Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Geometry of spiking patterns in early visual cortex: a topological data analytic approach
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.), SFW Matematik för Data och AI. Basque Ctr Appl Math, MCEN Team, BCAM, Bilbao 48009, Basque, Spain..
Inria Univ Cote Azur, MathNeuro Team, F-06902 Sophia Antipolis, France..
Feil Family Brain & Mind Res Inst, Weill Cornell Med Coll, New York, NY 10065 USA..ORCID-id: 0000-0002-9293-0111
Feil Family Brain & Mind Res Inst, Weill Cornell Med Coll, New York, NY 10065 USA..
Vise andre og tillknytning
2022 (engelsk)Inngår i: Journal of the Royal Society Interface, ISSN 1742-5689, E-ISSN 1742-5662, Vol. 19, nr 196, artikkel-id 20220677Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

In the brain, spiking patterns live in a high-dimensional space of neurons and time. Thus, determining the intrinsic structure of this space presents a theoretical and experimental challenge. To address this challenge, we introduce a new framework for applying topological data analysis (TDA) to spike train data and use it to determine the geometry of spiking patterns in the visual cortex. Key to our approach is a parametrized family of distances based on the timing of spikes that quantifies the dissimilarity between neuronal responses. We applied TDA to visually driven single-unit and multiple single-unit spiking activity in macaque V1 and V2. TDA across timescales reveals a common geometry for spiking patterns in V1 and V2 which, among simple models, is most similar to that of a low-dimensional space endowed with Euclidean or hyperbolic geometry with modest curvature. Remarkably, the inferred geometry depends on timescale and is clearest for the timescales that are important for encoding contrast, orientation and spatial correlations.

sted, utgiver, år, opplag, sider
The Royal Society , 2022. Vol. 19, nr 196, artikkel-id 20220677
Emneord [en]
topological data analysis, persistent homology, spike metric, visual cortex
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-322206DOI: 10.1098/rsif.2022.0677ISI: 000885628900001PubMedID: 36382589Scopus ID: 2-s2.0-85141995006OAI: oai:DiVA.org:kth-322206DiVA, id: diva2:1716510
Merknad

QC 20221206

Tilgjengelig fra: 2022-12-06 Laget: 2022-12-06 Sist oppdatert: 2022-12-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Guidolin, Andrea

Søk i DiVA

Av forfatter/redaktør
Guidolin, AndreaVictor, Jonathan D. D.
Av organisasjonen
I samme tidsskrift
Journal of the Royal Society Interface

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 78 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf