Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The SRIVC algorithm for continuous-time system identification with arbitrary input excitation in open and closed loop
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.ORCID-id: 0000-0002-5106-2784
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik.ORCID-id: 0000-0003-0355-2663
The University of Newcastle, Australia.
The University of Newcastle, Australia.
2021 (engelsk)Inngår i: Proceedings of the 60th IEEE Conference on Decision and Control (CDC 2021), Institute of Electrical and Electronics Engineers (IEEE) , 2021Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Continuous-time system identification has primarily dealt with sampled input and output data for constructing continuous-time models. However, sampled signals can lead to inaccurate models if their intersample behavior is not addressed appropriately. In this paper, this effect is explored in detail with respect to the SRIVC and CLSRIVC estimators, which are some of the most popular methods for open and closed-loop continuous-time system identification respectively. Based on our consistency analysis, we propose an algorithm that alleviates the asymptotic bias of these methods for arbitrary input excitations and provide an alternative procedure to achieve consistent estimates for band-limited signals. Simulation examples show the effectiveness of our approach.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2021.
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-313014DOI: 10.1109/CDC45484.2021.9683775ISI: 000781990302108Scopus ID: 2-s2.0-85126037869OAI: oai:DiVA.org:kth-313014DiVA, id: diva2:1661562
Konferanse
2021 60th IEEE Conference on Decision and Control (CDC)
Forskningsfinansiär
Swedish Research Council, 2016-06079
Merknad

QC 20220601

Tilgjengelig fra: 2022-05-28 Laget: 2022-05-28 Sist oppdatert: 2022-12-12bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

González, Rodrigo A.Rojas, Cristian R.

Søk i DiVA

Av forfatter/redaktør
González, Rodrigo A.Rojas, Cristian R.
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 47 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf