kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Use of Cellulose for the Preparation of Capsules and Beads with Molecularly Tailored Properties
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Fibre Technology.ORCID iD: 0000-0003-1926-2193
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The continuously increasing global production of petroleum-based polymers to meet the ever growing demand for plastics for use in a multitude of industrial sectors (e.g. packaging and textiles) has an impact on human health, climate change and the entire ecosystem. Therefore, there is a need to develop truly biodegradable, high-performance materials from renewable resources that can replace conventional plastics. These environmentally friendly alternative materials must possess similar properties to the materials they are replacing. The excellent mechanical properties, good chemical stability and straightforward functionalization of cellulose makes it an excellent candidate raw material that can initiate a transition away from petroleum-based plastics and toward more sustainable future.

This thesis investigates the use of native and partially modified cellulose for the preparation of hollow or liquid-filled capsules and solid beads with unique and well-controlled structural and mechanical properties. The shaping of materials was made possible by the dissolution of cellulose in a suitable solvent, followed by its regeneration. Two different methods for preparing these cellulose-based materials are proposed: a solution–solidification method that creates millimeter-sized hollow capsules and solid beads, and an emulsification-solvent-evaporation method that results in the formation of micrometer scale liquid-filled capsules. The partial conversion of cellulose to dialcohol cellulose and cellulose acetate introduced flexibility and thermoplastic features to the cellulose materials. This resulted in the formation of stimuli-responsive capsules with properties suitable for different industrial applications; for example, in the production of next-generation lightweight materials. The hollow dialcohol-modified cellulose capsules exhibit a tendency, when wet, to expand to almost double their volume when exposed to a decreased external pressure, whereas the dry liquid-filled cellulose acetate capsules show a thermal expansion up to 60 times their original volume. Apart from the chemical modifications, the work discusses a method of altering the properties of cellulose beads by inclusion of cellulose nanocrystals, creating an all-cellulose composite material.

The thesis also includes model studies focused on a better understanding of the evolution of the internal structure of regenerated cellulose beads during drying from different solvents. A combination of small-angle X-ray scattering, wide-angle X-ray scattering and atomic force microscopy indentation techniques allowed the monitoring of the macro- and micro-scale structural changes taking place within the beads, as well as a continuous evaluation of the mechanical properties of beads upon solvent evaporation. This work provides a fundamental understanding of the mechanisms and molecular interactions characteristic of the drying of cellulosic materials.

Abstract [sv]

Den ständigt ökande världsproduktionen av fossilbaserade polymerer och syntetiska plaster i olika industrisektorer (t.ex. förpackningar, textilier) har en enorm inverkan på människors hälsa, klimatförändringar och hela vårt ekosystem. Därför finns det en stor drivkraft att utveckla verkligt biologiskt nedbrytbara högpresterande material från förnyelsebara råvaror som kan fungera som en bra ersättning av syntetisk plast vilket innebär att de också måste ha liknande egenskaper för att vara trovärdiga. Utmärkta mekaniska egenskaper, god kemisk stabilitet, goda kemiska funktionaliseringsmöjligheter och enorm årlig produktion innebär att cellulosa är en utmärkt kandidat som råvara som, åtminstone, kan vara en lämplig förnyelsebar råvara för omställningen mot en mer hållbar framtid.

Arbetet i denna avhandling undersöker användningen av nativ och delvis modifierad cellulosa för framställning av sfäriska material i form av ihåliga eller vätskefyllda kapslar och fasta sfärer med unika och välkontrollerade strukturella och mekaniska egenskaper. Genom att lösa upp cellulosan i ett lämpligt lösningsmedel och att regenerera cellulosan var det möjligt att framställa såväl kapslar som solida sfärer genom att optimera utfällningsförfarandet. Två olika metoder utvecklades för att tillverka ihåliga kapslar: en lösningstelningsmetod som resulterar i millimeterstora, ihåliga kapslar och fasta sfärer, och en emulgeringlösningsmedel-avdunstningsmetod som underlättar bildandet av mikrometerstora vätskefyllda kapslar. En partiell derivatisering av cellulosan till dialkoholcellulosa och cellulosaacetat introducerade molekylär flexibilitet och termoplastiska egenskaper hos cellulosamaterialet. Detta i sin tur resulterade i bildandet av stimuli-känsliga cellulosakapslar med egenskaper som lämpar sig väl för olika industriella tillämpningar, till exempel vid produktion av nya generationers lättviktsmaterial. De våta, ihåliga dialkoholmodifierade cellulosakapslarna visar en volymexpansion till den dubbla volymen när de utsätts för ett minskat yttre tryck, medan de torra vätskefyllda cellulosaacetatkapslarna visar en termisk expansion på upp till 60 gånger sin ursprungliga volym. Bortsett från de kemiska modifieringarna så visar arbetet med de solida cellulosasfärerna att det är möjligt att skapa kompositer mellan regenererad cellulosa och cellulosananokristaller (CNC) för att skapa 100 % cellulosabaserade kompositer.

Avhandlingen inkluderar också modellstudier som var fokuserade på att skapa en bättre förståelse av utvecklingen av den inre strukturen hos regenererade cellulosakulor under torkning från olika lösningsmedel. En kombination av SAXS/WAXS och AFM indentering gjorde det möjligt att identifiera de makro- och mikrostrukturella förändringarna som uppträder inuti de solida sfärerna och för att kontinuerligt kunna utvärdera sfärernas mekaniska egenskaper vid lösningsmedelsavdunstningen. Denna del av arbetet ger en grundläggande förståelse för de mekanismer och molekylära interaktioner som är karakteristiska för processen för torkning av cellulosarika material.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. , p. 65
Series
TRITA-CBH-FOU ; 2022:19
Keywords [en]
regenerated cellulose, partially modified cellulose, capsules, beads
National Category
Materials Chemistry
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-309739ISBN: 978-91-8040-156-2 (print)OAI: oai:DiVA.org:kth-309739DiVA, id: diva2:1643849
Public defence
2022-04-08, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20220315

Available from: 2022-03-15 Created: 2022-03-11 Last updated: 2023-04-08Bibliographically approved
List of papers
1. Wet-expandable capsules made from partially modified cellulose
Open this publication in new window or tab >>Wet-expandable capsules made from partially modified cellulose
Show others...
2020 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270, Vol. 22, no 14, p. 4581-4592Article in journal (Refereed) Published
Abstract [en]

Preparation of lightweight and biocompatible hollow capsules holds great promise for various advanced engineering applications. Here, we use a heterogeneously modified structure of cellulose, which on the molecular level increases the flexibility of the capsule shell, to form hollow capsules. These capsules expand in the wet state when they are exposed to an external stimulus, in the present case a decreased external pressure. The capsules were prepared by a dropwise precipitation of a propane-saturated solution of cellulose partially modified to dialcohol cellulose, dissolved in a mixture ofN,N-dimethylacetamide and lithium chloride, into a non-solvent. The mechanical properties of the capsules were determined by measuring the expansion of the capsules upon a controlled decrease in external pressure. In addition, indentation measurements using atomic force microscopy were used to independently quantify the moduli of the capsule walls. The results show that the wet, modified cellulose capsules are much softer and, upon the same pressure change, expand significantly more than those made from unmodified cellulose. The greatest expansion observed for the modified capsules was 1.9 times the original volume, which corresponds to a final density of the expanded capsules of about 14 kg m(-3). These capsules therefore hold great potential to form green and lightweight foam-like materials.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2020
National Category
Other Chemistry Topics
Identifiers
urn:nbn:se:kth:diva-278915 (URN)10.1039/d0gc01523g (DOI)000550567200018 ()2-s2.0-85089284846 (Scopus ID)
Note

QC 20201118

Available from: 2020-11-18 Created: 2020-11-18 Last updated: 2022-06-25Bibliographically approved
2. In Situ Modification of Regenerated Cellulose Beads: Creating All-Cellulose Composites
Open this publication in new window or tab >>In Situ Modification of Regenerated Cellulose Beads: Creating All-Cellulose Composites
2020 (English)In: Industrial & Engineering Chemistry Research, ISSN 0888-5885, E-ISSN 1520-5045, Vol. 59, no 7, p. 2968-2976Article in journal (Refereed) Published
Abstract [en]

Developing more sustainable products requires innovative ways to utilize and modify renewable resources. Here, a simple one-step in situ modification of regenerated cellulose beads using cellulose nanocrystals (CNC) and dropwise precipitation of cellulose/N,N-dimethylacetamide and lithium chloride (DMAc/LiCI) solution is presented. A more condensed internal structure and increased surface roughness were observed when higher CNC concentrations were used in the precipitation media. Incorporation of CNCs significantly reduces the water holding capacity of the beads and simultaneously impacts the kinetics of drying. Beads modified using the highest CNC concentration (0.5 wt %) exhibited a reduction in the Young modulus by more than 20% and an increase in compressibility to failure by 10% compared with native beads. Overall, inclusion of nanoparticles during bead formation is a simple method that can tune the mechanical, structural, and swelling/drying behavior of cellulose beads and broaden their potential for different end-use applications such as separations and controlled release.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2020
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-271717 (URN)10.1021/acs.iecr.9b06273 (DOI)000515213800032 ()2-s2.0-85080933348 (Scopus ID)
Note

QC 20200408

Available from: 2020-04-08 Created: 2020-04-08 Last updated: 2022-06-26Bibliographically approved
3. The preparation of liquid-filled cellulose acetate capsules using emulsification techniques: conventional high-shear bulk mixing and microfluidics
Open this publication in new window or tab >>The preparation of liquid-filled cellulose acetate capsules using emulsification techniques: conventional high-shear bulk mixing and microfluidics
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Polymer Chemistry
Identifiers
urn:nbn:se:kth:diva-309734 (URN)
Note

QC 20220314

Available from: 2022-03-10 Created: 2022-03-10 Last updated: 2023-04-08Bibliographically approved
4. Macro- and microstructural evolution during drying of regenerated cellulose beads
Open this publication in new window or tab >>Macro- and microstructural evolution during drying of regenerated cellulose beads
Show others...
2020 (English)In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 14, no 6, p. 6774-6784Article in journal (Refereed) Published
Abstract [en]

The macro- and microstructural evolution of water swollen and ethanol swollen regenerated cellulose gel beads have been determined during drying by optical microscopy combined with analytical balance measurements, small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS). Two characteristic length scales, which are related to the molecular dimension of cellulose monomer and elongated aggregates of these monomers, could be identified for both types of beads by SAXS. For ethanol swollen beads, only small changes to the structures were detected in both the SAXS and WAXS measurements during the entire drying process. However, the drying of cellulose from water follows a more complex process when compared to drying from ethanol. As water swollen beads dried, they went through a structural transition where elongated structures changed to spherical structures and their dimensions increased from 3.6 to 13.5 nm. After complete drying from water, the nanostructures were characterized as a combination of rodlike structures with an approximate size of cellulose monomers (0.5 nm), and spherical aggregates (13.5 nm) without any indication of heterogeneous meso- or microporosity. In addition, WAXS shows that cellulose II hydrate structure appears and transforms to cellulose II during water evaporation, however it is not possible to determine the degree of crystallinity of the beads from the present measurements. This work sheds lights on the structural changes that occur within regenerated cellulose materials during drying and can aid in the design and application of cellulosic materials as fibers, adhesives, and membranes.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2020
Keywords
cellulose, gel bead, drying structural evolution, X-ray scattering
National Category
Polymer Technologies
Identifiers
urn:nbn:se:kth:diva-278617 (URN)10.1021/acsnano.0c00171 (DOI)000543744100036 ()32383585 (PubMedID)2-s2.0-85085690637 (Scopus ID)
Note

QC 20200729

Available from: 2020-07-29 Created: 2020-07-29 Last updated: 2022-06-26Bibliographically approved
5. Development of mechanical properties of regenerated cellulose beads during drying as investigated by atomic force microscopy
Open this publication in new window or tab >>Development of mechanical properties of regenerated cellulose beads during drying as investigated by atomic force microscopy
2020 (English)In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 16, no 28, p. 6457-6462Article in journal (Refereed) Published
Abstract [en]

The mechanical properties as well as the size changes of swollen cellulose beads were measured in situ during solvent evaporation by atomic force microscopy (AFM) indentation measurement combined with optical microscopy. Three factors are proposed to govern the mechanical properties of the cellulose beads in the swollen state and during drying: (i) the cellulose concentration, (ii) the interaction between the cellulose entities, (iii) the heterogeneity of the network structure within the cellulose beads.

Place, publisher, year, edition, pages
ROYAL SOC CHEMISTRY, 2020
National Category
Bio Materials
Identifiers
urn:nbn:se:kth:diva-278921 (URN)10.1039/d0sm00866d (DOI)000551334600022 ()32583840 (PubMedID)2-s2.0-85088492614 (Scopus ID)
Note

QC 20201118

Available from: 2020-11-18 Created: 2020-11-18 Last updated: 2024-03-15Bibliographically approved

Open Access in DiVA

fulltext(2662 kB)674 downloads
File information
File name FULLTEXT01.pdfFile size 2662 kBChecksum SHA-512
1dfa7c9b3ee29dead516b0ba5639ba917188cb73894b4abbc48e6b24b2d86016f912dc8d2fc55f4c6a9cd3b6f60474dbbdc13ddfcb231701bfeb4cdc3e5b77f0
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Mystek, Katarzyna
By organisation
Fibre Technology
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 691 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1248 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf