kth.sePublications KTH
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical and experimental investigation of a lighthouse tip drainage cannula used in extracorporeal membrane oxygenation
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0003-0716-465x
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-8061-4146
Dept. Physiology and Pharmacology, Karolinska Institutet, Stockholm.ORCID iD: 0000-0003-4124-4581
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Engineering Mechanics.ORCID iD: 0000-0001-9976-8316
2023 (English)In: Artificial Organs, ISSN 0160-564X, E-ISSN 1525-1594, Vol. 47, no 2, p. 330-341Article in journal (Refereed) Published
Abstract [en]

Extracorporeal membrane oxygenation is a life saving therapy used in case of acute respiratory/circulatory failure. Exposure of blood to non-physiological surfaces and high shear stresses is related to hemolytic damage and platelet activation. An investigation of the flow structures developing in a conventional single-staged drainage cannula was performed with cross-validated computational fluid dynamics and particle image velocimetry. The aim was to quantify the variation in drainage performance and stress levels induced by different fluid models, hematocrit and vessel-to-cannula flow rate ratios. The results indicated that the 90◦ bends of the flow through the side holes created a recirculation zone potentially increasing the residence time and flow structures developing inside the cannula resembling a jet in a crossflow. The use of different hematocrits did not induce a considerable effect on the drainage performance, with the most proximal set of holes from the tip draining the largest fraction of fluid. However, different flow rate ratios altered the flow rate drained through the tip. The use of 2D data led to a 50% underestimation of shear rate levels, and a Reynolds-number scaling was applied to capture the velocity profiles and flow rates through the side holes.

Place, publisher, year, edition, pages
Wiley , 2023. Vol. 47, no 2, p. 330-341
National Category
Cardiology and Cardiovascular Disease
Identifiers
URN: urn:nbn:se:kth:diva-301033DOI: 10.1111/aor.14421ISI: 000870693000001PubMedID: 36227654Scopus ID: 2-s2.0-85140119564OAI: oai:DiVA.org:kth-301033DiVA, id: diva2:1590859
Note

QC 20240402

Available from: 2021-09-03 Created: 2021-09-03 Last updated: 2025-02-10Bibliographically approved
In thesis
1. Hemodynamics of artificial devices used in extracorporeal life support
Open this publication in new window or tab >>Hemodynamics of artificial devices used in extracorporeal life support
2021 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Extracorporeal Membrane Oxygenation (ECMO) is a life-saving therapy usedfor support in critical heart and/or lung failure. Patient’s blood is pumped viaan artificial lung for oxygenation outside of the body. The circuit is composedof a blood pump, cannulae for drainage and reinfusion, a membrane lung,tubing and connectors. Its use is associated with thromboembolic complicationsand hemolytic damage. Detailed numerical studies of two blood pumps anda lighthouse tip drainage cannula were undertaken to characterize the flowstructures in different scenarios and their link to platelet activation. The pumpsimulations were modelled according to manufacturer’s proclaimed use but alsoin off-design conditions with flow rates used in adult and neonatal patients.Lagrangian Particle Tracking (LPT) was used to simulate the injection ofparticles similar in size to platelets to compute platelet activation state (PAS).The results indicated that low flow rates impacted PAS similarly to high flowrates due to increased residence time leading to prolonged exposure to shearstress despite the fact that shear per se was lower at low flow rate. Regardingthe cannula, the results showed that a flow pattern similar to a jet in crossflowdeveloped at the side holes. A parameter study was conducted to quantifydrainage characteristics in terms of flow rate distribution across the holes wheninput variables of flow rate, modelled fluid, and hematocrit were altered. Thefindings showed, across all the cases, that the most proximal hole row drainedthe largest fraction of fluid. The effects due to the non-Newtonian nature ofblood were confined to regions far from the cannula holes and the flow structuresshowed very limited dependence on the hematocrit. A scaling law was found tobridge the global drainage performance of fluid between water and blood.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 61
Series
TRITA-SCI-FOU ; 2021:035
Keywords
computational fluid dynamics, hemorheology, platelet activation, thrombogenicity, extracorporeal membrane oxygenation, hemodynamics
National Category
Cardiology and Cardiovascular Disease
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-301039 (URN)978-91-7873-982-0 (ISBN)
Presentation
2021-09-28, Sal F3 and via live-stream https://kth-se.zoom.us/webinar/register/WN_JVZ9eAIQTU6YM46G-6cenA, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 210906

Available from: 2021-09-06 Created: 2021-09-03 Last updated: 2025-02-10Bibliographically approved
2. Computational modelling of blood flow in medical assist devices
Open this publication in new window or tab >>Computational modelling of blood flow in medical assist devices
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Extracorporeal membrane oxygenation (ECMO) is a life-saving support treat-ment in case of pulmonary and/or cardiac failure. An artificial extracorporealcircuit is used to offload the function of lungs and/or heart. Patient blood is drained through a drainage cannula, pumped with a centrifugal pump, oxygenated in a membrane lung and returned to the body through a reinfusion cannula. Tubing and connectors complete the circuit. However, its use canlead to thromboembolic and haemolytic complications, which are related to mechanical stresses arising in the flow of blood through its components. Numerical simulations of some of the pumps and cannulae used in the circuit were performed to investigate the flow structures developing in these components and their relation to measures of blood damage in the form of platelet activation state (PAS) and haemolysis index (HI). Simulations of two magnetically levitated centrifugal ECMO pumps were performed both in on- and off-label conditions with flow rates compatible with adult and neonatal use. The results showed that off-label low flow rate can be damaging due to an increase of residence time of the particles, which exposed them for longer to non-physiological stress. This held true for both passive tracers and inertial particles subjected to lift and drag. The neonatal pump showed a backflow structure with flow swirling back to the inlet tubing over its whole labelled range. Simulations of a lighthouse drainage cannula were undertaken to assess drainage characteristics at different haematocrits and flow rate ratios. The results indicated that the flow field was dominated by a jet in crossflow type of structure, with the most proximal holes draining the largest amount of fluid in all the studied cases and for all the considered haematocrits. The effects due to non-Newtonian behaviour of blood were less relevant in the drainage area, allowing to use a Reynolds number analogy to bridge between water and blood results.A lighthouse cannula in return configuration was also considered in both a centred and a tilted position. A characteristic confined jet configuration was found, with a backflow developing at the vessel wall, increasing residence time. In the tilted case, a group of small vortical structures developed at the holes close to the wall, which behaved as an obstacle to the vessel flow and increased both residence time and stress. This led to locally increased haemolysis which, however, did not impact haemolysis at large due to the low flow exposed to this area. The use of different viscosity models in this case led to small variations in the results, which were minor compared to the uncertainty introduced by the use of different model coefficients in the computation of the haemolysis index.

Abstract [sv]

Extrakorporeal membranoxygenering (ECMO) är en livräddande stödbehandling vid lung- och/eller hjärtsvikt. En artificiell extrakorporeal krets används för att stödja hjärt-lungfunktion. Patientblod dräneras via en dräneringskanyl, pumpas med en centrifugalpump genom membranlunga (gasväxlare) för syresättning och koldioxidclearance, för att sedan återföras till patienten via en returkanyl. Slangar och konnektorer sammankopplar kretsen. Användning av ECMO kan leda till tromboemboliska och hemolytiska komplikationer relaterade till mekaniska skjuvkrafter som uppstår när blodet strömmar genom ECMO-systemetskomponenter. Numeriska simuleringar av några av de pumpar och kanyler som används vid ECMO utfördes för att undersöka flödesstrukturer som skapas i systemkomponenter och deras relation till blodtrauma skattat som Plateletactivation state (PAS) och Haemolysis index (HI). Simuleringar av två centrifugalpumpar utfördes både inom och utanför rekommenderade flödesvolymer kompatibla med vuxen och neonatal ECMO användning. Resultaten visade att låg flödeshastighet off-design kan vara skadlig på grund av en ökad uppehållstid (residence time) för partiklarna i undersökt område. Detta gällde både passiva och tröghetsberoende partiklar som utsätts för lift och drag. Neonatalpumpen visade en motströms flödesstruktur i form av virvel utefter pumpinloppets väg över hela rekommenderade flödesområdet. Simulering av en dränkanyl med sidohål genomfördes för att bedöma dränegenskaper vid olika hematokritvärden och flödeshastigheter. Resultaten indikerade att flödesmönster dominerades av en struktur “jet in crossflow”. De mest proximala hålen dränerade mest vätska i alla studerade fall inklusive hematokritfraktioner. Effekterna av blodets icke-Newtonska egenskaper var inte avgörande inom testområdet vilket möjliggjorde användande av Reynolds-tal för att koppla vatten och blodresultat. En returkanyl undersöktes både i centrerad och vinklad position i kärlet. En karakteristisk “confined jet”konfiguration sågs, med ett returflöde somutvecklades vid kärlväggen. Detta orsakade ökad residence time. I vinkladposition noterades en grupp små virvelstrukturer vid hålen nära kärlväggen vilka funktionellt betedde sig som hinder för blodflödet i kärlet men skapade också mera shear stress och förlängd residence time. Lokalt ökad hemolys avröda blodkroppar sågs, vilket dock inte var relevant i ett globalt perspektivp å grund av det lågt fraktionellt flödet vid sidohålen. Användningen av olika viskositetsmodeller gav små variationer i resultaten, vilka blev obetydliga med den osäkerhet som introducerades av användningen olika modellkoefficienter vid beräkning av hemolysindex.

Place, publisher, year, edition, pages
Stockholm: KTH, 2023
Series
TRITA-SCI-FOU ; 2023:20
Keywords
computational fluid dynamics, haemodynamics, platelet activation, thrombogenicity, haemolysis, extracorporeal membrane oxygenation, sensitivity
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-326501 (URN)978-91-8040-562-1 (ISBN)
Public defence
2023-05-25, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, European Research Council, 101045453Swedish Research Council, 2019-04800
Note

QC 230503

Available from: 2023-05-03 Created: 2023-05-03 Last updated: 2025-02-09Bibliographically approved
3. Flow characterisation of drainage cannulae and centrifugal pumps used in extracorporeal membrane oxygenation: an experimental investigation
Open this publication in new window or tab >>Flow characterisation of drainage cannulae and centrifugal pumps used in extracorporeal membrane oxygenation: an experimental investigation
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Extracorporeal membrane oxygenation (ECMO) is a life-saving treatment for acute respiratory and/or circulatory failure. Typically driven by a centrifugal pump, blood is drained from the patient via one drainage cannula, oxygenated by a membrane lung and returned to the patient via the return cannula. Although lifesaving, ECMO is associated with thromboembolic and haemolytic complications in part related to the mechanical stresses experienced by blood in the ECMO circuit. This thesis focuses on the fluid dynamics of ECMO pumps and cannulae with the aim to improve the fundamental understanding of flow structures and overall performance of the respective components during different operating conditions. Experimental studies were conducted with particle image velocimetry (cannula flows) and high speed video recordings (pump characterisation, complex geometry). The dynamics of an isolated drainage cannula placed in a glasstube with dimensions similar to the inferior vena cava were studied considering two different cannula tip designs. Seven centrifugal pumps were investigated to evaluate pump mechanical performance and the development, for low flow rates, of backflow at the pump inlet. The dynamics leading to backflow was investigated together with numerical simulations. The results showed higher shear stress levels in a blunt cannula compared to a lighthouse tip cannula. The latter drained the highest volume fraction through the most proximal side-holes and not the tip. Cannula position relative to the wall did not alter these results. In pumps with a shroud over the impeller blades stable recirculation zones were observed on the sides of the pump inlet. These recirculating regions were formed by vortical structures detaching from the peripheral (suction) side of impeller blades and migrating over the shroud towards the pump inlet. This work increases the fluid dynamical understanding of centrifugal pumps and cannulae used for ECMO. In particular, data on detailed design features influencing inherent pump recirculation are revealed which may impact futurepump designs. Such changes have the potential to significantly reduce patient complications.

Abstract [sv]

Extrakorporal membranoxygenering (ECMO) ar en livräddande behandling vid akut andnings- och/eller hjartsvikt. Kärlåtkomst fås via en dräneringskanyl och blodet drivs vidare genom en membranlunga för gasutbyte (syresattning och koldioxidreduktion) av en centrifugalpump. Därefter återförs blodet till patienten via en returkanyl. Även om ECMO är livräddande kan behandlingen leda till blodkroppssönderfall (hemolys) och blodproppsrelaterade komplikationer som följd av de mekaniska påfrestningar blodet utsätts för. Den här avhandlingen fokuserar på ECMO-pumpar och kanylers födesmekanik. Syftet med arbetet var att förbättra den grundläggande föorståelsen för  flödesstrukturerna som skapas i de olika komponenterna samtpump prestanda under olika driftförhällanden. Dessa i huvudsakligen experimentella studier anvandes particle image velocimetry (kanyl flöde) och  lmning med höghastighetskamera (pumpkarakterisering). Kanyl flöde studeras för två kanyldesigner. Kanylen var placera i ett glasror med motsvarande diameter som nedre hålven. Sju centrifugalpumpar undersoktesavseende prestandakaraktärisering (flöde - tryck) förekomst av "backflöde" vid pumpinloppet. Den senare delen utfördes i kombinationmed numeriska  födesberäkningar för att identifiera underliggande orsaker till backflödet. Resultaten visade att kanyl utan sidohål genererade högre skjuvspänningar. Kanyl med sidohål dränerade mest genom sidohålen närmast sugkällan, vilketinte påverkades av kanylposition relativt "kärlvägg". Pumpar med hölje över impellerbladen utvecklade stabila recirkulationszoner längs pumpinloppetssidovägg. Dessa recirkulationsområden bildades från virvelstrukturer som skapadesperifert (sugsidan) runt impellern vilka sedan migrerade ovanpå höljetmot pumpinloppet. Detta arbete ökar förståelsen för den flödesdynamik gällande pumpar och kanylersom används för ECMO. Framför allt beskrivs hur pumpdesignen påverkar uppkomst av specifika flödesstrukturer som påverkar pumparnas effektivitet varifrån resultaten kan komma att användas för förbättring av blodpumpar foratt minska patientkomplikationer.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024
Series
TRITA-SCI-FOU ; 2024:16
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-344831 (URN)978-91-8040-876-9 (ISBN)
Public defence
2024-04-18, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, European Research Council, 101045453
Available from: 2024-03-28 Created: 2024-03-28 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Fiusco, FrancescoRorro, FedericoPrahl Wittberg, Lisa

Search in DiVA

By author/editor
Fiusco, FrancescoRorro, FedericoBroman, L. MikaelPrahl Wittberg, Lisa
By organisation
Engineering MechanicsLinné Flow Center, FLOW
In the same journal
Artificial Organs
Cardiology and Cardiovascular Disease

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 612 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf