Enzyme Engineering for Chemical Synthesis and Water Absorbing Performance
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Sustainable development
SDG 3: Good Health and Well-Being, SDG 7: Affordable and clean energy, SDG 6: Clean water and sanitation, SDG 11: Sustainable cities and communities, SDG 9: Industry, innovation and infrastructure, SDG 12: Responsible consumption and production, SDG 14: Life below water
Abstract [en]
Enzyme engineering is a powerful approach to enhancing biocatalytic performance and optimizing protein-based materials for diverse applications. This study employs ancestral sequence reconstruction (ASR), rational design, and process condition optimization to improve enzyme stability, catalytic efficiency, and functional properties. Four key areas are explored: transaminase engineering for chiral amine synthesis, enzymatic amide bond formation, Baeyer-Villiger oxidation selectivity control, and protein-based water-absorbing materials. To enhance the thermostability and substrate scope of ω-transaminase from Silicibacter pomeroyi(Sp-ATA), ASR was used to identify stabilizing mutations, improving its industrial suitability. For amide bond formation, rational design optimized Pseudomonas aeruginosa N-acyltransferase (PaAT), coupled with the adenylation domain of Segniliparus rugosus carboxylic acid reductase (CARsr-A). The engineered Y72S/F206N variant significantly enhanced conversion rates for pharmaceutically relevant carboxylic acids, providing a sustainable alternative to chemical synthesis. In Baeyer-Villiger oxidation, process optimization was investigated to control regioselectivity. Engineered Baeyer-Villiger monooxygenases (BVMOs) from Acinetobacter and Arthrobacter species shifted product distribution toward the"normal" lactone by increasing oxygen availability. For protein-based waterabsorbing materials, patatin mutagenesis altered charged amino acid composition. As demonstrated by molecular dynamics simulations, variants enriched in Lys and Asp doubled water absorption, demonstrating the potential of enzyme engineering in sustainable absorbent material development. This study integrates computational and experimental enzyme engineering strategies to improve biocatalysis for chemical synthesis and functional biomaterials, offering novel solutions for industrial biotechnology and sustainable material science.
Abstract [sv]
Enzymingenjörskonst är en kraftfull strategi för att förbättra biokatalytisk prestanda och optimera proteinbaserade material för olika tillämpningar. Denna studie tillämpar rekonstitution av förfäderssekvenser (ASR), rationell design och optimering av processförhållanden för att förbättra enzymstabilitet, katalytisk effektivitet och funktionella egenskaper. Fyra centrala områden undersöks: transaminasdesign för syntes av kirala aminer, enzymatisk amidbildning, selektivitetskontroll vid Baeyer-Villiger-oxidation samt proteinbaserade vattenabsorberande material. För att förbättra termostabiliteten och substratspektra för ω-transaminaser från Silicibacter pomeroyi (Sp-ATA) användes ASR för att identifiera stabiliserande mutationer, vilket ökade enzymets industriella användbarhet. Vid amidbindningsbildning optimerades Pseudomonas aeruginosa N-acyltransferas (PaAT) genom rationell design och kombinerades med adenyleringsdomänen från Segniliparus rugosus karboxylsyrareduktas (CARsr-A). Den modifierade varianten Y72S/F206N visade en avsevärt förbättrad omvandlingshastighet för farmaceutiskt relevanta karboxylsyror, vilket erbjuder ett hållbart alternativ till kemisk syntes. I Baeyer-Villiger-oxidation undersöktes processoptimering för att styra regioselektiviteten. Ingenjörsmässigt modifierade Baeyer-Villiger monooxygenaser (BVMOs) från Acinetobacter- och Arthrobacter-arter kunde genom ökad syrgastillgänglighet styra produktfördelningen mot den "normala" laktonen. För proteinbaserade vattenabsorberande material genomfördes mutagenes på patatin, ett protein från potatis, för att förändra sammansättningen av laddade aminosyrarester. Varianter med en högre andel lysin och asparaginsyra uppvisade en fördubblad vattenabsorption, enligt molekylär dynamik-simuleringar, vilket demonstrerar potentialen hos enzymingenjörskonst för utveckling av hållbara absorberande material. Sammanfattningsvis belyser denna studieintegrationen av beräkningsbaserade och experimentella enzymteknikstrategier för att förbättra biokatalys vid kemisk syntes och för funktionella biomaterial, och erbjuder nya lösningar för industriell bioteknik och hållbar materialvetenskap.
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2025. , p. 87
Series
TRITA-CBH-FOU ; 2025:4
Keywords [en]
enzyme engineering, ancestral sequence reconstruction (ASR), amide bond formation, ω- transaminase, thermostability, BVMOs, regioselectivity, super absorbent polymers (SAPs)
Keywords [sv]
enzymteknik, rekonstitution av förfäderssekvenser (ASR), amidbindning, ω-transaminas, termostabilitet, BVMO, regioselektivitet, superabsorberande polymerer (SAPs)
National Category
Biocatalysis and Enzyme Technology
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-360627ISBN: 978-91-8106-207-6 (print)OAI: oai:DiVA.org:kth-360627DiVA, id: diva2:1941545
Public defence
2025-03-28, https://kth-se.zoom.us/j/62430600641, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
KTH Royal Institute of Technology
Note
Embargo till och med 2026-03-28 godkänt av skolchef Amelie Eriksson Karlström via e-post 2025-03-21
QC 20250303
2025-03-032025-02-282025-10-30Bibliographically approved
List of papers