Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Post Flooding Scenario Analysis: Case Study of Cyclone IDAI in Mozambique
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö.ORCID-id: 0000-0003-4448-6180
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.ORCID-id: 0000-0001-9692-8636
KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Samhällsplanering och miljö, Geoinformatik.ORCID-id: 0000-0003-1369-3216
Karlstad University, Geomatics Unit, Karlstad, Sweden.
2024 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Floods are one of the most destructive disasters worldwide and although they largely happen in rural, ruther than in urban areas, it is in the urban areas that substantial destruction of infrastructures is observed. Thus, cost effective methods to monitor flood damage and extent are required. In this paper, we investigate the implementation of U-Net on satellite and drone image dataset such as xBD and EDDA for building damage assessment in Mozambique. The recently published dataset EDDA was created by the National Institute for Disaster Management (INGD) and comprises drone imagery of Beira, in Mozambique. Using them, we obtained a dice score of 0.76 on building localization (BL) and mean intersection over the union (mIoU) of 0.54 on damage classification (DC). These are promising results considering that many datasets lack detailed information on African buildings. We also use some pre-trained models models such as ResNet for BL and DC.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE) , 2024. s. 561-564
Emneord [en]
buildings, damage assessment, floods, remote sensing, segmentation and classification
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-356654DOI: 10.1109/IGARSS53475.2024.10642933ISI: 001316158500129Scopus ID: 2-s2.0-85208742761OAI: oai:DiVA.org:kth-356654DiVA, id: diva2:1914824
Konferanse
2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024, Athens, Greece, Jul 7 2024 - Jul 12 2024
Merknad

QC 20241122

Tilgjengelig fra: 2024-11-20 Laget: 2024-11-20 Sist oppdatert: 2025-03-06bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Nhangumbe, ManuelNascetti, AndreaBan, Yifang

Søk i DiVA

Av forfatter/redaktør
Nhangumbe, ManuelNascetti, AndreaBan, Yifang
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 90 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf