kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Approximability and inapproximability of fundamental problems
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Algebra, Combinatorics and Topology.ORCID iD: 0009-0006-4903-1328
2025 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis contains three papers on approximation algorithms and inapproximability results. Paper A contains NP-hardness inapproximability results for the Max-2Lin(2) problem, where 2Lin(2) refers to a system of linear equations modulo $2$ with two variables per equation. Paper B gives an approximation algorithm for the recently introduced linearly ordered hypergraph coloring problem. Before our paper, the best known approximation algorithm was able to color a $2$-colorable $3$-uniform hypergraph with $n$ nodes using $O(\sqrt[5]n)$ colors. But our approximation algorithm is able to do it in only $\log_2(n)$ colors, breaking the $n^{O(1)}$ barrier. Paper C introduces two completely new concepts called promise useful and promise useless for Promise Constraint Satisfaction Problems (PCSPs). The paper also contains a survey of essential results related to these two concepts. The hope is that these concepts will lead to a new direction of research for PCSPs.

Abstract [sv]

Denna avhandling innehåller tre artiklar om approximationsalgoritmer och resultat om icke-approximabilitet. Artikel A innehåller NP-svårhetsresultat om icke-approximabilitet för Max-2Lin(2), där 2Lin(2) syftar på ett linjärt ekvationssystem modulo 2 med två variabler per ekvation. Artikel B innehåller en approximationsalgoritm för linjärt ordnad hypergraf-färgning. Rekordet innan Artikel B var en approximationsalgoritm som klarade av att färlägga en $2$-färgbar $3$-uniform hypergraf med $n$ noder med $O(\sqrt[5]n)$ färger. Men vår approximationsalgoritm använder endast $\log_2(n)$ färger, vilket slår $n^{O(1)}$-barriären. Artikel C introducerar två helt nya begrepp, kallade ``promise useful'' och ``promise useless'', för så kallade Promise Constraint Satisfaction Problems (PCSPer). Artikeln innehåller också en undersökning över viktiga resultat relaterade till dessa två begrepp. Förhoppningen är att begreppen kommer att leda till nya forskningsinriktningar för PCSPer.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. , p. 43
Series
TRITA-SCI-FOU ; 2025:37
Keywords [en]
CSP, PCSP, Polymorhpsm, Gadget-reductions, NP-hardness
Keywords [sv]
CSP, PCSP, Polymorfi, Mojängreduktioner, NP-svårighet
National Category
Computer Sciences
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-368868ISBN: 978-91-8106-371-4 (print)OAI: oai:DiVA.org:kth-368868DiVA, id: diva2:1991095
Presentation
2025-09-12, D3, Lindstedtvägen 5, Stockholm, 15:15 (English)
Opponent
Supervisors
Note

QC 2025-08-21

Available from: 2025-08-21 Created: 2025-08-21 Last updated: 2025-09-01Bibliographically approved
List of papers
1. On the NP-Hardness Approximation Curve for Max-2Lin(2)
Open this publication in new window or tab >>On the NP-Hardness Approximation Curve for Max-2Lin(2)
2024 (English)In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2024, Dagstuhl Publishing , 2024, article id 11Conference paper, Published paper (Refereed)
Abstract [en]

In the Max-2Lin(2) problem you are given a system of equations on the form xi + xj ≡ b (mod 2), and your objective is to find an assignment that satisfies as many equations as possible. Let c ∈ [0.5, 1] denote the maximum fraction of satisfiable equations. In this paper we construct a curve s(c) such that it is NP-hard to find a solution satisfying at least a fraction s of equations. This curve either matches or improves all of the previously known inapproximability NP-hardness results for Max-2Lin(2). In particular, we show that if c ≥ 0.9232 then 1−1−s(cc) > 1.48969, which improves the NP-hardness inapproximability constant for the min deletion version of Max-2Lin(2). Our work complements the work of O’Donnell and Wu that studied the same question assuming the Unique Games Conjecture. Similar to earlier inapproximability results for Max-2Lin(2), we use a gadget reduction from the (2k − 1)-ary Hadamard predicate. Previous works used k ranging from 2 to 4. Our main result is a procedure for taking a gadget for some fixed k, and use it as a building block to construct better and better gadgets as k tends to infinity. Our method can be used to boost the result of both smaller gadgets created by hand (k = 3) or larger gadgets constructed using a computer (k = 4).

Place, publisher, year, edition, pages
Dagstuhl Publishing, 2024
Keywords
2Lin(2), Gadget, Inapproximability, Max-Cut, NP-hardness
National Category
Computer Sciences Probability Theory and Statistics
Identifiers
urn:nbn:se:kth:diva-354316 (URN)10.4230/LIPIcs.APPROX/RANDOM.2024.11 (DOI)2-s2.0-85204456287 (Scopus ID)
Conference
27th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2024 and the 28th International Conference on Randomization and Computation, RANDOM 2024, London, United Kingdom of Great Britain and Northern Ireland, Aug 28 2024 - Aug 30 2024
Note

Part of ISBN 9783959773485

QC 20241003

Available from: 2024-10-02 Created: 2024-10-02 Last updated: 2025-08-21Bibliographically approved
2. A logarithmic approximation of linearly ordered colourings
Open this publication in new window or tab >>A logarithmic approximation of linearly ordered colourings
(English)Manuscript (preprint) (Other academic)
Abstract [en]

A linearly ordered (LO) k-colouring of a hypergraph assigns to each vertex a colour from the set {0,1,…,k−1} in such a way that each hyperedge has a unique maximum element. Barto, Batistelli, and Berg conjectured that it is NP-hard to find an LO k-colouring of an LO 2-colourable 3-uniform hypergraph for any constant k≥2 [STACS'21] but even the case k=3 is still open. Nakajima and Živný gave polynomial-time algorithms for finding, given an LO 2-colourable 3-uniform hypergraph, an LO colouring with O∗(n−−√) colours [ICALP'22] and an LO colouring with O∗(n−−√3) colours [ACM ToCT'23]. Very recently, Louis, Newman, and Ray gave an SDP-based algorithm with O∗(n−−√5) colours [FSTTCS'24]. We present two simple polynomial-time algorithms that find an LO colouring with O(log2(n)) colours, which is an exponential improvement. 

Keywords
colouring, hypergraph, linearly ordered colouring, algorithm
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-368866 (URN)10.48550/arXiv.2404.19556 (DOI)
Note

A preprint of the journal version to appear in the journal Theory of Computing.

QC 20250822

Available from: 2025-08-21 Created: 2025-08-21 Last updated: 2025-08-22Bibliographically approved
3. On the Usefulness of Promises
Open this publication in new window or tab >>On the Usefulness of Promises
(English)Manuscript (preprint) (Other academic)
Abstract [en]

A Boolean predicate A is defined to be promise-useful if PCSP(A B)  is tractable for some non-trivial B and otherwise it is promise-useless. We initiate investigations of this notion and derive sufficient conditions for both promise-usefulness and promise-uselessness (assuming P is not equal to NP ). While we do not obtain a complete characterization, our conditions are sufficient to classify all predicates of arity at most 4 and almost all predicates of arity 5. We also derive asymptotic results to show that for large arities a vast majority of all predicates are promise-useless.

Our results are primarily obtained by a thorough study of the ``Promise-SAT'' problem, in which we are given a k-SAT instance with the promise that there is a satisfying assignment for which the literal values of each clause satisfy some additional constraint.

The algorithmic results are based on the basic LP + affine IP algorithm of Brakensiek et al.~(SICOMP, 2020) while we use a number of novel criteria to establish NP-hardness.

Keywords
PCSP, CSP, polymorphism, promises, NP-hardness
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-368864 (URN)
Note

Preprint version from 23rd of June

QC 20250822

Available from: 2025-08-21 Created: 2025-08-21 Last updated: 2025-08-22Bibliographically approved

Open Access in DiVA

fulltext(43556 kB)144 downloads
File information
File name FULLTEXT01.pdfFile size 43556 kBChecksum SHA-512
547087f40debc7841cf21a3898641d54e070ad84741e3a60e08b0597703639ff14636c672e63c3df8c50b9fb468bc10f1e303360b747d0fb16544b2942483937
Type fulltextMimetype application/pdf

Authority records

Martinsson, Björn

Search in DiVA

By author/editor
Martinsson, Björn
By organisation
Algebra, Combinatorics and Topology
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 144 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1512 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf