Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Algorithms for the Diverse-k-SAT Problem: The Geometry of Satisfying Assignments
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Teoretisk datalogi, TCS.ORCID-id: 0000-0001-8217-0158
KTH, Skolan för elektroteknik och datavetenskap (EECS), Datavetenskap, Teoretisk datalogi, TCS.ORCID-id: 0000-0001-8430-2441
Queens College, City University of New York, NY, USA.ORCID-id: 0000-0002-2111-3210
IT University of Copenhagen, Denmark.ORCID-id: 0000-0002-0238-1674
Vise andre og tillknytning
2025 (engelsk)Inngår i: 52nd International Colloquium on Automata, Languages, and Programming, ICALP 2025, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2025, artikkel-id 14Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Given a k-CNF formula and an integer s ≥ 2, we study algorithms that obtain s solutions to the formula that are as dispersed as possible. For s = 2, this problem of computing the diameter of a k-CNF formula was initiated by Creszenzi and Rossi, who showed strong hardness results even for k = 2. The current best upper bound [Angelsmark and Thapper ’04] goes to 4 n as k → ∞. As our first result, we show that this quadratic blow up is not necessary by utilizing the Fast-Fourier transform (FFT) to give a O ∗ (2n ) time exact algorithm for computing the diameter of any k-CNF formula. For s > 2, the problem was raised in the SAT community (Nadel ’11) and several heuristics have been proposed for it, but no algorithms with theoretical guarantees are known. We give exact algorithms using FFT and clique-finding that run in O ∗ (2(s−1)n ) and O ∗ (s 2 |ΩF| ω⌈s/3⌉ ) respectively, where |ΩF| is the size of the solutions space of the formula F and ω is the matrix multiplication exponent. However, current SAT algorithms for finding one solution run in time O ∗ (2εkn ) for εk ≈ 1−Θ(1/k), which is much faster than all above run times. As our main result, we analyze two popular SAT algorithms - PPZ (Paturi, Pudlák, Zane ’97) and Schöning’s (’02) algorithms, and show that in time poly(s)O ∗ (2εkn ), they can be used to approximate diameter as well as the dispersion (s > 2) problem. While we need to modify Schöning’s original algorithm for technical reasons, we show that the PPZ algorithm, without any modification, samples solutions in a geometric sense. We believe this geometric sampling property of PPZ may be of independent interest. Finally, we focus on diverse solutions to NP-complete optimization problems, and give biapproximations running in time poly(s)O ∗ (2εn) with ε < 1 for several problems such as Maximum Independent Set, Minimum Vertex Cover, Minimum Hitting Set, Feedback Vertex Set, Multicut on Trees and Interval Vertex Deletion. For all of these problems, all existing exact methods for finding optimal diverse solutions have a runtime with at least an exponential dependence on the number of solutions s. Our methods show that by relaxing to bi-approximations, this dependence on s can be made polynomial.

sted, utgiver, år, opplag, sider
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing , 2025. artikkel-id 14
Emneord [en]
Dispersion, Diversity, Exponential time algorithms, k-SAT, PPZ, Satisfiability, Schöning
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-368913DOI: 10.4230/LIPIcs.ICALP.2025.14Scopus ID: 2-s2.0-105009888526OAI: oai:DiVA.org:kth-368913DiVA, id: diva2:1991298
Konferanse
52nd EATCS International Colloquium on Automata, Languages, and Programming, ICALP 2025, Aarhus, Denmark, July 8-11, 2025
Merknad

Part of ISBN 9783959773720

QC 20250822

Tilgjengelig fra: 2025-08-22 Laget: 2025-08-22 Sist oppdatert: 2025-08-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Austrin, PerBercea, Ioana

Søk i DiVA

Av forfatter/redaktør
Austrin, PerBercea, IoanaGoswami, MayankLimaye, NutanSrinivasan, Adarsh
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 34 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf