Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
NOMeS: Near-Optimal Metaheuristic Scheduling for MPSoCs
Abo Akad Univ, Turku, Finland..
Malardalen Univ, Vasteras, Sweden..
Univ Turku, Turku, Finland..
Vise andre og tillknytning
2017 (engelsk)Inngår i: 2017 19TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND DIGITAL SYSTEMS (CADS), IEEE , 2017, s. 70-75Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The task scheduling problem for Multiprocessor System-on-Chips (MPSoC), which plays a vital role in performance, is an NP-hard problem. Exploring the whole search space in order to find the optimal solution is not time efficient, thus metaheuristics are mostly used to find a near-optimal solution in a reasonable amount of time. We propose a novel metaheuristic method for near-optimal scheduling that can provide performance guarantees for multiple applications implemented on a shared platform. Applications are represented as directed acyclic task graphs (DAG) and are executed on an MPSoC platform with given communication costs. We introduce a novel multi-population method inspired by both genetic and imperialist competitive algorithms. It is specialized for the scheduling problem with the goal to improve the convergence policy and selection pressure. The potential of the approach is demonstrated by experiments using a Sobel filter, a SUSAN filter, RASTA-PLP and JPEG encoder as real-world case studies.

sted, utgiver, år, opplag, sider
IEEE , 2017. s. 70-75
Serie
CSI International Symposium on Computer Architecture and Digital Systems, ISSN 2325-9361
Emneord [en]
parallel imperialist competitive algorithm (PICA), multi-population technique, evolutionary computing (EC), task graph scheduling, multi-objective optimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-228176DOI: 10.1109/CADS.2017.8310723ISI: 000428738600013Scopus ID: 2-s2.0-85050657977ISBN: 978-1-5386-4379-2 (tryckt)OAI: oai:DiVA.org:kth-228176DiVA, id: diva2:1209271
Konferanse
19th International Symposium on Computer Architecture and Digital Systems (CADS), DEC 21-22, 2017, Iran Univ Sci & Technol, IRAN
Merknad

QC 20180522

Tilgjengelig fra: 2018-05-22 Laget: 2018-05-22 Sist oppdatert: 2022-06-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Moghaddami Khalilzad, Nima

Søk i DiVA

Av forfatter/redaktør
Moghaddami Khalilzad, Nima
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 43 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf