kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance Evaluation of Serverless Edge Computing for AI Applications: Implementation, evaluation and modeling of an object-detection application running on a serverless architecture implemented with Kubernetes
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Prestandautvärdering av Serverless Edge Computing för AI-applikationer : Implementering, utvärdering och modellering av en objektdetekteringsapplikation som körs på en serverlös arkitektur implementerad med Kubernetes (Swedish)
Abstract [en]

Serverless edge computing is a distributed network and computing system in which the data is processed at the edge of the network based on serverless architecture. It can provide large-scale computing and storage resources with low latency, which are very useful in AI applications such as object detection. However, when analyzing serverless computing architectures, we model them using simple models, such as single server or multi-server queues, and it is important to make sure these models can explain the behaviors of real systems. Therefore, we focus on the performance evaluation of serverless edge computing for AI applications in this project. With that, we aim at proposing more realistic and accurate models for real serverless architectures. In this project, our objective is to evaluate the performance and model mathematically an object-detection application running on a serverless architecture implemented with Kubernetes. This project provides a detailed description of the implementation of the serverless platform and YOLOv5-based object detection application. After implementation, we design experiments and make performance evaluations of the time of object detection results and quality of object detection results. Finally, we conclude that the number of users in the system significantly affects the service time. We observe that there is no queue in the system, so we cannot just use mathematical models with a queue to model the system. Therefore, we consider that the processor sharing model is more appropriate for modeling this serverless architecture. This is very helpful for giving insights on how to make more realistic and accurate mathematical queueing models for serverless architectures. For future work, other researchers can also implement our serverless platform and do further development, such as deploying other serverless applications on it and making performance evaluations. They can also design other use-cases for the experiments and make further analyses on queue modeling of serverless architecture based on this project.

Abstract [sv]

Serverless edge computing är ett distribuerat nätverk och datorsystem där data bearbetas i kanten av nätverket baserat på serverlös arkitektur. Det kan tillhandahålla storskaliga dator- och lagringsresurser med låg latens, vilket är mycket användbart i AI-applikationer som objektdetektering. Men när vi analyserar serverlösa datorarkitekturer modellerar vi dem med hjälp av enkla modeller, till exempel enstaka servrar eller köer med flera servrar, och det är viktigt att se till att dessa modeller kan förklara beteendet hos verkliga system. Därför fokuserar vi på prestandautvärdering av serverlös edge computing för AI-applikationer i detta projekt. Med det siktar vi på att föreslå mer realistiska och exakta modeller för riktiga serverlösa arkitekturer. I detta projekt är vårt mål att utvärdera prestandan och matematiskt modellera en objektdetekteringsapplikation som körs på en serverlös arkitektur implementerad med Kubernetes. Detta projekt ger en detaljerad beskrivning av implementeringen av den serverlösa plattformen och den YOLOv5-baserade objektdetekteringsapplikationen. Efter implementering designar vi experiment och gör prestandautvärderingar av tidpunkten för objektdetekteringsresultat och kvaliteten på objektdetekteringsresultaten. Slutligen drar vi slutsatsen att antalet användare i systemet avsevärt påverkar servicetiden. Vi observerar att det inte finns någon kö i systemet, så vi kan inte bara använda matematiska modeller med en kö för att modellera systemet. Därför anser vi att processordelningsmodellen är mer lämplig för att modellera denna serverlösa arkitektur. Detta är mycket användbart för att ge insikter om hur man gör mer realistiska och exakta matematiska kömodeller för serverlösa arkitekturer. För framtida arbete kan andra forskare också implementera vår serverlösa plattform och göra vidareutveckling, såsom att distribuera andra serverlösa applikationer på den och göra prestandautvärderingar. De kan även designa andra användningsfall för experimenten och göra ytterligare analyser av kömodellering av serverlös arkitektur utifrån detta projekt.

Place, publisher, year, edition, pages
2022. , p. 84
Series
TRITA-EECS-EX ; 2022:369
Keywords [en]
Edge computing, Serverless architecture, Artificial Intelligence, Object detection, Docker, Kubernetes, Queueing theory
Keywords [sv]
Edge computing, Serverlös arkitektur, Artificiell Intelligens, Objektdetektering, Docker, Kubernetes, Queuing theory
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-320367OAI: oai:DiVA.org:kth-320367DiVA, id: diva2:1704882
Educational program
Master of Science - Information and Network Engineering
Supervisors
Examiners
Available from: 2022-10-20 Created: 2022-10-19 Last updated: 2022-10-20Bibliographically approved

Open Access in DiVA

fulltext(18802 kB)359 downloads
File information
File name FULLTEXT01.pdfFile size 18802 kBChecksum SHA-512
a95604e0b0a24aeac4628d8b0416a999691652ed5bc631ec14ef5a076b327bc9d53c2e87d92e69d72b359b5948857cb788a9b511154c27ded082ad94f8b2a784
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 365 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 336 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf