kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Assessing differences in safety perceptions using GeoAI and survey across neighbourhoods in Stockholm, Sweden
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment. Senseable Stockholm Lab (SSL).ORCID iD: 0000-0003-2050-8365
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment. Senseable Stockholm Lab (SSL). (STF)ORCID iD: 0000-0001-5302-1698
Show others and affiliations
2023 (English)In: Landscape and Urban Planning, ISSN 0169-2046, E-ISSN 1872-6062, Vol. 236, p. 104768-104768, article id 104768Article in journal (Refereed) Published
Abstract [en]

The safety perception of the built environment, rather than the sheer number of crimes and incivility behavior, is a fundamental driver of public policies intended to improve urban safety. Traditional surveys often capture neighborhood residents’ perceived safety, but may not fully reflect the perceptions of people who are unfamiliar with the area. In this study, focused on the city of Stockholm, Sweden, we develop a geospatial artificial intelligence (GeoAI) approach using street view images and recruiting locals to create a measure of citywide residents’ safety perceptions. We compare the measures from the survey based on neighborhood residents’ responses with those from the GeoAI approach to better understand the relationship between these safety measures. We model the two forms of safety perceptions and their disparities (i.e., perception bias) as a function of the city’s land use and its socio-demographics. Results confirm that while the GeoAI-based measures better capture people’s instant impressions of the built environment across the city, the survey-based measures reflect their overall daily experiences of specific areas. Regions that appear to be economically vibrant and have inner-city streetscapes are perceived as safe places from visual appearance but are not always perceived as such by residents. Older adults tend to overestimate their likelihood of being victimized by crime, which may enlarge perception bias. The study concludes by critically assessing the potential ethical issues (e.g., spatial bias, population bias) in the proposed methodology and making suggestions for future research.

Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 236, p. 104768-104768, article id 104768
National Category
Social Sciences
Research subject
Architecture, Urban Design
Identifiers
URN: urn:nbn:se:kth:diva-326752DOI: 10.1016/j.landurbplan.2023.104768ISI: 000990616100001Scopus ID: 2-s2.0-85152740824OAI: oai:DiVA.org:kth-326752DiVA, id: diva2:1755959
Note

QC 20230613

Available from: 2023-05-09 Created: 2023-05-09 Last updated: 2025-06-06Bibliographically approved
In thesis
1. To Catch Fear In A Bottle: Conceptualizing and Measuring Perceived Safety in Urban Environments
Open this publication in new window or tab >>To Catch Fear In A Bottle: Conceptualizing and Measuring Perceived Safety in Urban Environments
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Cities are complex, dynamic and constantly evolving systems, shaped by a plethora of factors that in turn significantly impact our individual safety. These factors are embedded in everything from the physical design of urban settings to the social interactions and activities that take place within them. Compared to other urban challenges such as crime, perceived safety and fear are more abstract and subjective phenomena that are much more difficult to define, understand and not to mention prevent. The aim of this thesis is to examine how perceived safety can be conceptualized and measured in urban environments in order to enhance the accuracy and comprehensiveness of urban safety diagnostics. The approaches of the studies explore both more traditional methods of surveys, regression models and spatial analysis, as well as more emergent methodologiesof the past few decades, such as deep learning models and mobile app data collection. The studies include analyses of perceived safety on multiple levels, from meso- to microlevel, comparisons of residents and non-residents, as well as intersectional analyses of gender, age, ethnicity, and income. The findings of the thesis highlight how various conceptualizations of perceived safety and methodologies used to measure them reveal different understandings. Local and global measures of fear have inverted relationships with marginalized men in Sweden, who, in contrast to common beliefs, express similar levels of poor neighborhood safety to women overall. Spatial and conceptual contrasts were identified between survey-based measures of neighborhood safety, objective safety measures such as crime rates, and safety scores generated by deep learning models. A survey based on a public participation geographic information system (PPGIS) revealed the moderating effect of place familiarity and place stigma, where minor differences in neighborhood familiarity were found to significantly affect perceptions. Mobile app data collection was also found to be a potential way to capture highly spatio-temporally detailed data on perceived safety, while retaining the ability to capture personal narratives and emotional connections to place. The thesis concludes with a reflection of implications and practical insights of the findings for researchers, urban planners, and policymakers, encouraging strategies for more comprehensive diagnostics of safety. 

Abstract [sv]

Städer är komplexa, dynamiska och ständigt föränderliga system, formade av en mängd olika faktorer som i sin tur har en betydande inverkan på vår individuella trygghet. Dessa faktorer är inbäddade i allt från den fysiska utformningen av urbana miljöer till de sociala interaktioner och aktiviteter som äger rum inom dem. Jämfört med andra urbana utmaningar såsom brottslighet är upplevd trygghet och rädsla mer abstrakta och subjektiva fenomen som är mycket svårare att definiera, förstå och inte minst att förebygga. Syftet med denna avhandling är att undersöka hur upplevd trygghet kan konceptualiseras samt mätas i urbana miljöer för att förbättra träffsäkerheten och omfattningen av trygghetsdiagnostik i städer. Angreppssätten i de inkluderade studierna omfattar både mer traditionella metoder såsom enkäter, regressionsmodeller och geografiska analyser, men även nyare metoder från de senaste decennierna såsom djupinlärningsmodeller (deep learning-modeller) och datainsamling via mobilapplikationer. Studierna inkluderar analyser av trygghet på flera nivåer, från meso- till mikronivå, jämförelser mellan boende och icke-boende, samt intersektionella analyser av kön, ålder, etnicitet och inkomst. Avhandlingens resultat belyser hur olika konceptualiseringar av upplevd trygghet och de metoder som används för att mäta dem ger upphov till olika förståelser. Lokala och globala mått på rädsla visade omvända samband för marginaliserade män i Sverige, vilka uttrycker – i motsats till rådande uppfattningar – liknande nivåer av otrygghet i sina bostadsområden som kvinnor i stort. Geografiska och konceptuella kontraster identifierades mellan enkätbaserade mått på trygghet i bostadsområden, objektiva säkerhetsmått såsom brottsstatistik, samt trygghetspoäng genererade av djupinlärningsmodeller. En enkät baserad på PPGIS (Participatory Public Geographic Information System) visade på den modererande effekten av platsbekantskap och platsrelaterad stigma, där små skillnader i kännedom om området hade stor påverkan på trygghetsuppfattningen. Datainsamling med hjälp av en mobilapplikation visade också potential att fånga in mycket detaljrik rumslig och tidsmässig data om upplevd trygghet, samtidigt som den möjliggör insamling av personliga berättelser och känslomässiga band till platsen. Avhandlingen avslutas med en reflektion kring implikationer och praktiska insikter av resultaten för forskare, stadsplanerare och beslutsfattare, med en uppmaning till strategier för mer heltäckande trygghetsdiagnostik.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 66
Series
TRITA-ABE-DLT ; 2517
Keywords
Urban safety, spatial analysis, GeoAI, territorial stigma, participatory mapping, Urban trygghet, rumslig analys, GeoAI, territorial stigma, deltagarstyrd kartläggning
National Category
Criminology Human Geography
Research subject
Urban and Regional Planning
Identifiers
urn:nbn:se:kth:diva-364197 (URN)978-91-8106-326-4 (ISBN)
Public defence
2025-08-28, Kollegiesalen, Brinellvägen 8, KTH Campus, public videoconference link https://kth-se.zoom.us/j/61193674132, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

Research funders: Stockholm Senseable Lab, Stockholm Chamber of Cimmerce, Newsec, Digital Futures

QC 20250627

Available from: 2025-06-27 Created: 2025-06-06 Last updated: 2025-07-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Abraham, JonatanCeccato, VaniaLjungqvist, LukasNäsman, Per

Search in DiVA

By author/editor
Kang, YuhaoAbraham, JonatanCeccato, VaniaLjungqvist, LukasNäsman, Per
By organisation
Urban Planning and EnvironmentSchool of Architecture and the Built Environment (ABE)
In the same journal
Landscape and Urban Planning
Social Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 288 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf