Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic Scene Graph for Mutual-Cognition Generation in Proactive Human-Robot Collaboration
Vise andre og tillknytning
2022 (engelsk)Inngår i: Procedia CIRP, Elsevier B.V. , 2022, s. 943-948Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Human-robot collaboration (HRC) plays a crucial role in agile, flexible, and human-centric manufacturing towards the mass personalization transition. Nevertheless, in today's HRC tasks, either humans or robots need to follow the partners' commands and instructions along collaborative activities progressing, instead of proactive, mutual engagement. The non-semantic perception of HRC scenarios impedes mutually needed, proactive planning and high-cognitive capabilities in existing HRC systems. To overcome the bottleneck, this research explores a dynamic scene graph-based method for mutual-cognition generation in Proactive HRC applications. Firstly, a spatial-attention object detector is utilized to dynamically perceive objects in industrial settings. Secondly, a linking prediction module is leveraged to construct HRC scene graphs. An attentional graph convolutional network (GCN) is utilized to capture relations between industrial parts, human operators, and robot operations and reason structural connections of human-robot collaborative processing as graph embedding, which links to mutual planners for human operation supports and robot proactive instructions. Lastly, the Proactive HRC implementation is demonstrated on disassembly tasks of aging electronic vehicle batteries (EVBs) and evaluate its mutual-cognition capabilities. 

sted, utgiver, år, opplag, sider
Elsevier B.V. , 2022. s. 943-948
Emneord [en]
Cognitive computing, human-centric manufacturing, human-robot collaboration, scene graph, Cognitive systems, Graphic methods, Object detection, Robots, Semantics, Collaboration task, Collaborative activities, Dynamic scenes, Human robots, Human-centric, Personalizations, Scene-graphs, Manufacture
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-325073DOI: 10.1016/j.procir.2022.05.089Scopus ID: 2-s2.0-85132249012OAI: oai:DiVA.org:kth-325073DiVA, id: diva2:1746331
Konferanse
55th CIRP Conference on Manufacturing Systems, CIRP CMS 2022, 29 June 2022 through 1 July 2022
Merknad

QC 20230328

Tilgjengelig fra: 2023-03-28 Laget: 2023-03-28 Sist oppdatert: 2023-03-28bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Wang, Lihui

Søk i DiVA

Av forfatter/redaktør
Wang, Lihui
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 16 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf