Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Graph Attention Network Based Deep Reinforcement Learning Approach for Dynamic Human Order Picking
Department of Naval Architecture and Ocean Engineering, Seoul National University, 08826, Seoul, Republic of Korea.ORCID-id: 0009-0009-6556-2067
KTH, Skolan för industriell teknik och management (ITM), Produktionsutveckling.ORCID-id: 0000-0003-3792-0022
Republic of Korea Navy, Gyeryong, Republic of Korea.ORCID-id: 0009-0009-7656-6522
Department of Naval Architecture and Ocean Engineering, Seoul National University, 08826, Seoul, Republic of Korea; Research Institute of Marine Systems Engineering, Seoul National University, 08826, Seoul, Republic of Korea.ORCID-id: 0000-0002-7612-7361
2026 (engelsk)Inngår i: Advances in Production Management Systems.: Cyber-Physical-Human Production Systems: Human-AI Collaboration and Beyond - 44th IFIP WG 5.7 International Conference, APMS 2025, Proceedings, Part I, Springer Nature , 2026, Vol. 764, s. 450-465Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Dynamic human order picking (HOP) is challenged by real-time changes and complex constraints like operator workload and cart capacity. While deep reinforcement learning (DRL) is suitable for dynamic problems, effectively leveraging warehouse graph structures remains an opportunity. This paper proposes a novel deep reinforcement learning architecture employing a graph attention network (GAT) based encoder-decoder architecture to address dynamic HOP. The GAT encoder explicitly models spatial and task related dependencies within the warehouse graph. The decoder utilizes a specialized attention mechanism, separating the context query from dynamic state information embedded in keys and values. This architecture is designed to consider real-time factors including remaining orders, cart weight, and operator workload. The primary contribution of this work lies in architectural design and its motivation, anticipating improvements in scalability, generalization, and dynamic adaptability over existing attention-aware reinforcement learning (RL) models. While this paper focuses on presenting theoretical architecture, ongoing empirical validation aims to quantify these potential benefits through direct comparison with the results of prior work.

sted, utgiver, år, opplag, sider
Springer Nature , 2026. Vol. 764, s. 450-465
Serie
IFIP Advances in Information and Communication Technology, ISSN 18684238
Emneord [en]
Deep Reinforcement Learning (DRL), Dynamic Scheduling, Graph Attention Network (GAT), Human Order Picking (HOP), Warehouse Logistics
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-370851DOI: 10.1007/978-3-032-03515-8_31Scopus ID: 2-s2.0-105015583154OAI: oai:DiVA.org:kth-370851DiVA, id: diva2:2003110
Konferanse
44th IFIP WG 5.7 International Conference on Advances in Production Management Systems, APMS 2025, Kamakura, Japan, Aug 31 2025 - Sep 4 2025
Merknad

Part of ISBN 9783032035141

QC 20251003

Tilgjengelig fra: 2025-10-03 Laget: 2025-10-03 Sist oppdatert: 2025-10-03bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Cho, KiyoungKwak, DonghoonOh, SeungheonWoo, Jonghun
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 8 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf