The variability in the market conditions is growing in terms of its frequency of change and range of diversity. In response to this new industrial panorama, research on production systems is aiming to achieve truly reconfigurable shop floors. Frequent changes in such systems require also frequent re-planning with updated information. In this regard the Continuous Precise Workload Control method, is a recent approach aiming at precise control of workload in the shop floor with the use of direct load graphs. Supported by a multi-agent platform, it generates dynamic non-periodic release decisions exploiting real time shop floor information. The study in this paper is two folded; (1) in order to highlight its distinctive characteristics, the presented workload approach is defined in terms of eight dimensions of the workload control concept and (2) the penalty of idleness which affects the decision of release is analyzed by an experiment design in order to investigate its correlation with two critical parameters, norm value and assessment range. The results show that the idleness penalty factor decreases the idleness of the resources up to a point where the adverse effect is initiated. Besides there are strong indications towards the correlation of idleness penalty factor with the norm value.
QC 20150203