Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Integrative functional analysis uncovers metabolic differences between Candida species
Kings Coll London, Fac Dent Oral & Craniofacial Sci, Ctr Host Microbiome Interact, London SE1 9RT, England..
Kings Coll London, Fac Dent Oral & Craniofacial Sci, Ctr Host Microbiome Interact, London SE1 9RT, England..
Kings Coll London, Fac Dent Oral & Craniofacial Sci, Ctr Host Microbiome Interact, London SE1 9RT, England..
Kings Coll London, Fac Dent Oral & Craniofacial Sci, Ctr Host Microbiome Interact, London SE1 9RT, England..
Vise andre og tillknytning
2022 (engelsk)Inngår i: Communications Biology, E-ISSN 2399-3642, Vol. 5, nr 1, artikkel-id 1013Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Metabolic differences between Candida species are uncovered using the BioFung database alongside genomic and metabolic analysis. Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species-C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease.

sted, utgiver, år, opplag, sider
Springer Nature , 2022. Vol. 5, nr 1, artikkel-id 1013
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-319837DOI: 10.1038/s42003-022-03955-zISI: 000859940800002PubMedID: 36163459Scopus ID: 2-s2.0-85138662305OAI: oai:DiVA.org:kth-319837DiVA, id: diva2:1702628
Merknad

QC 20221011

Tilgjengelig fra: 2022-10-11 Laget: 2022-10-11 Sist oppdatert: 2023-12-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Uhlén, MathiasShoaie, SaeedPortlock, Theo John

Søk i DiVA

Av forfatter/redaktør
Uhlén, MathiasMoyes, DavidShoaie, SaeedPortlock, Theo John
Av organisasjonen
I samme tidsskrift
Communications Biology

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 280 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf