kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental comparison of offline and online compliance compensation strategies for industrial articulated robots
KTH, School of Industrial Engineering and Management (ITM), Production engineering.ORCID iD: 0000-0002-8222-503x
KTH, School of Industrial Engineering and Management (ITM), Production engineering, Manufacturing and Metrology Systems.ORCID iD: 0000-0002-2376-4922
KTH, School of Industrial Engineering and Management (ITM), Production engineering.ORCID iD: 0000-0001-9185-4607
Number of Authors: 32022 (English)In: European Society for Precision Engineering and Nanotechnology, Conference Proceedings: 22nd International Conference and Exhibition, EUSPEN 2022, euspen , 2022, p. 213-216Conference paper, Published paper (Refereed)
Abstract [en]

Industrial articulated robots appeal to high force processes such as material removal applications mainly due to their high flexibility and large working space. However, due to the articulated robot's lower stiffness, significant deformations arise in the presence of process forces which reduces the robot's positioning accuracy. To improve the positioning accuracy in tasks performed under load, offline or online compliance compensation methods are implemented. This study presents an experimental comparison of the implementation and performance of offline and online compliance compensation strategies in a high-force application, i.e., loaded circular trajectory, characterized by the presence of quasi-static forces. The performance of the two compensation strategies was evaluated by calculating the mean deformation (comparison between unloaded and loaded trajectories). The results indicate that the performance of the online compensation strategy exceeded the offline compensation strategy performance for the case study analyzed. The limitations and potentialities of the different compensation strategies are discussed in terms of implementation and applicability for contact applications.

Place, publisher, year, edition, pages
euspen , 2022. p. 213-216
Keywords [en]
compliance error compensation, Industrial robot, loaded circular trajectory, stiffness
National Category
Robotics and automation Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:kth:diva-333497Scopus ID: 2-s2.0-85145590330OAI: oai:DiVA.org:kth-333497DiVA, id: diva2:1785417
Conference
22nd International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2022, Geneva, Switzerland, May 30 2022 - Jun 3 2022
Note

Part of ISBN 9781998999118

QC 20230802

Available from: 2023-08-02 Created: 2023-08-02 Last updated: 2025-03-10Bibliographically approved
In thesis
1. On the Accuracy of Articulated Robots: A Comprehensive Approach to Evaluate and Improve Robot Accuracy for Contact Applications
Open this publication in new window or tab >>On the Accuracy of Articulated Robots: A Comprehensive Approach to Evaluate and Improve Robot Accuracy for Contact Applications
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Traditionally, robots have primarily been used in tasks with minimalor no contact with the environment, such as material handling and painting.The articulated robot, with its flexibility, adaptability, affordability, andlarge workspace, is well-suited for a wide range of contact applications requiringcontinuous interaction with the environment. However, the inherent lowstructural stiffness of articulated robots can lead to significant deformationunder external loads, which, in turn, affects the accuracy of the end-effector’spositioning. Therefore, improving accuracy is crucial for the widespread adoptionof robotic systems in high-precision contact applications.This research investigates the impact of load and motion on the positioningaccuracy of articulated robots in contact applications. The analysisperformed on quasi-static deflections reveals that traditional static calibrationmethods can underestimate actual positioning errors by neglecting thecombined effects of load and motion.To address this, a model-based quasi-static compliance calibration methodis proposed. This method leverages a joint stiffness model to estimate andcompensate for robot deformation. Experimental results demonstrate significantaccuracy improvements, with positioning error reductions ranging from60% to 90%, depending on the robot, application, workspace, and load conditions.To enhance the practical applicability of the method, a balance amongaccuracy, computational efficiency, and ease of implementation is prioritized.The quasi-static approach results in a suitable compromise between accuracylevel and resource requirements.To further contribute to mainstream calibration accuracy improvements inindustrial settings, this work demonstrates the feasibility of transferring jointstiffness parameters, identified through quasi-static analysis, among identicalrobots sharing similar tasks, loads, and operational spaces. This transferbasedcompensation approach was compared to conventional compensationapproaches to assess its effectiveness in minimizing load-induced errors.Finally, to effectively evaluate robot performance in contact applications,a comprehensive set of testing conditions is proposed. These conditions considerfactors such as load, velocity, directionality, and workspace coverage,which can deliver a more rigorous assessment of robot capabilities.Future research directions include investigating the interplay betweenquasi-static and dynamic effects, exploring advanced modeling techniques thatcombine physics-based and data-driven approaches to address residual errors,and developing robust performance evaluation procedures for complex roboticsystems in emerging contact applications.

Abstract [sv]

Traditionellt har robotar använts för uppgifter med begränsad interaktionmed omgivningen, såsom materialhantering och målning. Den artikulärarobotens flexibilitet, anpassningsförmåga, överkomliga pris och stora arbetsområdegör den dock attraktiv även för mer komplexa uppgifter som kräverkontinuerlig kontakt med omgivningen. Den låga strukturella styvheten hosartikulära robotar kan dock leda till betydande deformationer vid yttre belastningar,vilket påverkar noggrannheten i sluteffektorns positionering. För attbredda användningen av robotsystem i högprecisionsapplikationer där kontaktmed omgivningen är avgörande, är det nödvändigt att förbättra derasnoggrannhet.Denna forskning undersöker hur belastning och rörelse påverkar positioneringsnoggrannhetenhos artikulära robotar i kontaktapplikationer. Analysenav kvasistatiska deformationer visar att traditionella statiska kalibreringsmetoderkan underskatta positioneringsfel, eftersom de inte beaktar de kombineradeeffekterna av last och rörelse.För att åtgärda detta föreslås en modellbaserad kvasistatisk kalibreringsmetodsom använder en ledstyvhetsmodell för att uppskatta och kompenseraför deformation. Experimentella resultat visar betydande noggrannhetsförbättringar,med felminskningar från 60% till 90%, beroende på robot, applikation,arbetsyta och belastningsförhållanden.För att öka metodens användbarhet prioriteras en balans mellan noggrannhet,effektivitet och implementering. Den kvasistatiska metoden ger enlämplig kompromiss inom noggrannhetsnivå och resurskrav. Dessutom, sombidrar till att göra förbättringar av kalibreringsnoggrannhet gemensamt i industriellamiljöer, demonstreras möjligheten att överföra ledens styvhet, identifieradmed den kvasistatiska metoden, bland en grupp identiska robotar somdelar liknande uppgifter, belastningar och operativt utrymme. Förmågan hosdenna överföringsbaserade kompensationsmetod för att minimera belastningsinduceradefel jämförs med den konventionella kompensationsmetoden.Slutligen föreslås ett omfattande kriterium för att utvärdera robotprestandai kontaktapplikationer, där faktorer som belastning, hastighet och arbetsytabeaktas. Detta möjliggör en mer noggrann och heltäckande bedömningav robotens kapacitet.Framtida forskning ska fokusera på samspelet mellan kvasistatiska och dynamiskaeffekter, utforska avancerade modelleringstekniker som kombinerarfysikbaserade och datadrivna metoder för att hantera kvarvarande fel, samtutveckla robusta prestandautvärderingsprocedurer för komplexa robotsystem.Målet är att ytterligare förbättra robotarnas noggrannhet och tillförlitligheti nya kontaktapplikationer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. p. 87
Series
TRITA-ITM-AVL ; 2025:6
Keywords
Articulated robot, Accuracy, Calibration, Compensation, Contact applications, Performance, Transferability, Artikulär robot, Noggrannhet, Kalibrering, Kompensation, Kontaktapplikationer, Prestanda, Överförbarhet
National Category
Production Engineering, Human Work Science and Ergonomics Robotics and automation
Research subject
Production Engineering
Identifiers
urn:nbn:se:kth:diva-361003 (URN)978-91-8106-224-3 (ISBN)
Public defence
2025-04-02, Kollegiesalen / https://kth-se.zoom.us/j/63614050355, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2025-03-10 Created: 2025-03-10 Last updated: 2025-05-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Gonzalez, MonicaTheissen, Nikolas AlexanderArchenti, Andreas

Search in DiVA

By author/editor
Gonzalez, MonicaTheissen, Nikolas AlexanderArchenti, Andreas
By organisation
Production engineeringManufacturing and Metrology Systems
Robotics and automationProduction Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 218 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf