Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0002-5388-3826
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0002-2283-7237
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0001-8947-2562
KTH, Centra, Science for Life Laboratory, SciLifeLab. KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Proteinvetenskap, Systembiologi.ORCID-id: 0000-0002-2669-7796
Vise andre og tillknytning
2023 (engelsk)Inngår i: Cancers, ISSN 2072-6694, Vol. 15, nr 19, artikkel-id 4764Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.

sted, utgiver, år, opplag, sider
MDPI AG , 2023. Vol. 15, nr 19, artikkel-id 4764
Emneord [en]
DIA, multiple myeloma, precision medicine, targeted proteomics
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-338876DOI: 10.3390/cancers15194764ISI: 001086709700001PubMedID: 37835457Scopus ID: 2-s2.0-85173822408OAI: oai:DiVA.org:kth-338876DiVA, id: diva2:1808429
Merknad

QC 20231115

Tilgjengelig fra: 2023-10-31 Laget: 2023-10-31 Sist oppdatert: 2023-12-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Kotol, DavidWoessmann, JakobHober, AndreasAlvez, Maria BuenoFagerberg, LinnUhlén, MathiasEdfors, Fredrik

Søk i DiVA

Av forfatter/redaktør
Kotol, DavidWoessmann, JakobHober, AndreasAlvez, Maria BuenoTran Minh, Khue HuaFagerberg, LinnUhlén, MathiasEdfors, Fredrik
Av organisasjonen
I samme tidsskrift
Cancers

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 152 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf