kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enzyme Engineering for Chemical Synthesis and Water Absorbing Performance
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology. (BioCat group)ORCID iD: 0009-0005-2901-1410
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 3: Good Health and Well-Being, SDG 7: Affordable and clean energy, SDG 6: Clean water and sanitation, SDG 11: Sustainable cities and communities, SDG 9: Industry, innovation and infrastructure, SDG 12: Responsible consumption and production, SDG 14: Life below water
Abstract [en]

Enzyme engineering is a powerful approach to enhancing biocatalytic performance and optimizing protein-based materials for diverse applications. This study employs ancestral sequence reconstruction (ASR), rational design, and process condition optimization to improve enzyme stability, catalytic efficiency, and functional properties. Four key areas are explored: transaminase engineering for chiral amine synthesis, enzymatic amide bond formation, Baeyer-Villiger oxidation selectivity control, and protein-based water-absorbing materials. To enhance the thermostability and substrate scope of ω-transaminase from Silicibacter pomeroyi(Sp-ATA), ASR was used to identify stabilizing mutations, improving its industrial suitability. For amide bond formation, rational design optimized Pseudomonas aeruginosa N-acyltransferase (PaAT), coupled with the adenylation domain of Segniliparus rugosus carboxylic acid reductase (CARsr-A). The engineered Y72S/F206N variant significantly enhanced conversion rates for pharmaceutically relevant carboxylic acids, providing a sustainable alternative to chemical synthesis. In Baeyer-Villiger oxidation, process optimization was investigated to control regioselectivity. Engineered Baeyer-Villiger monooxygenases (BVMOs) from Acinetobacter and Arthrobacter species shifted product distribution toward the"normal" lactone by increasing oxygen availability. For protein-based waterabsorbing materials, patatin mutagenesis altered charged amino acid composition. As demonstrated by molecular dynamics simulations, variants enriched in Lys and Asp doubled water absorption, demonstrating the potential of enzyme engineering in sustainable absorbent material development. This study integrates computational and experimental enzyme engineering strategies to improve biocatalysis for chemical synthesis and functional biomaterials, offering novel solutions for industrial biotechnology and sustainable material science.

Abstract [sv]

Enzymingenjörskonst är en kraftfull strategi för att förbättra biokatalytisk prestanda och optimera proteinbaserade material för olika tillämpningar. Denna studie tillämpar rekonstitution av förfäderssekvenser (ASR), rationell design och optimering av processförhållanden för att förbättra enzymstabilitet, katalytisk effektivitet och funktionella egenskaper. Fyra centrala områden undersöks: transaminasdesign för syntes av kirala aminer, enzymatisk amidbildning, selektivitetskontroll vid Baeyer-Villiger-oxidation samt proteinbaserade vattenabsorberande material. För att förbättra termostabiliteten och substratspektra för ω-transaminaser från Silicibacter pomeroyi (Sp-ATA) användes ASR för att identifiera stabiliserande mutationer, vilket ökade enzymets industriella användbarhet. Vid amidbindningsbildning optimerades Pseudomonas aeruginosa N-acyltransferas (PaAT) genom rationell design och kombinerades med adenyleringsdomänen från Segniliparus rugosus karboxylsyrareduktas (CARsr-A). Den modifierade varianten Y72S/F206N visade en avsevärt förbättrad omvandlingshastighet för farmaceutiskt relevanta karboxylsyror, vilket erbjuder ett hållbart alternativ till kemisk syntes. I Baeyer-Villiger-oxidation undersöktes processoptimering för att styra regioselektiviteten. Ingenjörsmässigt modifierade Baeyer-Villiger monooxygenaser (BVMOs) från Acinetobacter- och Arthrobacter-arter kunde genom ökad syrgastillgänglighet styra produktfördelningen mot den "normala" laktonen. För proteinbaserade vattenabsorberande material genomfördes mutagenes på patatin, ett protein från potatis, för att förändra sammansättningen av laddade aminosyrarester. Varianter med en högre andel lysin och asparaginsyra uppvisade en fördubblad vattenabsorption, enligt molekylär dynamik-simuleringar, vilket demonstrerar potentialen hos enzymingenjörskonst för utveckling av hållbara absorberande material. Sammanfattningsvis belyser denna studieintegrationen av beräkningsbaserade och experimentella enzymteknikstrategier för att förbättra biokatalys vid kemisk syntes och för funktionella biomaterial, och erbjuder nya lösningar för industriell bioteknik och hållbar materialvetenskap.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. 87
Series
TRITA-CBH-FOU ; 2025:4
Keywords [en]
enzyme engineering, ancestral sequence reconstruction (ASR), amide bond formation, ω- transaminase, thermostability, BVMOs, regioselectivity, super absorbent polymers (SAPs)
Keywords [sv]
enzymteknik, rekonstitution av förfäderssekvenser (ASR), amidbindning, ω-transaminas, termostabilitet, BVMO, regioselektivitet, superabsorberande polymerer (SAPs)
National Category
Biocatalysis and Enzyme Technology
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-360627ISBN: 978-91-8106-207-6 (print)OAI: oai:DiVA.org:kth-360627DiVA, id: diva2:1941545
Public defence
2025-03-28, https://kth-se.zoom.us/j/62430600641, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
KTH Royal Institute of Technology
Note

Embargo till och med 2026-03-28 godkänt av skolchef Amelie Eriksson Karlström via e-post 2025-03-21

QC 20250303

Available from: 2025-03-03 Created: 2025-02-28 Last updated: 2025-10-30Bibliographically approved
List of papers
1. Exploring the Stability and Substrate Profile of Transaminase from Silicibacter pomeroyi with Ancestral Sequence Reconstruction
Open this publication in new window or tab >>Exploring the Stability and Substrate Profile of Transaminase from Silicibacter pomeroyi with Ancestral Sequence Reconstruction
Show others...
(English)Manuscript (preprint) (Other academic)
Keywords
ancestral sequence reconstruction; Silicibacter pomeroyi; ω-transaminase; stability
National Category
Biocatalysis and Enzyme Technology
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-360614 (URN)
Funder
KTH Royal Institute of Technology
Note

The paper was submitted to the journal.

QC 20250303

Available from: 2025-02-28 Created: 2025-02-28 Last updated: 2025-03-03Bibliographically approved
2. Relaxing substrate specificity of N-acyltransferase from Pseudomonas aeruginosa for modular biocatalytic amide bond synthesis
Open this publication in new window or tab >>Relaxing substrate specificity of N-acyltransferase from Pseudomonas aeruginosa for modular biocatalytic amide bond synthesis
(English)Manuscript (preprint) (Other academic)
Keywords
biocatalysis; amide bonds formation; enzyme engineering; green chemistry; acyl transferase
National Category
Biocatalysis and Enzyme Technology
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-360624 (URN)
Note

QC 20250303

Available from: 2025-02-28 Created: 2025-02-28 Last updated: 2025-03-11Bibliographically approved
3. Impact of oxygen on the regioselectivity of BVMOs
Open this publication in new window or tab >>Impact of oxygen on the regioselectivity of BVMOs
(English)Manuscript (preprint) (Other academic)
Keywords
BVMOs; asymmetric ketone; regioselectivity; biocatalysis
National Category
Biocatalysis and Enzyme Technology
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-360625 (URN)
Note

QC 20250303

Available from: 2025-02-28 Created: 2025-02-28 Last updated: 2025-03-11Bibliographically approved
4. Mutagenesis study for understanding the superabsorbent behavior of protein-based materials
Open this publication in new window or tab >>Mutagenesis study for understanding the superabsorbent behavior of protein-based materials
(English)Manuscript (preprint) (Other academic)
Keywords
Patatin-like protein; Bio-based absorbents; Superabsorbent polymers (SAPs); Genetically modified proteins
National Category
Bio Materials
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-360626 (URN)
Funder
Swedish Research Council Formas, 2022_00362
Note

This paper was submitted to International Journal of Biological Macromolecules, under review.

QC 20250303

Available from: 2025-02-28 Created: 2025-02-28 Last updated: 2025-03-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Zhao, Luyao

Search in DiVA

By author/editor
Zhao, Luyao
By organisation
Industrial Biotechnology
Biocatalysis and Enzyme Technology

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1396 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf