Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Towards synthesized training data for semantic segmentation of mobile laser scanning point clouds: Generating level crossings from real and synthetic point cloud samples
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Fastigheter och byggande, Geodesi och satellitpositionering.ORCID-id: 0000-0001-9032-4305
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Fastigheter och byggande, Geodesi och satellitpositionering.ORCID-id: 0000-0003-0382-9183
2021 (engelsk)Inngår i: Automation in Construction, ISSN 0926-5805, E-ISSN 1872-7891, Vol. 130, artikkel-id 103839Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper presents a method for synthesizing mobile laser scanning point clouds of railroad level crossings that can be used to train neural networks for point cloud segmentation. The method arranges point cloud samples representing individual objects into new scenes using a set of simple placement rules. The point cloud samples can be cropped from real point clouds, created from 3D mesh models, or procedurally generated using mathematical functions. The scenes can consist of one or more types of samples, making it possible to combine real and synthetic data. The findings show that a network trained on scenes generated from real point cloud samples resulted in a better overall F1-score compared to a network that was trained using real scenes. Also, the performance of a network trained on a very small amount of real scenes can be improved by adding fully synthetic scenes to the training data.

sted, utgiver, år, opplag, sider
Elsevier BV , 2021. Vol. 130, artikkel-id 103839
Emneord [en]
Point clouds, Data augmentation, Data synthesis, BIM, Deep learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-301974DOI: 10.1016/j.autcon.2021.103839ISI: 000692822600003Scopus ID: 2-s2.0-85111818297OAI: oai:DiVA.org:kth-301974DiVA, id: diva2:1595108
Merknad

QC 20210917

Tilgjengelig fra: 2021-09-17 Laget: 2021-09-17 Sist oppdatert: 2022-06-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Uggla, GustafHoremuz, Milan

Søk i DiVA

Av forfatter/redaktør
Uggla, GustafHoremuz, Milan
Av organisasjonen
I samme tidsskrift
Automation in Construction

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 364 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf