Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Collaboration platform for penetration tests enhanced with machine learning
KTH, Skolan för teknikvetenskap (SCI).
KTH, Skolan för teknikvetenskap (SCI).
2024 (engelsk)Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
Abstract [en]

Penetration tests are designed to assess the security of systems, requiring testers to efficiently share information and document findings. A collaboration platform that utilizes machine learning is hypothesized to enhance this process by automating data collection and reporting. We evaluate computer vision for data collection and analysis of penetration testing tools, aiming to alleviate manual reporting burdens and improve the effectiveness in penetration testing teams. The proposed solution integrates computer vision, neural networks and large language models to understand and analyze outputs from various penetration testing tools without manual log parsing. By comparing different tools and methods, this study aims to streamline collaboration during penetration tests and automate the collection of actionable data for penetration testers.

sted, utgiver, år, opplag, sider
2024.
Serie
TRITA-SCI-GRU ; 2024:259
Emneord [en]
Cyber security, Machine learning, Computer vision, Penetration testing
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-348796OAI: oai:DiVA.org:kth-348796DiVA, id: diva2:1878717
Eksternt samarbeid
Integrity360
Fag / kurs
Mathematics
Utdanningsprogram
Master of Science in Engineering - Engineering Mathematics
Veileder
Examiner
Tilgjengelig fra: 2024-06-27 Laget: 2024-06-27 Sist oppdatert: 2024-06-27bibliografisk kontrollert

Open Access i DiVA

fulltext(528 kB)189 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 528 kBChecksum SHA-512
0abec74c7555561c503436dfc74debdc74540f029a3c938b87a2b569e1404e47cfc980fe0641ec0e4b64b1b696d77acfd1850bba036024d6b8bb7a35c626ccd5
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 189 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 607 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf