Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Recursive Network Estimation for a Model With Binary-Valued States
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Digital futures.ORCID-id: 0000-0003-2641-2962
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Digital futures.ORCID-id: 0000-0002-5744-1371
Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China; School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China.ORCID-id: 0000-0002-5397-1551
KTH, Skolan för elektroteknik och datavetenskap (EECS), Intelligenta system, Reglerteknik. KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Digital futures.ORCID-id: 0000-0001-9940-5929
2023 (engelsk)Inngår i: IEEE Transactions on Automatic Control, ISSN 0018-9286, E-ISSN 1558-2523, Vol. 68, nr 7, s. 3872-3887Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

This paper studies how to estimate the weighted adjacency matrix of a network out of the state sequence of a model with binary-valued states, by using a recursive algorithm. In the considered system, agents display and exchange these binary-valued states generated from intrinsic quantizers. It is shown that stability of the model and identifiability of the system parameters can be guaranteed under continuous random noise. Under standard Gaussian noise, the problem of estimating the real-valued weighted adjacency matrix and the unknown quantization threshold is transformed to an optimization problem via a maximum likelihood approach. It is further verified that the unique solution of the optimization problem is the true parameter vector. A recursive algorithm for the estimation problem is then proposed based on stochastic approximation techniques. Its strong consistency is established and convergence rate analyzed. Numerical simulations are provided to illustrate developed results. 

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2023. Vol. 68, nr 7, s. 3872-3887
Emneord [en]
Behavioral sciences, Binary-valued states, Estimation, Heuristic algorithms, identifiability, Maximum likelihood estimation, network estimation, Neurons, Quantization (signal), quantized identification, Standards, stochastic approximation, Approximation algorithms, Approximation theory, Behavioral research, Gaussian noise (electronic), Optimization, Stochastic models, Stochastic systems, Behavioral science, Binary-valued state, Heuristics algorithm, Maximum-likelihood estimation, Stochastic approximations, Weighted adjacency matrixes
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-326669DOI: 10.1109/TAC.2022.3195268ISI: 001021499000003Scopus ID: 2-s2.0-85135764182OAI: oai:DiVA.org:kth-326669DiVA, id: diva2:1755967
Merknad

QC 20250925

Tilgjengelig fra: 2023-05-10 Laget: 2023-05-10 Sist oppdatert: 2025-09-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Xing, YuHe, XingkangJohansson, Karl H.

Søk i DiVA

Av forfatter/redaktør
Xing, YuHe, XingkangFang, HaitaoJohansson, Karl H.
Av organisasjonen
I samme tidsskrift
IEEE Transactions on Automatic Control

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 51 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf