kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Constraint maps and free boundaries
ETH Zürich, Switzerland.
Institute for Theoretical Studies, ETH Zürich, Switzerland.
Uppsala University, Uppsala, Sweden.
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Analysis, Dynamics, Geometry, Number Theory and PDE.ORCID iD: 0000-0002-1316-7913
2025 (English)In: Notices of the American Mathematical Society, ISSN 0002-9920, E-ISSN 1088-9477, Vol. 72, no 5, p. 494-503Article in journal (Refereed) Published
Abstract [en]

In this survey we will focus on a specific but remarkably ubiquitous family of free boundary problems, those of obstacle-type. We will recount the historical development of the topic together with more recent advances, focusing in particular on vector-valued variational problems with constraints.

Place, publisher, year, edition, pages
American Mathematical Society (AMS) , 2025. Vol. 72, no 5, p. 494-503
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-366017DOI: 10.1090/noti3162Scopus ID: 2-s2.0-105007613182OAI: oai:DiVA.org:kth-366017DiVA, id: diva2:1981119
Note

QC 20250703

Available from: 2025-07-03 Created: 2025-07-03 Last updated: 2025-07-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Shahgholian, Henrik

Search in DiVA

By author/editor
Shahgholian, Henrik
By organisation
Analysis, Dynamics, Geometry, Number Theory and PDE
In the same journal
Notices of the American Mathematical Society
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf