Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Molecular dynamics study of stiffness and rupture of axonal membranes
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Neuronik.ORCID-id: 0009-0001-6312-345X
KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Medicinteknik och hälsosystem, Neuronik.ORCID-id: 0000-0003-0125-0784
KTH, Skolan för elektroteknik och datavetenskap (EECS), Centra, Parallelldatorcentrum, PDC.ORCID-id: 0000-0002-9573-0326
2025 (engelsk)Inngår i: Brain Research Bulletin, ISSN 0361-9230, E-ISSN 1873-2747, Vol. 223, artikkel-id 111266Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Diffuse axonal injury (DAI), characterized by widespread damage to axons throughout the brain, represents one of the most devastating and difficult-to-treat forms of traumatic brain injury. Different theories exist about the mechanism of DAI, among which one hypothesis states that membrane poration of the axons initiates DAI. To investigate the hypothesis, molecular models of axonal membranes, incorporating 25 different lipids distributed asymmetrically in the leaflets, were developed using a coarse-grain description and simulated using molecular dynamics techniques. Different protein concentrations were embedded inside the lipid bilayer to describe the different sub-cellular parts in myelinated and unmyelinated axons. The models were investigated in equilibration and under deformation to characterize the structural and mechanical properties of the membranes, and comparisons were made with other subcellular parts, particularly myelin. Employing a bottom-top approach, the results were coupled with a finite element model representing the axon at the cell level. The results indicate that pore formation in the node-of-Ranvier occurs at a lower rupture strain compared to other axolemma parts, whereas myelin poration exhibits the highest rupture strains among the investigated models. The observed rupture strain for the node-of-Ranvier aligns with experimental studies, indicating a threshold for injury at axonal strains exceeding 10–13 % depending on the strain rate. The results indicate that the hypothesis suggesting mechanoporation triggers axonal injury cannot be dismissed, as this phenomenon occurs within the threshold of axonal injury.

sted, utgiver, år, opplag, sider
Elsevier BV , 2025. Vol. 223, artikkel-id 111266
Emneord [en]
Axolemma, Diffuse axon injury, Mechanoporation, Molecular dynamics, Traumatic brain injury
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-361168DOI: 10.1016/j.brainresbull.2025.111266ISI: 001437805100001PubMedID: 39993508Scopus ID: 2-s2.0-85219059169OAI: oai:DiVA.org:kth-361168DiVA, id: diva2:1944123
Merknad

QC 20250326

Tilgjengelig fra: 2025-03-12 Laget: 2025-03-12 Sist oppdatert: 2025-03-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Majdolhosseini, MaryamKleiven, SveinVilla, Alessandra

Søk i DiVA

Av forfatter/redaktør
Majdolhosseini, MaryamKleiven, SveinVilla, Alessandra
Av organisasjonen
I samme tidsskrift
Brain Research Bulletin

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 90 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf