Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparing Transfer Learning and Rollout for Policy Adaptation in a Changing Network Environment
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Nätverk och systemteknik.ORCID-id: 0000-0002-6343-7416
Ericsson Research, Sweden.
Ericsson Research, Sweden.
Ericsson Research, Sweden; Uppsala University, Department of Information Technology, Sweden.
Vise andre og tillknytning
2024 (engelsk)Inngår i: Proceedings of IEEE/IFIP Network Operations and Management Symposium 2024, NOMS 2024, Institute of Electrical and Electronics Engineers (IEEE) , 2024Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Dynamic resource allocation for network services is pivotal for achieving end-to-end management objectives. Previous research has demonstrated that Reinforcement Learning (RL) is a promising approach to resource allocation in networks, allowing to obtain near-optimal control policies for non-trivial system configurations. Current RL approaches however have the drawback that a change in the system or the management objective necessitates expensive retraining of the RL agent. To tackle this challenge, practical solutions including offline retraining, transfer learning, and model-based rollout have been proposed. In this work, we study these methods and present comparative results that shed light on their respective performance and benefits. Our study finds that rollout achieves faster adaptation than transfer learning, yet its effectiveness highly depends on the accuracy of the system model.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2024.
Emneord [en]
Istio, Kubernetes, Performance management, policy adaptation, reinforcement learning, rollout, service mesh
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-351010DOI: 10.1109/NOMS59830.2024.10575398ISI: 001270140300103Scopus ID: 2-s2.0-85198375028OAI: oai:DiVA.org:kth-351010DiVA, id: diva2:1885685
Konferanse
2024 IEEE/IFIP Network Operations and Management Symposium, NOMS 2024, Seoul, Korea, May 6 2024 - May 10 2024
Merknad

Part of ISBN 9798350327939

QC 20240725

Tilgjengelig fra: 2024-07-24 Laget: 2024-07-24 Sist oppdatert: 2024-09-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Samani, Forough ShahabStadler, Rolf

Søk i DiVA

Av forfatter/redaktør
Samani, Forough ShahabStadler, Rolf
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 321 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf