Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Structural and biochemical insights into biosynthesis and degradation of N-glycans
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Industriell bioteknologi.ORCID-id: 0000-0001-5156-4592
2020 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Carbohydrates are a primary energy source for all living organisms, but importantly, they also participate in a number of life-sustaining biological processes, e.g. cell signaling and cell-wall synthesis. The first part of the thesis examines glycosyltransferases that play a crucial role in the biosynthesis of N-glycans. Precursors to eukaryotic N-glycans are synthesized in the endoplasmic reticulum (ER) in the form of a lipid-bound oligosaccharide, which is then transferred to a nascent protein. The first seven sugar units are assembled on the cytoplasmic side of the ER, which is performed by glycosyltransferases that use nucleotide sugars as donors. The mannosyl transferase PcManGT is produced by the archaeon Pyrobaculum calidifontis, and the biochemical and structural results presented in the thesis suggest that the enzyme may be a counterpart to the glycosyltransferase Alg1 that participates in the biosynthesis of N-glycans in eukaryotes. Within the ER (in the lumen), activated dolichol-bound sugars are used as donor substrates instead of nucleotide sugars for glycosyltransferases that synthesize N-glycans. The glycosyltransferase dolichylphosphate mannose synthase (DPMS) catalyzes the formation of dolichylphosphate mannose, which is one of these dolichyl-bound sugars. The structure and function were studied for DPMS from Pyrococcus furiosus using protein X-ray crystallographic and biochemical methods and a new assay based on proteoliposomes was designed. The second part of the thesis focuses on glycoside hydrolases from bacteria that break down oligo- and polysaccharides. In one of the studies, a bacterial glycoside hydrolase from the acne bacterium Cutibacterium acnes was characterized. The enzyme was shown to be able to break down the host's N-glycans, which can be used as nutrients or perhaps even evade detection of the immune system. This study also suggests a cytoplasmic biosynthetic pathway for the formation of N-glycans in the acne bacterium. In another study, a glycoside hydrolase from a bacterium living in the moose rumen was characterized. The enzyme was shown to be able to break down β-1,3-glucans, which is a property that can be used industrially for biomass treatment.

Abstract [sv]

Kolhydrater utgör en primär energikälla för alla levande organismer, man deltar dessutom i mängd livsuppehållande biologiska processer, t.ex. cellsignalering och cellväggssyntes. Den första delen av avhandlingen undersöker glykosyltransferaser som spelar en avgörande roll för biosyntes av N-glykaner. Förstadier till eukaryota N-glykaner syntetiseras i det endoplasmatiska nätverket (ER) i form av en lipidbunden oligosackarid som sedan överförs till ett nybildat protein. De första sju sockerenheterna sätts ihop på den cytoplasmatiska sidan av ER, vilket sker med hjälp av glykosyltransferaser som använder nukleotidsockerföreningar som kan donera sockerenheter. Mannosyltransferaset PcManGT produceras av arkebakterien Pyrobaculum calidifontis och de biokemiska och strukturella resultat som presenteras i avhandlingen tyder på att enzymet kan vara en motsvarighet till glykosyltransferaset Alg1 som deltar i biosyntes av N-glykaner i eukaryoter. Inuti ER (i lumen) används aktiverade dolikolbundna socker istället för nukleotidsockerföreningar som substrat för glykosyltransferaser som syntetiserar N-glykaner. Glykosyltransferaset dolikolfosfatmannossyntas (DPMS) katalyserar bildandet av dolikolfosfatmannos vilket är en av dessa dolikolbundna sockerföreningar. Struktur och funktion studerades för DPMS från Pyrococcus furiosus med hjälp av proteinröntgenkristallografi samt biokemiska metoder samt en ny analysmetid baserad på proteoliposomer. Den andra delen av avhandlingen fokuserar på glykosidhydrolaser från bakterier som bryter ned oligo- och polysackarider. I en av studierna karakteriserades ett bakteriellt glykosidhydrolas från aknebakterien Cutibacterium acnes. Enzymet visade sig kunna bryta ned värdorganismens N-glykaner vilka kan användas som näring eller kanske även i syfte att undgå upptäckt av immunförsvaret. Studien föreslår även en cytoplasmatisk biosyntesväg för bildande av N-glykaner i aknebakterien. I en annan studie karakteriserades ett glykosidhydrolas från en bakterie som lever i älgvåmmen. Enzymet visade sig kunna bryta ned β-1,3- glukaner vilket är en egenskap som kan användas för i industriella tillämpningar för bearbetning av biomassa.

Abstract [de]

Kohlenhydrate sind eine primäre Energiequelle für alle lebenden Organismen, aber vor allem sind sie an einer großen Anzahl von lebensnotwendigen biologischen Prozessen, z.B. Zellsignalwegen und Zellwandaufbau, beteiligt. Der erste Teil dieser Doktorarbeit untersucht Glycosyltransferasen, welche entscheidend für die Synthese von N-Glycanen sind. Die Vorläufer der eukaryotischen N-Glycane werden im endoplasmatischen Retikulum (ER) als Lipid-gebundene Oligosaccharide synthetisiert, bevor sie auf das entstehende Protein transferiert werden. Die ersten sieben Zucker werden auf der zytoplasmatischen Seite der ER-Membran von Glycosyltransferasen, welche Nukleotidzucker als Donor nutzen, transferiert. Die Mannosyltransferase PcManGT wird von den Archaea Pyrobaculum calidifontis produziert, und die in dieser Doktorarbeit präsentierten biochemischen und strukturellen Resultate deuten darauf hin, dass das Enzym ein Pedant zu dem eukaryotischen Enzym Alg1 ist, welches Teil der eukaryotischen N-Glycan Biosynthese ist. Im ER (ERlumen) werden aktivierte Dolichol-gebundene Zucker, statt Nukleotidzuckern als Donor, für N-Glycan synthetisierende Glycosyltransferasen bereitgestellt. Die Glycosyltransferase Dolichylphosphate Mannose Synthase (DPMS) katalysiert mit der Bildung von Dolichylphosphate Mannose, einen dieser Dolicholgebundene Zucker. Die Struktur und Funktion der DPMS von Pyrococcus furiosus wurde mit Hilfe von sowohl X-ray Kristallographie als auch biochemischen Methoden untersucht und ein neuer Assay basierend auf Proteoliposomen designt. Im zweiten Teil der Doktorarbeit fokussiert sich auf bakterielle Glycosidasen welche Oligo- und Polysaccharide abbauen. Charakterisiert wurde die bakterielle Glycosidase von dem Aknebakterium Cutibacterium acnes. Das Enzym kann Teile des Wirt N-Glycans abbauen, wodurch Nährstoffe bereitgestellt werden oder die Erkennung des Immunsystems vermieden wird. Zusätzlich wird auch ein potentieller N-Glycan Abbauweg des Aknebakterium vorgeschlagen. In einer weiteren Studie wurde eine Glucosidase von einem Elchmagenbakterium charakterisiert. Das Enzym war in der Lage β-1,3-Glucane abzubauen, welches Anwendung in der industriellen Biomassebehandlung finden könnte.

sted, utgiver, år, opplag, sider
Stockholm: KTH Royal Institute of Technology, 2020. , s. 59
Serie
TRITA-CBH-FOU ; 2020:41
Emneord [en]
N-glycan, biosynthesis, degradation, glycosyltransferase, glycoside hydrolase, biofuel, enzyme, membrane protein
HSV kategori
Forskningsprogram
Bioteknologi
Identifikatorer
URN: urn:nbn:se:kth:diva-281752ISBN: 978-91-7873-660-7 (tryckt)OAI: oai:DiVA.org:kth-281752DiVA, id: diva2:1470328
Disputas
2020-10-16, https://kth-se.zoom.us/meeting/register/u5ErcuqurDMqG9De0JHMgaaxfcnXVREWWX38, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Merknad

QC 2020-09-25

Tilgjengelig fra: 2020-09-25 Laget: 2020-09-24 Sist oppdatert: 2025-02-20bibliografisk kontrollert
Delarbeid
1. Structural basis for dolichylphosphate mannose biosynthesis
Åpne denne publikasjonen i ny fane eller vindu >>Structural basis for dolichylphosphate mannose biosynthesis
2017 (engelsk)Inngår i: Nature Communications, E-ISSN 2041-1723, Vol. 8, nr 1, artikkel-id 120Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Protein glycosylation is a critical protein modification. In biogenic membranes of eukaryotes and archaea, these reactions require activated mannose in the form of the lipid conjugate dolichylphosphate mannose (Dol-P-Man). The membrane protein dolichylphosphate mannose synthase (DPMS) catalyzes the reaction whereby mannose is transferred from GDP-mannose to the dolichol carrier Dol-P, to yield Dol-P-Man. Failure to produce or utilize Dol-P-Man compromises organism viability, and in humans, several mutations in the human dpm1 gene lead to congenital disorders of glycosylation (CDG). Here, we report three high-resolution crystal structures of archaeal DPMS from Pyrococcus furiosus, in complex with nucleotide, donor, and glycolipid product. The structures offer snapshots along the catalytic cycle, and reveal how lipid binding couples to movements of interface helices, metal binding, and acceptor loop dynamics to control critical events leading to Dol-P-Man synthesis. The structures also rationalize the loss of dolichylphosphate mannose synthase function in dpm1-associated CDG.The generation of glycolipid dolichylphosphate mannose (Dol-P-Man) is a critical step for protein glycosylation and GPI anchor synthesis. Here the authors report the structure of dolichylphosphate mannose synthase in complex with bound nucleotide and donor to provide insight into the mechanism of Dol-P-Man synthesis.

sted, utgiver, år, opplag, sider
Nature Publishing Group, 2017
HSV kategori
Forskningsprogram
Bioteknologi
Identifikatorer
urn:nbn:se:kth:diva-211507 (URN)10.1038/s41467-017-00187-2 (DOI)000406257000001 ()28743912 (PubMedID)2-s2.0-85026253484 (Scopus ID)
Merknad

QC 20170804

Tilgjengelig fra: 2017-08-04 Laget: 2017-08-04 Sist oppdatert: 2024-03-15bibliografisk kontrollert
2. Is Pyrococcus furiosus dolichylphosphate mannose synthase moonlighting as a biogenic flippase for dolichylphosphate mannose?
Åpne denne publikasjonen i ny fane eller vindu >>Is Pyrococcus furiosus dolichylphosphate mannose synthase moonlighting as a biogenic flippase for dolichylphosphate mannose?
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Dolichylphosphate mannose synthase (DPMS) performs an essential function by synthesizing the activated lipid-linked sugar intermediated required by non-Leloir mannosyltransferases involved in protein glycosylation pathways. In eukaryotes and archaea, DPMS catalyzes the transfer of a mannose unit from GDP-mannose to dolichylphosphate to generate dolichylphosphate mannose (Dol-P-Man). DPMS from the extremophilic archaeon Pyrococcus furiosus (PfDPMS) belongs to the type-III class of DPMSs with a large catalytic domain attached to a transmembrane (TM) domain with two dimers of TM helices, TMD1 and TMD2, oriented such that TMD2 forms a 45° angle with TMD1. Our earlier work showed that the TM domain is dispensable for Dol-Pmannosylation, which brought its biological relevance into question. Here, we present crystallographic and bioinformatic evidence for a role for the TM domain in membrane translocation of Dol-P-Man. We crystallized a reaction performed at a temperature where PfDPMS activity is low, and determined the crystal structure at 2.9 Å resolution. Although the experimental data is deeply convoluted by traces of different structural states, we observed a strong signal for a Dol-P-Man molecule flipped inside the protein. Dol-P-Man is found to be flipped across TMD2 to position the mannosylphosphate head group in a polar pocket between TMD1 and TMD2. A role of the TM domain in glycolipid translocation is further discussed based on its topological resemblance to the GtrA family of small membrane transporters. Additionally, we identfied a dpm2 gene candidate that may serve as the missing translocation domain for the previously characterized type-I DPMS from Saccharmomyces cerevisiae.

HSV kategori
Forskningsprogram
Bioteknologi
Identifikatorer
urn:nbn:se:kth:diva-281709 (URN)
Merknad

QC 20200922

Tilgjengelig fra: 2020-09-21 Laget: 2020-09-21 Sist oppdatert: 2025-02-20bibliografisk kontrollert
3. A Transmembrane Crenarchaeal Mannosyltransferase Is Involved in N-Glycan Biosynthesis and Displays an Unexpected Minimal Cellulose-Synthase-like Fold
Åpne denne publikasjonen i ny fane eller vindu >>A Transmembrane Crenarchaeal Mannosyltransferase Is Involved in N-Glycan Biosynthesis and Displays an Unexpected Minimal Cellulose-Synthase-like Fold
Vise andre…
2020 (engelsk)Inngår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 432, nr 16, s. 4658-4672Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Protein glycosylation constitutes a critical post-translational modification that supports a vast number of biological functions in living organisms across all domains of life. A seemingly boundless number of enzymes, glycosyltransferases, are involved in the biosynthesis of these protein-linked glycans. Few glycanbiosynthetic glycosyltransferases have been characterized in vitro, mainly due to the majority being integral membrane proteins and the paucity of relevant acceptor substrates. The crenarchaeote Pyrobaculum calidifontis belongs to the TACK superphylum of archaea (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) that has been proposed as an eukaryotic ancestor. In archaea, N-glycans are mainly found on cell envelope surface-layer proteins, archaeal flagellins and pili. Archaeal N-glycans are distinct from those of eukaryotes, but one noteworthy exception is the high-mannose N-glycan produced by P. calidifontis, which is similar in sugar composition to the eukaryotic counterpart. Here, we present the characterization and crystal structure of the first member of a crenarchaeal membrane glycosyltransferase, PcManGT. We show that the enzyme is a GDP-, dolichylphosphate-, and manganese-dependent mannosyltransferase. The membrane domain of PcManGT includes three transmembrane helices that topologically coincide with "half' of the sixtransmembrane helix cellulose-binding tunnel in Rhodobacter spheroides cellulose synthase BcsA. Conceivably, this "half tunnel" would be suitable for binding the dolichylphosphate-linked acceptor substrate. The PcManGT gene (Pcal_0472) is located in a large gene cluster comprising 14 genes of which 6 genes code for glycosyltransferases, and we hypothesize that this cluster may constitute a crenarchaeal N-glycosylation (PNG) gene cluster.

sted, utgiver, år, opplag, sider
Elsevier BV, 2020
Emneord
mannosyltransferase, crenarchaea, protein N-glycosylation, crystal structure, membrane-protein stabilization
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-279177 (URN)10.1016/j.jmb.2020.06.016 (DOI)000552832700021 ()32569746 (PubMedID)2-s2.0-85087288216 (Scopus ID)
Merknad

QC 20200907

Tilgjengelig fra: 2020-09-07 Laget: 2020-09-07 Sist oppdatert: 2025-02-20bibliografisk kontrollert
4. Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins.
Åpne denne publikasjonen i ny fane eller vindu >>Structural and biochemical characterization of the Cutibacterium acnes exo-β-1,4-mannosidase that targets the N-glycan core of host glycoproteins.
Vise andre…
2018 (engelsk)Inngår i: PLOS ONE, E-ISSN 1932-6203, Vol. 13, nr 9, artikkel-id e0204703Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Commensal and pathogenic bacteria have evolved efficient enzymatic pathways to feed on host carbohydrates, including protein-linked glycans. Most proteins of the human innate and adaptive immune system are glycoproteins where the glycan is critical for structural and functional integrity. Besides enabling nutrition, the degradation of host N-glycans serves as a means for bacteria to modulate the host's immune system by for instance removing N-glycans on immunoglobulin G. The commensal bacterium Cutibacterium acnes is a gram-positive natural bacterial species of the human skin microbiota. Under certain circumstances, C. acnes can cause pathogenic conditions, acne vulgaris, which typically affects 80% of adolescents, and can become critical for immunosuppressed transplant patients. Others have shown that C. acnes can degrade certain host O-glycans, however, no degradation pathway for host N-glycans has been proposed. To investigate this, we scanned the C. acnes genome and were able to identify a set of gene candidates consistent with a cytoplasmic N-glycan-degradation pathway of the canonical eukaryotic N-glycan core. We also found additional gene sequences containing secretion signals that are possible candidates for initial trimming on the extracellular side. Furthermore, one of the identified gene products of the cytoplasmic pathway, AEE72695, was produced and characterized, and found to be a functional, dimeric exo-β-1,4-mannosidase with activity on the β-1,4 glycosidic bond between the second N-acetylglucosamine and the first mannose residue in the canonical eukaryotic N-glycan core. These findings corroborate our model of the cytoplasmic part of a C. acnes N-glycan degradation pathway.

HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-235707 (URN)10.1371/journal.pone.0204703 (DOI)000445907400093 ()30261037 (PubMedID)2-s2.0-85053860322 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, 20135717Swedish Research Council Formas, 20131741; 2012-1513; 2014-176
Merknad

QC 20181030

Tilgjengelig fra: 2018-10-02 Laget: 2018-10-02 Sist oppdatert: 2022-06-26bibliografisk kontrollert
5. A homodimeric bacterial exo-β-1,3-glucanase derived from moose rumen 1microbiome shows a structural framework similar to yeast exo-β-1,3-glucanases
Åpne denne publikasjonen i ny fane eller vindu >>A homodimeric bacterial exo-β-1,3-glucanase derived from moose rumen 1microbiome shows a structural framework similar to yeast exo-β-1,3-glucanases
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

The impact of various β-glucans on the gut microbiome and immune system of vertebrates is becoming increasingly recognized. Besides the fundamental interest in understanding how β-glucans support human and animal health, enzymes that metabolize β-glucans are of interest for hemicellulose bioprocessing. Our earlier metagenomic analysis of the moose rumen microbiome identified a gene coding for a bacterial enzyme with a possible role in β-glucan metabolization. Here, we report that the enzyme,mrbExg5, has exo-β-1,3-glucanase activity on β-1,3-linked glucooligosaccharides and laminarin, but not on β-1,6-or β-1,4-glycosidic bonds. Longer oligosaccharides are good substrates, while shorter substrates arereadily transglycosylated into longer products. The enzyme belongs to glycoside hydrolase subfamily GH5_44, which is a close phylogenetic neighbor of the subfamily GH5_9 exo-β-1,3-glucanases of Saccharomyces cerevisiaeand Candida albicans. The crystal structure shows that unlike the eukaryotic relatives, mrbExg5 is a functional homodimer with a binding region characterized by: (i) subsite +1 can accommodate a branched sugar on the β-1,3-glucan backbone; (ii) subsite +2 is restricted to exclude backbone substituents; and (iii) a fourth subsite (+3) formed by a unique loop. mrbExg5 is the first GH5_44 enzyme to be structurally characterized, and the first bacterial GH5 with exo-β-1,3-glucanase activity.

HSV kategori
Forskningsprogram
Bioteknologi
Identifikatorer
urn:nbn:se:kth:diva-281710 (URN)
Merknad

QC 20200922

Tilgjengelig fra: 2020-09-21 Laget: 2020-09-21 Sist oppdatert: 2025-02-20bibliografisk kontrollert

Open Access i DiVA

Doctoral thesis Tom Reichenbach(2436 kB)684 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2436 kBChecksum SHA-512
5e66dd75cb8c021b0330198ca3296c93fea17f97e34e56888dcdd1a040e36e0fbf1c52ceb4fb36389c3f982e8243198570ac15193682432f13da96364314989c
Type fulltextMimetype application/pdf

Person

Reichenbach, Tom

Søk i DiVA

Av forfatter/redaktør
Reichenbach, Tom
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 684 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 885 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf