kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Integrating bioengineering approaches and precipitation techniques for phosphorus recovery from eutrophic marine sediments
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Industrial Biotechnology.
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Phosphorus (P) is an essential nutrient for all living organisms, yet its availability is limited within the European Union (EU), leading to a complete reliance on imports to meet the region’s P demand. This dependency highlights the urgent need to explore alternative P sources, with recovery from secondary resources emerging as a viable solution. Concurrently, marine eutrophication, particularly in the Baltic Sea, has become a global environmental crisis due to decades of nutrient over-enrichment. According to Baltic Marine Environment Protection Commission’s (HELCOM) eutrophication assessment, over 97% of the Baltic Sea region fails to meet good environmental status, with 12% classified as being in the worst condition. Addressing these dual challenges, P resource scarcity and P-driven eutrophication, requires innovative approaches. Recovering P from eutrophic Baltic Sea sediments presents a promising strategy, offering the dual benefits of P recycling and eutrophication mitigation. This Ph.D. research aims to develop a chemical bioengineering-method for P release and recovery from Baltic Sea sediments, contributing to both resource sustainability and environmental restoration. 

Anaerobic batch experiments demonstrated that among various carbon sources, propionic acid and glucose exhibited significantly higher stimulation of P release, indicating their stronger potential for promoting P mobilization under anaerobic conditions. Subsequent long-term sequencing batch reactor (SBR) operations further verified that supplementation with propionic acid at 200 mg/L chemical oxygen demand (COD) effectively facilitated both P anaerobic release and aerobic uptake from marine sediments, while selectively enriching polyphosphate-accumulating organisms (PAO)-related family (Rhodocyclaceae), whose abundance increased from 0% to 16% within 42 days.

 

Building on these findings, optimized operational conditions were applied to achieve enhanced PAO enrichment and P concentration for subsequent struvite precipitation. Cyclic anaerobic-aerobic cultivation promoted PAO abundance at the genus level from 0.06% to 7.1%, while achieving satisfactory P release (8.61 mg P/g VSS·h-1) and uptake (8.43 mg P/g VSS·h-1) within the sediment-inoculated SBR. Additionally, extended anaerobic operation enabled the concentration of low-P solutions into high-P supernatants (up to 99.5 mg/L), facilitating efficient P recovery with a rate exceeding 95%. Notably, this P extraction process further accelerated PAO enrichment at the genus level, increasing their abundance from less than 15% to 52.1% by the end of the operation. 

Furthermore, a combined strategy involving PAO inoculation and ethylenediaminetetraacetic acid (EDTA) addition was proposed to further enhance P release from marine sediments. This approach achieved a final P release efficiency exceeding 80% within 13 days, with the P concentration reaching approximately 150 mg/L and PAO abundance increasing rapidly from <13% to over 65%. PHREEQC simulations and precipitation experiments confirmed the feasibility of recovering the released P via precipitation. 

Overall, this study provides new insights into the microbial mechanisms and engineering strategies for P release and recovery from marine sediments, offering a promising approach for sustainable P resource management and eutrophication mitigation.

Abstract [sv]

Fosfor (P) är ett livsnödvändigt näringsämne för alla levande organismer, men tillgången inom Europeiska unionen (EU) är begränsad, vilket har lett till ett fullständigt beroende av import för att möta regionens P-behov. Detta beroende understryker det akuta behovet av att undersöka alternativa P-källor, där återvinning från sekundära resurser håller på att utvecklas till en hållbar lösning. Samtidigt har årtionden av övergödning utvecklats till en global miljökris och särskilt Östersjön är hårt drabbad. Enligt data från HELCOMs eutrofieringsbedömning har över 97 % av Östersjöregionen inte god miljöstatus, där 12 % klassificeras som värsta möjliga tillstånd. För att hantera dessa dubbla utmaningar, brist på P-resurser och P-relaterad övergödning, krävs innovativa lösningar. Återvinning av P från eutrofa sediment i Östersjön är en lovande strategi som kombinerar resurshantering med miljöförbättring. Syftet med detta doktorandprojekt är att utveckla en kemisk bioteknisk metod för frisättning och återvinning av P från Östersjösediment, vilket bidrar till både resurshållbarhet och ekologisk återställning.

Anaeroba satsförsök visade att propionsyra och glukos, bland ett flertal kolkällor, kraftigt stimulerade frisättning av P, vilket indikerar deras stora potential för att mobilisera P under dessa förhållanden. Efterföljande långtidsförsök i sekventiell batchreaktor (SBR) bekräftade att tillsats av propionsyra vid 200 mg/L kemisk syreförbrukning (COD) effektivt underlättade både anaerob frisättning och aerobt upptag av P från marina sediment, samtidigt som den selektivt berikade PAO-relaterade bakterier (Rhodocyclaceae), vars förekomst ökade från 0 % till 16 % inom 42 dagar.

Med utgångspunkt av dessa resultat tillämpades optimerade driftsförhållanden för att ytterligare förstärka PAO-berikning och P-koncentrering inför efterföljande utfällning av struvit. Cyklisk anaerob–aerob odling ökade förekomsten av PAO på genusnivå från 0,06 % till 7,1 %, samtidigt som en hög P-frisättning (8,61 mg P/g VSS·h-1) och ett högt P-upptag (8,43 mg P/g VSS·h1) uppnåddes i den sedimentinokulerade SBRen. Vidare möjliggjorde förlängd anaerob drift en koncentrationsökning från låg-P-lösningar till hög-P-supernatanter (upp till 99,5 mg/L), vilket möjliggjorde effektiv återvinning med en effektivitet över 95 %. Noterbart påskyndade denna P-utvinningsprocess ytterligare PAO-berikningen, med en ökning från mindre än 15 % till 52,1 % vid driftens slut.

Dessutom utvärderades en kombinerad strategi med PAO-inokulation och tillsats av etylendiamintetraättiksyra för att ytterligare öka P-frisättningen från marina sediment. Denna metod uppnådde över 80 % P-frisättning inom 13 dagar, med en P-koncentration som uppnådde cirka 150 mg/L och en snabb ökning av PAO från <13 % till över 65 %. PHREEQC-simuleringar och utfällningsförsök bekräftade möjligheten att återvinna den frigjorda P genom utfällning.

Sammanfattningsvis ger denna studie nya insikter i mikrobiella mekanismer och tekniska strategier för frisättning och återvinning av P från marina sediment. Studien erbjuder ett lovande tillvägagångssätt för hållbar resurshantering och bekämpning av övergödning.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2025. , p. 91
Series
TRITA-CBH-FOU ; 2025:21
National Category
Environmental Sciences
Research subject
Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-364766ISBN: 978-91-8106-344-8 (electronic)OAI: oai:DiVA.org:kth-364766DiVA, id: diva2:1986012
Public defence
2025-09-02, Kollegiesalen, via Zoom: https://kth-se.zoom.us/j/67610573472, Brinellvägen 6, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2025-07-29

Available from: 2025-07-29 Created: 2025-07-29 Last updated: 2025-08-19Bibliographically approved
List of papers
1. Unveiling the impact of carbon sources on phosphorus release from sediment: Investigation of microbial interactions and metabolic pathways for anaerobic phosphorus recovery
Open this publication in new window or tab >>Unveiling the impact of carbon sources on phosphorus release from sediment: Investigation of microbial interactions and metabolic pathways for anaerobic phosphorus recovery
Show others...
2024 (English)In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 500, article id 157058Article in journal (Refereed) Published
Abstract [en]

The aim of this study was recovery of phosphorus (P) from marine sediment, and our results revealed the influence of P release from the sediment stimulated with different types and concentrations of carbon sources. During the 15-day anaerobic operation, the sediments stimulated with 1 g/L propionic acid and glucose exhibited more prominent effects compared to other trials, with 5.98 mg/L and 6.44 mg/L of P released, respectively, with a total solid content of 4 %. Notably, the excessive addition of carbon sources was shown to can partially inhibit P release. As microbial activity intensified, P was utilized for microbial synthesis, resulting in a decreased P in the supernatant. For example, in glucose-fed systems with concentrations of 5 g/L and 10 g/L, the P concentration decreased from 5 mg/L on Day 3 to approximately 3 mg/L on Day 15. The sequencing results indicated distinct evolutions within different carbon source-fed systems over the 15-day operations. Feeding high concentrations of glucose resulted in rapid enrichment of fermentative bacteria under anaerobic conditions, while sulfate-reducing bacteria promoted P release in volatile fatty acids-fed systems. Metabolic analysis revealed that carbon sources not only influence gene expression in different systems, but also impact the metabolic pathways involved in nutrient cycling, which can be interrelated. For example, a significant positive correlation was observed between the abundance of P and sulfur cycling functional genes (phoD, cysD).

Place, publisher, year, edition, pages
Elsevier B.V., 2024
Keywords
Carbon conversion, Carbon sources stimulation, Electron transfer, Metabolic pathways, Microbial responses, Phosphorus recovery
National Category
Microbiology
Identifiers
urn:nbn:se:kth:diva-355953 (URN)10.1016/j.cej.2024.157058 (DOI)001348508500001 ()2-s2.0-85207651398 (Scopus ID)
Note

QC 20241119

Available from: 2024-11-06 Created: 2024-11-06 Last updated: 2025-07-29Bibliographically approved
2. Implementation of enhanced biological phosphorus recovery for phosphorus mining from eutrophic marine sediments: The optimization of parameters and exploration of microbial responses
Open this publication in new window or tab >>Implementation of enhanced biological phosphorus recovery for phosphorus mining from eutrophic marine sediments: The optimization of parameters and exploration of microbial responses
Show others...
2024 (English)In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 502, article id 157888Article in journal (Refereed) Published
Abstract [en]

To evaluate the feasibility of enriching polyphosphate-accumulating organisms (PAOs) within marine sediment for achieving phosphorus (P) recovery, two sediment-inoculated sequencing batch reactors (SBRs), fed with propionic acid (R1) and glucose (R2), were operated for 119 days. For comparison, two sewage sludge-inoculated reactors (R3 and R4) were also set up. The sediments/sludge fed with 200 mg/L chemical oxygen demand (COD) equivalent propionic acid exhibited satisfactory P release/uptake performance after 56 days of culture. The maximum P release and uptake rates for R1 were 3 mg P/g VSS•h−1 and 2.5 mg P/g VSS•h−1, respectively, while for R3 they were 2.6 mg P/g VSS•h−1 and 5.8 mg P/g VSS•h−1, respectively. Meanwhile, the PAO family (Rhodocyclaceae) in R1 increased from almost 0 % initially to 16.0 % after 42 days. However, the glucose-fed SBRs did not exhibit enhanced biological phosphorus removal (EBPR) performance throughout the operation. As the COD feeding concentration increased to 400 mg/L, the reactors showed EBPR deterioration. Total P in R1 and R3 significantly decreased from 423.7 mg to 307.2 mg and from 368.0 mg to 94.9 mg, respectively. Key intracellular polymer responses indicated that introduction of excessively high COD significantly reduced poly-P content and the anaerobic synthesis of polyhydroxyalkanoate. Microbial analysis suggested that the breakdown of EBPR performance could be attributed to glycogen-accumulating organisms outcompeting PAOs under high carbon feeding conditions. Additionally, PHREEQC simulations confirmed that P-rich supernatant from the anaerobic phase could theoretically be recovered as struvite, with a recovery efficiency of up to 94 %.

Place, publisher, year, edition, pages
Elsevier BV, 2024
Keywords
Enhanced biological phosphorus removal process, Eutrophic marine sediment, Microbial responses, PAO/GAO competition, Phosphorus recovery
National Category
Water Engineering
Identifiers
urn:nbn:se:kth:diva-357185 (URN)10.1016/j.cej.2024.157888 (DOI)001372359300001 ()2-s2.0-85210133672 (Scopus ID)
Note

QC 20241211

Available from: 2024-12-04 Created: 2024-12-04 Last updated: 2025-07-29Bibliographically approved
3. Integrating bioengineering and precipitation approaches for phosphorus recovery from marine sediments: A sustainable attempt for phosphorus loop closure
Open this publication in new window or tab >>Integrating bioengineering and precipitation approaches for phosphorus recovery from marine sediments: A sustainable attempt for phosphorus loop closure
(English)Manuscript (preprint) (Other academic)
Keywords
Phosphorus recovery, Marine sediment, EBPR, PAO, Struvite precipitation, PHREEQC modelling
National Category
Environmental Sciences
Identifiers
urn:nbn:se:kth:diva-364767 (URN)
Note

QC 20250617

Available from: 2025-06-16 Created: 2025-06-16 Last updated: 2025-07-29Bibliographically approved
4. Integrated microbial-chemical strategy enhance phosphorus mining from marine sediments: Insights from metagenomics and precipitation
Open this publication in new window or tab >>Integrated microbial-chemical strategy enhance phosphorus mining from marine sediments: Insights from metagenomics and precipitation
(English)Manuscript (preprint) (Other academic)
Keywords
phosphorus recovery; marine sediment; PAO inoculation; fed-batch reactors; metagenomics; crystallization
National Category
Environmental Sciences
Identifiers
urn:nbn:se:kth:diva-364769 (URN)
Note

QC 20250617

Available from: 2025-06-16 Created: 2025-06-16 Last updated: 2025-07-29Bibliographically approved

Open Access in DiVA

kappa(5612 kB)87 downloads
File information
File name FULLTEXT01.pdfFile size 5612 kBChecksum SHA-512
5a89380b41a43dd60659aaa9464ff261dcef9ea0fc38787df40a014fe1e5fe120a52a6f60bdb7c9b94598f30dab9a913ae34209ea95771dc2324d935ce00d0dc
Type summaryMimetype application/pdf

Authority records

Zhu, Fengyi

Search in DiVA

By author/editor
Zhu, Fengyi
By organisation
Industrial Biotechnology
Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1008 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf