Åpne denne publikasjonen i ny fane eller vindu >>Vise andre…
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]
Spargers are multi-hole injection pipes used in Boiling Water Reactors (BWR) and Advanced Pressurized (AP) reactors to condense steam in large water pools. During the steam injection, high pool surface temperatures induced by thermal stratification can lead to higher containment pressures compared with completely mixed pool conditions, the former posing a threat for plant safety. The Effective Heat Source (EHS) and Effective Momentum Source (EMS) models were previously developed and validated for the modelling of a steam injection through blowdown pipes. The goal of this paper is to extend the EHS/EMS model capabilities towards steam injection through multi-hole spargers. The models were implemented in the CFD code of ANSYS Fluent 17.0 and calibrated against the PPOOLEX and PANDA experiments with spargers analysed by the authors in [1] (Gallego-Marcos, I., et al., 2018). Modelling guidelines are established for the adequate simulation of the pool behaviour. A new correlation is proposed to model the turbulent production and dissipation caused by buoyancy. Sensitivity studies addressing the effect of different assumptions on the effective momentum magnitude, profile, angle and turbulence are presented. Calibration of the momentum magnitude showed that it varies between 0.2 to 1.2 times the steam momentum at the injection holes. Differences of this fraction between the PPOOLEX and PANDA simulations are discussed. Analysis of the calculated flow above the cold stratified layer shows that the erosion of the layer is induced by the action of turbulence rather than mean shear flow.
Emneord
Thermocline, turbulence production buoyancy, Richardson, C3e coefficient, oscillatory bubble regime.
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-238714 (URN)
Merknad
QC 20180911
2018-11-082018-11-082022-06-26bibliografisk kontrollert