Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mapping Urban Population Growth from Sentinel-2 MSI and Census Data Using Deep Learning: A Case Study in Kigali, Rwanda
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.ORCID-id: 0000-0003-3560-638x
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.ORCID-id: 0000-0002-0001-2058
University of Rwanda, Kigali, Rwanda.
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.ORCID-id: 0000-0003-1369-3216
Rekke forfattare: 42023 (engelsk)Inngår i: 2023 Joint Urban Remote Sensing Event, JURSE 2023, Institute of Electrical and Electronics Engineers (IEEE) , 2023Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

To better understand current trends of urban population growth in Sub-Saharan Africa, high-quality spatiotemporal population estimates are necessary. While the joint use of remote sensing and deep learning has achieved promising results for population distribution estimation, most of the current work focuses on fine-scale spatial predictions derived from single date census, thereby neglecting temporal analyses. In this work, we focus on evaluating how deep learning change detection techniques can unravel temporal population dynamics at short intervals. Since Post-Classification Comparison (PCC) methods for change detection are known to propagate the error of the individual maps, we propose an end-to-end population growth mapping method. Specifically, a ResNet encoder, pretrained on a population mapping task with Sentinel-2 MSI data, was incorporated into a Siamese network. The Siamese network was trained at the census level to accurately predict population change. The effectiveness of the proposed method is demonstrated in Kigali, Rwanda, for the time period 2016-2020, using bi-temporal Sentinel-2 data. Compared to PCC, the Siamese network greatly reduced errors in population change predictions at the census level. These results show promise for future remote sensing-based population growth mapping endeavors. Code is available on GitHub.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2023.
Emneord [en]
Population mapping, Siamese network, Sub-Saharan Africa
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-334537DOI: 10.1109/JURSE57346.2023.10144139Scopus ID: 2-s2.0-85163769298OAI: oai:DiVA.org:kth-334537DiVA, id: diva2:1790369
Konferanse
2023 Joint Urban Remote Sensing Event, JURSE 2023, Heraklion, Greece, May 17 2023 - May 19 2023
Merknad

Part of ISBN 9781665493734

QC 20230822

Tilgjengelig fra: 2023-08-22 Laget: 2023-08-22 Sist oppdatert: 2025-02-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Hafner, SebastianGeorganos, StefanosBan, Yifang

Søk i DiVA

Av forfatter/redaktør
Hafner, SebastianGeorganos, StefanosBan, Yifang
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 75 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf