare djupinlärningsmetoder för registrering har fokuserat på att registrera grupper av individer till ett gemensamt koordinatrum, vilket har visat sig ge otillräcklig noggrannhet vid longitudinell data. Den femte studien utvidgar därför en befintlig modell för att öka dess noggrannhet vid longitudinell registrering.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2024. , p. 71
Series
TRITA-CBH-FOU ; 2024:53
Keywords [en]
Brain MRI, Image Registration, Machine Learning, Deep Learning, Aging, Alzheimer’s Disease, Unsupervised Domain Adaptation, Image Segmentation
Keywords [sv]
Hjärn-MRT, Bildregistrering, Maskininlärning, Djupinlärning, Åldrande, Alzheimers sjukdom, Oövervakad domänanpassning, Bildsegmentering
National Category
Medical Imaging
Research subject
Technology and Health
Identifiers
URN: urn:nbn:se:kth:diva-357014ISBN: 978-91-8106-139-0 (print)OAI: oai:DiVA.org:kth-357014DiVA, id: diva2:1917215
Public defence
2025-01-10, T1, Hälsovägen 11C, via Zoom: https://kth-se.zoom.us/j/68696837704, Huddinge, 13:00 (English)
Opponent
Supervisors
Note

QC 2024-12-02

Available from: 2024-12-02 Created: 2024-12-01 Last updated: 2025-02-09Bibliographically approved
List of papers
1. Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration
Open this publication in new window or tab >>Fast three-dimensional image generation for healthy brain aging using diffeomorphic registration
Show others...
2023 (English)In: Human Brain Mapping, ISSN 1065-9471, E-ISSN 1097-0193, Vol. 44, no 4, p. 1289-1308Article in journal (Refereed) Published
Abstract [en]

Predicting brain aging can help in the early detection and prognosis of neurodegenerative diseases. Longitudinal cohorts of healthy subjects scanned through magnetic resonance imaging (MRI) have been essential to understand the structural brain changes due to aging. However, these cohorts suffer from missing data due to logistic issues in the recruitment of subjects. This paper proposes a methodology for filling up missing data in longitudinal cohorts with anatomically plausible images that capture the subject-specific aging process. The proposed methodology is developed within the framework of diffeomorphic registration. First, two novel modules are introduced within Synthmorph, a fast, state-of-the-art deep learning-based diffeomorphic registration method, to simulate the aging process between the first and last available MRI scan for each subject in three-dimensional (3D). The use of image registration also makes the generated images plausible by construction. Second, we used six image similarity measurements to rearrange the generated images to the specific age range. Finally, we estimated the age of every generated image by using the assumption of linear brain decay in healthy subjects. The methodology was evaluated on 2662 T1-weighted MRI scans from 796 healthy participants from 3 different longitudinal cohorts: Alzheimer's Disease Neuroimaging Initiative, Open Access Series of Imaging Studies-3, and Group of Neuropsychological Studies of the Canary Islands (GENIC). In total, we generated 7548 images to simulate the access of a scan per subject every 6 months in these cohorts. We evaluated the quality of the synthetic images using six quantitative measurements and a qualitative assessment by an experienced neuroradiologist with state-of-the-art results. The assumption of linear brain decay was accurate in these cohorts (R2 ∈ [.924,.940]). The experimental results show that the proposed methodology can produce anatomically plausible aging predictions that can be used to enhance longitudinal datasets. Compared to deep learning-based generative methods, diffeomorphic registration is more likely to preserve the anatomy of the different structures of the brain, which makes it more appropriate for its use in clinical applications. The proposed methodology is able to efficiently simulate anatomically plausible 3D MRI scans of brain aging of healthy subjects from two images scanned at two different time points.

Place, publisher, year, edition, pages
Wiley, 2023
Keywords
brain aging, diffeomorphic registration, medical image generation, synthetic brain aging
National Category
Radiology, Nuclear Medicine and Medical Imaging Medical Imaging
Identifiers
urn:nbn:se:kth:diva-328720 (URN)10.1002/hbm.26165 (DOI)000897602500001 ()36468536 (PubMedID)2-s2.0-85144023223 (Scopus ID)
Note

QC 20230610

Available from: 2023-06-10 Created: 2023-06-10 Last updated: 2025-02-09Bibliographically approved
2. Synthesizing Individualized Aging Brains in Health and in Disease with Generative Models and Parallel Transport
Open this publication in new window or tab >>Synthesizing Individualized Aging Brains in Health and in Disease with Generative Models and Parallel Transport
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

 Simulating prospective magnetic resonance imaging (MRI) scans from a given individual brain image is challenging, as it requires accounting for canonical changes in aging and/or disease progression while also considering the individual brain’s current status and unique characteristics. While current deep generative models can produce high-resolution anatomically accurate templates for population-wide studies, they cannot predict future aging trajectories for individuals. In this study, we introduce Individualized Brain Synthesis (InBrainSyn), a framework that synthesizes high resolution longitudinal MRI scans that simulate subject-specific neurodegeneration in both Alzheimer’s disease (AD) and normal aging. InBrainSyn uses a parallel transport algorithm to adapt the population-level aging trajectories learned by a generative deep template network to synthesize subject-specific aging. Diffeomorphic registration guarantees the anatomical plausibility of the synthesized images by design. Experimentally, we find that our model faithfully simulates both individualized aging and inter-cohort generations capturing neuroanatomical transitions between normal aging and AD on the OASIS-3 dataset. Overall, given only a single scan from an individual, InBrainSyn produces high-fidelity and anatomically plausible longitudinal aging trajectories of synthesized 3D spatiotemporal T1w MRI scans. The code is shared at https://github.com/Fjr9516/InBrainSyn. 

Keywords
Diffeomorphic Registration, Parallel Transport, Brain Aging, Medical Image Generation, Alzheimer’s Disease
National Category
Medical Imaging
Research subject
Technology and Health
Identifiers
urn:nbn:se:kth:diva-356999 (URN)
Note

QC 20241129

Available from: 2024-11-28 Created: 2024-11-28 Last updated: 2025-02-09Bibliographically approved
3. A deformation-based morphometry framework for disentangling Alzheimer’s disease from normal aging using learned normal aging templates
Open this publication in new window or tab >>A deformation-based morphometry framework for disentangling Alzheimer’s disease from normal aging using learned normal aging templates
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Alzheimer’s Disease (AD) and normal aging are both characterized by brain atrophy. The question of whether AD-related brain atrophy represents accelerated aging or a neurodegeneration process distinct from that in normal aging remains unresolved. Moreover, precisely disentangling AD-related brain atrophy from normal aging in a clinical context is complex. In this study, we propose a deformation-based morphometry framework to estimate normal aging and AD-specific atrophy patterns of subjects from morphological MRI scans. For this, we first leverage deep-learning-based methods to create age-dependent templates of cognitively normal (CN) subjects. These templates model the normal aging atrophy patterns in a CN population. Then, we use the learned diffeomorphic registration to estimate the one-year normal aging pattern at the voxel level. In the second step, we register the testing image to the 60-year-old CN template. Finally, normal aging and AD-specific scores are estimated by measuring the alignment of this registration with the one-year normal aging pattern. The methodology was developed and evaluated on the OASIS3 dataset with 1,014 T1-weighted MRI scans, which is a unique dataset focused on preclinical cohorts. Of these, 326 scans were from CNsubjects, and 688 scans were from individuals clinically diagnosed with AD at different stages of clinical severity defined by clinical dementia rating (CDR) scores. The results show that ventricles predominantly follow an accelerated normal aging pattern in subjects with AD. In turn, hippocampi and amygdala regions were affected by both normal aging and AD-specific factors. Interestingly, hippocampi and amygdala regions showed more of an accelerated normal aging pattern for subjects during the early clinical stages of the disease, while the AD-specific score increases in later clinical stages. Our code is freely available at https://github.com/Fjr9516/DBM_with_DL.

Keywords
Imaging biomarker, Aging, Alzheimer’s Disease, Deep learning-based brain template, Deformation-based morphometry, Aging score, AD-specific score
National Category
Medical Imaging
Research subject
Technology and Health
Identifiers
urn:nbn:se:kth:diva-356997 (URN)
Note

QC 20241129

Available from: 2024-11-28 Created: 2024-11-28 Last updated: 2025-02-09Bibliographically approved
4. Unsupervised Domain Adaptation for Pediatric Brain Tumor Segmentation
Open this publication in new window or tab >>Unsupervised Domain Adaptation for Pediatric Brain Tumor Segmentation
2024 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Significant advances have been made toward building accurate automatic segmentation models for adult gliomas. However, the performance of these models often degrades when applied to pediatric glioma due to their imaging and clinical differences (domain shift). Obtaining sufficient annotated data for pediatric glioma is typically difficult because of its rare nature. Also, manual annotations are scarce and expensive. In this work, we propose Domain-Adapted nnU-Net (DA-nnUNet) to perform unsupervised domain adaptation from adult glioma (source domain) to pediatric glioma (target domain). Specifically, we add a domain classifier connected with a gradient reversal layer (GRL) to a backbone nnU-Net. Once the classifier reaches a very high accuracy, the GRL is activated with the goal of transferring domain-invariant features from the classifier to the segmentation model while preserving segmentation accuracy on the source domain. The accuracy of the classifier slowly degrades to chance levels. No annotations are used in the target domain. The method is compared to 8 different supervised models using BraTS-Adult glioma (N=1251) and BraTS-PED glioma data (N=99). The proposed method shows notable performance enhancements in the tumor core (TC) region compared to the model that only uses adult data: ~32% better Dice scores and ~20 better 95th percentile Hausdorff distances. Moreover, our unsupervised approach shows no statistically significant difference compared to the practical upper bound model using manual annotations from both datasets in TC region. The code is shared at https://github.com/Fjr9516/DA_nnUNet.

Keywords
Unsupervised domain adaptation, Pediatric tumor segmentation, Gradient reversal layer
National Category
Medical Imaging
Research subject
Technology and Health; Technology and Health
Identifiers
urn:nbn:se:kth:diva-356998 (URN)
Conference
MICCAI Workshop on Advancing Data Solutions in Medical Imaging AI
Note

QC 20241202

Available from: 2024-11-28 Created: 2024-11-28 Last updated: 2025-02-09Bibliographically approved
5. Learning accurate rigid registration for longitudinal brain MRI from synthetic data
Open this publication in new window or tab >>Learning accurate rigid registration for longitudinal brain MRI from synthetic data
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Rigid registration aims to determine the translations and rotations necessary to align features in a pair of images. While recent machine learning methods have become state-of-the-art for linear and deformable registration across subjects, they have demonstrated limitations when applied to longitudinal (within-subject) registration, where achieving precise alignment is critical. Building on an existing framework for anatomy-aware, acquisition-agnostic affine registration, we propose a model optimized for longitudinal, rigid brain registration. By training the model with synthetic within-subject pairs augmented with rigid and subtle nonlinear transforms, the model estimates more accurate rigid transforms than previous cross-subject networks and performs robustly on longitudinal registration pairs within and across magnetic resonance imaging (MRI) contrasts. 

Keywords
rigid image registration, deep learning, longitudinal analysis, neuroimaging
National Category
Medical Imaging
Research subject
Technology and Health
Identifiers
urn:nbn:se:kth:diva-357000 (URN)
Note

QC 20241129

Available from: 2024-11-28 Created: 2024-11-28 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

summary(9069 kB)247 downloads
File information
File name SUMMARY01.pdfFile size 9069 kBChecksum SHA-512
84f62cff58509fdbbbc8d49c0c619257816a6f8ca86c656d9e1239c9c96b278e9a3ac76772ef0f97bf81ee6dd5374431f8b92b1c46a4357d072138ad4ec9a73f
Type summaryMimetype application/pdf

Authority records

Fu, Jingru

Search in DiVA

By author/editor
Fu, Jingru
By organisation
Medical Imaging
Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 969 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf