Open this publication in new window or tab >>Show others...
2024 (English)In: Advanced Science, E-ISSN 2198-3844, Vol. 11, no 27Article in journal (Refereed) Published
Abstract [en]
Organic electrochemical transistors (OECTs) are promising devices for bioelectronics, such as biosensors. However, current cleanroom-based microfabrication of OECTs hinders fast prototyping and widespread adoption of this technology for low-volume, low-cost applications. To address this limitation, a versatile and scalable approach for ultrafast laser microfabrication of OECTs is herein reported, where a femtosecond laser to pattern insulating polymers (such as parylene C or polyimide) is first used, exposing the underlying metal electrodes serving as transistor terminals (source, drain, or gate). After the first patterning step, conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), or semiconducting polymers, are spin-coated on the device surface. Another femtosecond laser patterning step subsequently defines the active polymer area contributing to the OECT performance by disconnecting the channel and gate from the surrounding spin-coated film. The effective OECT width can be defined with high resolution (down to 2 µm) in less than a second of exposure. Micropatterning the OECT channel area significantly improved the transistor switching performance in the case of PEDOT:PSS-based transistors, speeding up the devices by two orders of magnitude. The utility of this OECT manufacturing approach is demonstrated by fabricating complementary logic (inverters) and glucose biosensors, thereby showing its potential to accelerate OECT research.
Place, publisher, year, edition, pages
Wiley, 2024
Keywords
conjugated polymer, direct writing, organic electrochemical transistor, poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate, ultrashort pulsed lasers
National Category
Organic Chemistry Other Electrical Engineering, Electronic Engineering, Information Engineering Other Materials Engineering
Identifiers
urn:nbn:se:kth:diva-342521 (URN)10.1002/advs.202307042 (DOI)001142422700001 ()38225700 (PubMedID)2-s2.0-85182492139 (Scopus ID)
Funder
Swedish Research Council, 2018‐03483Swedish Research Council, 2022‐04060Swedish Research Council, 2022‐02855Knut and Alice Wallenberg Foundation, 2015.0178Knut and Alice Wallenberg Foundation, 2020.0206Knut and Alice Wallenberg Foundation, 2021.0312Swedish Research Council, 2022-00374
Note
QC 20240123
2024-01-232024-01-232025-02-18Bibliographically approved