kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
(Photo)electrochemical Water Oxidation: From Catalysis to Functional Device
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry. (Licheng Sun)ORCID iD: 0000-0002-1303-0482
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The key challenge within artificial photosynthesis is achieving efficient electro- or photo-driven water oxidation catalysis, a necessary process to supply the protons for the reduction reactions, thereby enabling solar fuel production. To facilitate efficient water (photo)electrolysis for solar fuel production, this thesis focuses on two aspects: 1) elucidating the O-O bond formation mechanism and developing efficient, stable, and economical water oxidation catalysts (WOCs); 2) exploring stable, low-cost, light-absorbing photoanode materials that have suitable band structures and excellent charge diffusion properties.

Chapter 1 provides an overview of the development of homogeneous and heterogeneous WOCs, with a particular emphasis on the catalytic mechanisms. Subsequently, it introduces the advancements in light-harvesting materials for photoelectrochemical cells and highlights the progress in the burgeoning field of lead halide perovskite-based photoanodes.

Chapter 2 clarifies the physical and electrochemical characterization methodologies, along with the protocols employed for mechanistic investigations in this thesis.

Chapter 3 introduces a host-guest complex, self-assembled through Co2+ and cucurbit[5]uril (CB[5]), as a supramolecular WOC. This catalyst, Co@CB[5], was immobilized on indium tin oxide substrate and BiVO4 photoanode for electrochemical and photoelectrochemical water oxidation. The role of Co@CB[5] in interfacial charge transfer is investigated by spectroscopic and electrochemical studies.

Chapter 4 reports a molecularly well-defined heterogeneous WOC with aza-fused, π-conjugated microporous polymer coordinated single cobalt sites (Aza-CMP-Co). Integrating experimental and theoretical results, this work highlights the significance of electrolyte pH and the role of regulating the intramolecular hydroxyl nucleophilic attack pathway in enhancing water oxidation activity.

Chapter 5 presents a stable formamidinium lead bromide (FAPbBr3) photoanode for water oxidation to achieve an exceptionally low onset potential. Theoretical calculations and spectroscopic characterizations reveal the origin of low onset potential, which offers pivotal insights in guiding the development of photovoltaic material-based photoelectrodes for solar fuel applications.

Abstract [sv]

Den huvudsakliga utmaningen inom artificiell fotosyntes är att uppnå effektiv elektro- eller fotodriven vattenoxidationskatalys, en nödvändig process för att tillhandahålla protoner för reduktionsreaktioner, vilket möjliggör produktion av solbränsle. För att underlätta effektiv vatten(foto)elektrolys för produktion av solbränsle fokuserar denna avhandling på två aspekter: 1) klargörande av O-O-bindningens bildningsmekanism och utveckling av effektiva, stabila och ekonomiska vattenoxidationskatalysatorer (WOCs); 2) utforskning av stabila, lågkostnads, ljusabsorberande fotoanodematerial som har lämpliga bandstrukturer och utmärkta egenskaper för laddningsdiffusion.

Kapitel 1 ger en översikt över utvecklingen av homogena och heterogena WOCs, med särskilt fokus på katalytiska mekanismer. Därefter introduceras framstegen inom ljusinsamlingsmaterial för fotoelektrokemiska celler och framstegen inom det växande området av blyhalid-perovskitbaserade fotoanoder lyfts fram.

Kapitel 2 klargör de fysiska och elektrokemiska karakteriseringsmetoderna, tillsammans med de protokoll som används för mekanismundersökningar i denna avhandling.

Kapitel 3 introducerar ett värd-gäst-komplex, självmonterat genom Co2+ och cucurbit[5]uril (CB[5]), som en supramolekylär WOC. Denna katalysator, Co@CB[5], immobiliserades på substrat av indiumtennoxid och BiVO4-fotoanoder för elektrokemisk och fotoelektrokemisk vattenoxidation. Rollen för Co@CB[5] i gränsskiktets laddningstransfer undersöks genom spektroskopisk och elektrokemiska studier.

Kapitel 4 redogör för en molekylärt väldefinierad heterogen WOC med kvävesammansatta, π-konjugerade mikroporösa polymerkoordinerade enskilda koboltställen (Aza-CMP-Co). Genom att integrera experimentella och teoretiska resultat belyser detta arbete betydelsen av elektrolytens pH och rollen av att reglera den intramolekylära hydroxyl-nukleofila anfallsvägen för att förbättra vattenoxidationsaktiviteten.

Kapitel 5 presenterar en stabil fotoanod av formamidinium blybromid (FAPbBr3) för vattenoxidation för att uppnå en exceptionellt låg startpotential. Teoretiska beräkningar och spektroskopisk karakteriseringar avslöjar ursprunget till den låga startpotentialen, vilket ger avgörande insikter för den fortsatta utvecklingen av fotovoltaiska materialbaserade fotoelektroder för solbränsletillämpningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. , p. 176
Series
TRITA-CBH-FOU ; 2023:58
Keywords [en]
artificial photosynthesis, solar fuels, water oxidation, nucleophilic attack, conjugated microporous polymer, host-guest chemistry, photoanode, perovskites
Keywords [sv]
artificiell fotosyntes, solbränslen, vattenoxidation, nukleofil attack, konjugerad mikroporös polymer, värd-gästkemi, fotoanoder, perovskiter
National Category
Physical Chemistry Materials Chemistry
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-340056ISBN: 978-91-8040-789-2 (print)OAI: oai:DiVA.org:kth-340056DiVA, id: diva2:1815459
Public defence
2024-01-16, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20231129

Available from: 2023-11-29 Created: 2023-11-29 Last updated: 2025-10-29Bibliographically approved
List of papers
1. A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting
Open this publication in new window or tab >>A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting
Show others...
2021 (English)In: Angewandte Chemie International Edition, ISSN 1433-7851, E-ISSN 1521-3773, Vol. 60, no 4, p. 1976-1985Article in journal (Refereed) Published
Abstract [en]

A host–guest complex self-assembled through Co2+ and cucurbit[5]uril (Co@CB[5]) is used as a supramolecular catalyst on the surface of metal oxides including porous indium tin oxide (ITO) and porous BiVO4 for efficient electrochemical and photoelectrochemical water oxidation. When immobilized on ITO, Co@CB[5] exhibited a turnover frequency (TOF) of 9.9 s−1 at overpotential η=550 mV in a pH 9.2 borate buffer. Meanwhile, when Co@CB[5] complex was immobilized onto the surface of BiVO4 semiconductor, the assembled Co@CB[5]/BiVO4 photoanode exhibited a low onset potential of 0.15 V (vs. RHE) and a high photocurrent of 4.8 mA cm−2 at 1.23 V (vs. RHE) under 100 mW cm−2 (AM 1.5) light illumination. Kinetic studies confirmed that Co@CB[5] acts as a supramolecular water oxidation catalyst, and can effectively accelerate interfacial charge transfer between BiVO4 and electrolyte. Surface charge recombination of BiVO4 can be also significantly suppressed by Co@CB[5].

Place, publisher, year, edition, pages
Wiley-VCH Verlag, 2021
Keywords
electrocatalysis, host–guest complexes, PEC cells, supramolecular catalysts, water splitting, Bismuth compounds, Catalysts, Charge transfer, Electrochemistry, Electrolytes, Indium compounds, Photocurrents, Supramolecular chemistry, Tin oxides, Charge recombinations, Interfacial charge transfer, Light illumination, Photoelectrochemical water oxidation, Photoelectrochemical water splitting, Turnover frequency, Water oxidation catalysts, Semiconducting bismuth compounds
National Category
Materials Chemistry
Identifiers
urn:nbn:se:kth:diva-290606 (URN)10.1002/anie.202011069 (DOI)000591755700001 ()33051952 (PubMedID)2-s2.0-85096645605 (Scopus ID)
Note

QC 20210309

Available from: 2021-03-09 Created: 2021-03-09 Last updated: 2023-11-29Bibliographically approved
2. Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites
Open this publication in new window or tab >>Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites
Show others...
2022 (English)In: Nature Catalysis, ISSN 2520-1158, Vol. 5, no 5, p. 414-429Article in journal (Refereed) Published
Abstract [en]

Exploration of efficient water oxidation catalysts (WOCs) is the primary challenge in conversion of renewable energy into fuels. Here we report a molecularly well-defined heterogeneous WOC with Aza-fused, pi-conjugated, microporous polymer (Aza-CMP) coordinated single cobalt sites (Aza-CMP-Co). The single cobalt sites in Aza-CMP-Co exhibited superior activity under alkaline and near-neutral conditions. Moreover, the molecular nature of the isolated catalytic sites makes Aza-CMP-Co a reliable model for studying the heterogeneous water oxidation mechanism. By a combination of experimental and theoretical results, a pH-dependent nucleophilic attack pathway for O-O bond formation was proposed. Under alkaline conditions, the intramolecular hydroxyl nucleophilic attack (IHNA) process with which the adjacent -OH group nucleophilically attacks Co4+=O was identified as the rate-determining step. This process leads to lower activation energy and accelerated kinetics than those of the intermolecular water nucleophilic attack (WNA) pathway. This study provides significant insights into the crucial function of electrolyte pH in water oxidation catalysis and enhancement of water oxidation activity by regulation of the IHNA pathway.

Place, publisher, year, edition, pages
Springer Nature, 2022
National Category
Physical Chemistry
Identifiers
urn:nbn:se:kth:diva-313755 (URN)10.1038/s41929-022-00783-6 (DOI)000801852700013 ()2-s2.0-85130755520 (Scopus ID)
Note

QC 20220613

Available from: 2022-06-13 Created: 2022-06-13 Last updated: 2024-03-15Bibliographically approved
3. Monolithic FAPbBr3 photoanode for photoelectrochemical water oxidation with low onset-potential and enhanced stability
Open this publication in new window or tab >>Monolithic FAPbBr3 photoanode for photoelectrochemical water oxidation with low onset-potential and enhanced stability
Show others...
2023 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 14, no 1, article id 5486Article in journal (Refereed) Published
Abstract [en]

Despite considerable research efforts on photoelectrochemical water splitting over the past decades, practical application faces challenges by the absence of efficient, stable, and scalable photoelectrodes. Herein, we report a metal-halide perovskite-based photoanode for photoelectrochemical water oxidation. With a planar structure using mesoporous carbon as a hole-conducting layer, the precious metal-free FAPbBr3 photovoltaic device achieves 9.2% solar-to-electrical power conversion efficiency and 1.4 V open-circuit voltage. The photovoltaic architecture successfully applies to build a monolithic photoanode with the FAPbBr3 absorber, carbon/graphite conductive protection layers, and NiFe catalyst layers for water oxidation. The photoanode delivers ultralow onset potential below 0 V versus the reversible hydrogen electrode and high applied bias photon-to-current efficiency of 8.5%. Stable operation exceeding 100 h under solar illumination by applying ultraviolet-filter protection. The photothermal investigation verifies the performance boost in perovskite photoanode by photothermal effect. This study is significant in guiding the development of photovoltaic material-based photoelectrodes for solar fuel applications.

Place, publisher, year, edition, pages
Springer Nature, 2023
National Category
Materials Chemistry Physical Chemistry Other Physics Topics
Identifiers
urn:nbn:se:kth:diva-337792 (URN)10.1038/s41467-023-41187-9 (DOI)001065300300024 ()37679329 (PubMedID)2-s2.0-85170192499 (Scopus ID)
Note

QC 20231009

Available from: 2023-10-09 Created: 2023-10-09 Last updated: 2024-03-15Bibliographically approved

Open Access in DiVA

Summary(30070 kB)1042 downloads
File information
File name SUMMARY01.pdfFile size 30070 kBChecksum SHA-512
e7da46ac82110c6ba3adf8c49aab2669b02473ad0df2e884b53b81f4ffa1aa93e66aaff1fe02d0f7b2401401c7593b3d1505c9e7b2030901e3628c81c0eb699f
Type fulltextMimetype application/pdf

Authority records

Yang, Hao

Search in DiVA

By author/editor
Yang, Hao
By organisation
Organic chemistry
Physical ChemistryMaterials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 0 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1811 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf